Existence of continuous solutions for nonlinear functional differential and integral inclusions
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0028Abstract
In this article, we establish the existence of a positive continuous solution of the functional integral inclusion of fractional order
$$
x(t) \in p(t)+I^\alpha F_1\left(t, I^\beta f_2(t, x(\varphi(t))), t \in[0,1], \alpha, \beta \in(0,1) .\right.
$$
The study holds in the case when the set-valued function has Lipschitz selections.
As an application, we study the initial-value problem of the arbitrary fractional order differential inclusion
$$
\frac{d x}{d t} \in F_1\left(t, D^\gamma x(t)\right) \text {, a.e, } t \in[0,1], \quad \gamma>0
$$
where $F_1(t, x(t))$ is a Lipschitz set-valued function defined on $[0,1] \times R^{+}$.
Keywords:
Set-valued function, functional Integral inclusion, fixed point theorem, Lipschitz selectionsMathematics Subject Classification:
Mathematics- Pages: 541-544
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
J. P. Aubin, A. Cellina, Differential Inclusion, SpringerVerlag, 264 (1984).
Sh.M. Al-Issa, A.M.A. El-Sayed, Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Commentationes Math., 49(2) (2009), 171-177.
A. Cellina, S. Solimini, Continuous extension of selection Bull. Polish Acad. Sci. Math., 35(9) (1978), 12-18.
M. Caputo,linear model of dissipation whose $Q$ is almost frequency independent II, Geophys. J. R. Astr. Soc. 13(5) (1967), 529-539.
B.C. Dhage, A functional integral inclusion involving Carathodories, Electron. J. Qual. Theory Differ. Equ., 14(2003), 1-18.
B.C. Dhage, A functional integral inclusion involving discontinuities. Fixed Point Theory, 5(1)(2003), 53-64.
A.M.A. El-Sayed A.G. Ibrahim, Set-valued integral equations of fractional-orders, Appl. Math. Comput., 118(1) (2001), 113-121.
A.M.A. El-Sayed, Sh.M. Al-Issa, Global Integrable Solution for a Nonlinear Functional Integral Inclusion, SRX Mathematics, 2010(2010), 1-12.
A.M.A El-Sayed, Sh.M. Al-Issa, Monotonic continuous solution for a mixed type integral inclusion of fractional order, Journal of Mathematics and Applications, 33(2010), 27-34.
A.M.A El-Sayed, Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, International Journal of Differential Equations and Applications, 18 (2019), 120-129.
A. Fyszkowski, Continuous selection for a class of nonconvex multivalued maps, Studia Math., 76(2)(1983), $163-174$.
D. O'Regan, Integral inclusions of upper semi-continuous or lower semicontinuous type, Proc. Amer. Math. Soc. 124.,(1996), 2391-2399.
M.Z. Nashed, Integrable solutions of Hammerstein integral equations, Applicable Analysis, 50 (1990), 277-284.
K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiely and Sons Inc., (1993).
I. Podlubny, A.M.A. EL-Sayed, On two definitions of fractional calculus, Solvak Academy of science-Institute of Experimental phys., (1996), 03-96.
I. Podlubny, Differential Equation, Acad. Press, San Diego-New York-London, (1999).
S.G. Samko, A.A. Kilbas and O.Marichev, Integrals and Derivatives of Fractional Orders and Some of their Applications, Nauka i Teknika, Minsk., (1987), 1-19.
K., Kuratowski, C. Ryll-Nardzewski, Ageneral theorem on selectors, Bull. de I'academic polonaise des sciences, Se'r. Sci-math. Astron-Phys., 13 (1995), 397-403.
- NA
Similar Articles
- G. Kannadasan, D. Devi, N. Sathiyamoorthi , The analysis of the M/M/1 queue with two vacation policies using pentagonal fuzzy numbers , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.