Existence of continuous solutions for nonlinear functional differential and integral inclusions

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0028

Abstract

In this article, we establish the existence of a positive continuous solution of the functional integral inclusion of fractional order
$$
x(t) \in p(t)+I^\alpha F_1\left(t, I^\beta f_2(t, x(\varphi(t))), t \in[0,1], \alpha, \beta \in(0,1) .\right.
$$
The study holds in the case when the set-valued function has Lipschitz selections.
As an application, we study the initial-value problem of the arbitrary fractional order differential inclusion
$$
\frac{d x}{d t} \in F_1\left(t, D^\gamma x(t)\right) \text {, a.e, } t \in[0,1], \quad \gamma>0
$$
where $F_1(t, x(t))$ is a Lipschitz set-valued function defined on $[0,1] \times R^{+}$.

Keywords:

Set-valued function, functional Integral inclusion, fixed point theorem, Lipschitz selections

Mathematics Subject Classification:

Mathematics
  • Pages: 541-544
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

J. P. Aubin, A. Cellina, Differential Inclusion, SpringerVerlag, 264 (1984).

Sh.M. Al-Issa, A.M.A. El-Sayed, Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Commentationes Math., 49(2) (2009), 171-177.

A. Cellina, S. Solimini, Continuous extension of selection Bull. Polish Acad. Sci. Math., 35(9) (1978), 12-18.

M. Caputo,linear model of dissipation whose $Q$ is almost frequency independent II, Geophys. J. R. Astr. Soc. 13(5) (1967), 529-539.

B.C. Dhage, A functional integral inclusion involving Carathodories, Electron. J. Qual. Theory Differ. Equ., 14(2003), 1-18.

B.C. Dhage, A functional integral inclusion involving discontinuities. Fixed Point Theory, 5(1)(2003), 53-64.

A.M.A. El-Sayed A.G. Ibrahim, Set-valued integral equations of fractional-orders, Appl. Math. Comput., 118(1) (2001), 113-121.

A.M.A. El-Sayed, Sh.M. Al-Issa, Global Integrable Solution for a Nonlinear Functional Integral Inclusion, SRX Mathematics, 2010(2010), 1-12.

A.M.A El-Sayed, Sh.M. Al-Issa, Monotonic continuous solution for a mixed type integral inclusion of fractional order, Journal of Mathematics and Applications, 33(2010), 27-34.

A.M.A El-Sayed, Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, International Journal of Differential Equations and Applications, 18 (2019), 120-129.

A. Fyszkowski, Continuous selection for a class of nonconvex multivalued maps, Studia Math., 76(2)(1983), $163-174$.

D. O'Regan, Integral inclusions of upper semi-continuous or lower semicontinuous type, Proc. Amer. Math. Soc. 124.,(1996), 2391-2399.

M.Z. Nashed, Integrable solutions of Hammerstein integral equations, Applicable Analysis, 50 (1990), 277-284.

K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiely and Sons Inc., (1993).

I. Podlubny, A.M.A. EL-Sayed, On two definitions of fractional calculus, Solvak Academy of science-Institute of Experimental phys., (1996), 03-96.

I. Podlubny, Differential Equation, Acad. Press, San Diego-New York-London, (1999).

S.G. Samko, A.A. Kilbas and O.Marichev, Integrals and Derivatives of Fractional Orders and Some of their Applications, Nauka i Teknika, Minsk., (1987), 1-19.

K., Kuratowski, C. Ryll-Nardzewski, Ageneral theorem on selectors, Bull. de I'academic polonaise des sciences, Se'r. Sci-math. Astron-Phys., 13 (1995), 397-403.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2019

How to Cite

A. M. A. El-Sayed, and Al-Issa, Sh. M. “Existence of Continuous Solutions for Nonlinear Functional Differential and Integral Inclusions”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 541-4, doi:10.26637/MJM0703/0028.