Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric bi-univalent functions
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0018Abstract
In the present investigation, we define two new subclasses of the function class $\Sigma_m$ of analytic and $m$-fold symmetric bi-univalent functions defined in the open unit disk $U$. Furthermore, for functions in each of the subclasses introduced here, we etermine the estimates on the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$. Also, we indicate certain special cases for our results.
Keywords:
Analytic functions, univalent functions, bi-univalent functions, m-fold symmetric bi-univalent functions, coefficient estimatesMathematics Subject Classification:
Mathematics- Pages: 472-476
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
Ş. Altınkaya and S. Yalçın, Coefficient bounds for certain subclasses of $mathrm{m}$-fold symmetric bi-univalent functions, Journal of Mathematics, Art. ID 241683 (2015), 1-5.
Ş. Altınkaya and S. Yalçın, On some subclasses of mfold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series Al, 67(1)(2018), 29-36.
D. A. Brannan and T. S. Taha, On Some classes of biunivalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
S. S. Eker, Coefficient bounds for subclasses of mfold symmetric bi-univalent functions, Turk. J. Math., 40(2016), 641-646.
B. A. Frasin and M. K. Aouf, New subclasses of biunivalent functions, Appl. Math. Lett., 24(2011), 15691573.
S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), 179-182.
W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105(1989), 324-329.
X. F. Li and A. P. Wang, Two new subclasses of biunivalent functions, Int. Math. Forum, 7(2012), 14951504.
H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, $J$. Egyptian Math. Soc., 23(2015), 242-246.
H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831842.
H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, $36 mathrm{~B}(3)(2016), 863-871$.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2)(2014), $1-10$.
H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, $J$. Math. Inequal., 10(2016), 1063-1092.
A. K. Wanas and A. H. Majeed, Certain new subclasses of analytic and m-fold symmetric bi-univalent functions, Applied Mathematics E-Notes, 18(2018), 178-188.
- NA
Similar Articles
- S. Sekar, A. S. Thirumurugan, Numerical investigation of the fuzzy integro-differential equations by He 0 s Homotopy perturbation method , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.