A study of $ \tilde{Y}$-transform

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0024

Abstract

In this paper we introduce and study an integral transform (Ĩ-transform) whose kernel is the $D_{\mu, \rho}^v(z)$ function which is generalized form of Kratzel function introduced by Kratzel [10]. First, we obtain the basic properties of $\tilde{Y}$ transform. Further, we establish connection formulae of $\tilde{Y}$-transform with Mellin transform, Laplace transform and Saigo operators. Next, we find the images of the product of $H$-function and $S_V^U$ under this transform.

Keywords:

Mellin transform, Laplace transform, Saigo operators

Mathematics Subject Classification:

Mathematics
  • Padama Kumawat Department of Mathematics, Maharshi Arvind University, Jaipur-302017, India.
  • Yogesh Khandelwal Department of Mathematics, Maharshi Arvind University, Jaipur-302017, India.
  • Pages: 513-518
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

A. Erdelyi, W. Magnus, F. Oberthettinger and F.G. Tricomi, Higher Transcendental Functions, Vol I, McGrawHill Book Company, New York, Toronto, London 1953.

A.A. Kilbas and N. Sebastian, Generalised fractional differentiation of Bessel function of the first kind, Mathematica Balkanica, 22(2008), 323-346.

A.A. Kilbas, and D. Kumar, On generalized Kratzel function, Integral Transforms and Special Functions, 20(2009), 835-846.

A.A Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

A.A. Kilbas, L. Rodriguez and J.J. Trujillo, Asymptotic representations for hypergeometric-Bessel type function and fractional integrals, J. Comput. Appl. Math., 149(2002), 469-487.

A.A. Kilbas, R.K. Saxena and J.J. Trujillo, Kratzel function as a function of hypergeometric type, Frac. Calc. Appl. Anal., 9(2)(2006), 109-131.

B Bonilla, A. A. Kilbas, M. Rivero, J. Rodriguez- L. Germa and J.J. Trujillo, Modified Bessel type function and solution of differential and integral equations, Indian J. Pure Appl. Math., 31(1)(2000), 93-109.

${ }^{[8]} mathrm{D}$. Kumar, $P$-transform, Integral Transform and Special Functions, 22(8)(2011), 603-616.

E. Kratzel, Integral transformations of Bessel type, Proceeding of International Conference on Generalized Functions and Operational Calculus, Varna, 1975, 148155.

H.J. Glaeske, A.A. Kilbas and M. Saigo, A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces $F P, mu$ and $F P, mu_1$, J. of Computational and Applied Mathematics, 118(2000), $151-168$.

H.M. Srivastava, A contour integral involving Fox's $H$ function, Indian J. Math., 14(1972), 1-6.

H.M. Srivastava, K.C. Gupta and S.P. Goyal, The Hfunctions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982.

J.D.E. Konhauser, Biorthogonal polynomials suggested by the Lagurre polynomials, Pacific J. Math., 21(1967), 303-314.

K.S. Miller and B Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons Inc, 1993.

M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.

N.S. Dernek, A.T. Dernek, and O.S. Yurekli, A Generalization of the Kratzel Function and Its Applications, New York, 2017.

R Jain and P Kumawat, A Study of generalized pathway Transform, 2017,77-88.

R.K.Saxena, On thermo nuclear reaction rate integrals through model, Rajasthan Ganita Parishad, (2012), 2742.

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.

A.A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the $H$-function, J. Phys. A: Math. Gen., 20(1987), $4119-4128$.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2019

How to Cite

Padama Kumawat, and Yogesh Khandelwal. “A Study of $ \tilde{Y}$-Transform”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 513-8, doi:10.26637/MJM0703/0024.