A study of $ \tilde{Y}$-transform
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0024Abstract
In this paper we introduce and study an integral transform (Ĩ-transform) whose kernel is the $D_{\mu, \rho}^v(z)$ function which is generalized form of Kratzel function introduced by Kratzel [10]. First, we obtain the basic properties of $\tilde{Y}$ transform. Further, we establish connection formulae of $\tilde{Y}$-transform with Mellin transform, Laplace transform and Saigo operators. Next, we find the images of the product of $H$-function and $S_V^U$ under this transform.
Keywords:
Mellin transform, Laplace transform, Saigo operatorsMathematics Subject Classification:
Mathematics- Pages: 513-518
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
A. Erdelyi, W. Magnus, F. Oberthettinger and F.G. Tricomi, Higher Transcendental Functions, Vol I, McGrawHill Book Company, New York, Toronto, London 1953.
A.A. Kilbas and N. Sebastian, Generalised fractional differentiation of Bessel function of the first kind, Mathematica Balkanica, 22(2008), 323-346.
A.A. Kilbas, and D. Kumar, On generalized Kratzel function, Integral Transforms and Special Functions, 20(2009), 835-846.
A.A Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
A.A. Kilbas, L. Rodriguez and J.J. Trujillo, Asymptotic representations for hypergeometric-Bessel type function and fractional integrals, J. Comput. Appl. Math., 149(2002), 469-487.
A.A. Kilbas, R.K. Saxena and J.J. Trujillo, Kratzel function as a function of hypergeometric type, Frac. Calc. Appl. Anal., 9(2)(2006), 109-131.
B Bonilla, A. A. Kilbas, M. Rivero, J. Rodriguez- L. Germa and J.J. Trujillo, Modified Bessel type function and solution of differential and integral equations, Indian J. Pure Appl. Math., 31(1)(2000), 93-109.
${ }^{[8]} mathrm{D}$. Kumar, $P$-transform, Integral Transform and Special Functions, 22(8)(2011), 603-616.
E. Kratzel, Integral transformations of Bessel type, Proceeding of International Conference on Generalized Functions and Operational Calculus, Varna, 1975, 148155.
H.J. Glaeske, A.A. Kilbas and M. Saigo, A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces $F P, mu$ and $F P, mu_1$, J. of Computational and Applied Mathematics, 118(2000), $151-168$.
H.M. Srivastava, A contour integral involving Fox's $H$ function, Indian J. Math., 14(1972), 1-6.
H.M. Srivastava, K.C. Gupta and S.P. Goyal, The Hfunctions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982.
J.D.E. Konhauser, Biorthogonal polynomials suggested by the Lagurre polynomials, Pacific J. Math., 21(1967), 303-314.
K.S. Miller and B Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons Inc, 1993.
M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.
N.S. Dernek, A.T. Dernek, and O.S. Yurekli, A Generalization of the Kratzel Function and Its Applications, New York, 2017.
R Jain and P Kumawat, A Study of generalized pathway Transform, 2017,77-88.
R.K.Saxena, On thermo nuclear reaction rate integrals through model, Rajasthan Ganita Parishad, (2012), 2742.
S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
A.A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the $H$-function, J. Phys. A: Math. Gen., 20(1987), $4119-4128$.
- NA
Similar Articles
- K. Kalaiarasi, M. Sumathi , S. Daisy, Economic order quantity in fuzzy sense with allowable shortage: A Karush Kuhn-tucker conditions approach , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.