Multiplicative indices of $T U C_4 C_6 C_8[m, n]$ nanotube and $C_4 C_6 C_8[m, n]$ nanotori

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0032

Abstract

Chemical graph theory is a branch of graph theory. Topological indices of molecular graph correlate with chemical properties of the chemical molecules. In this article we compute the degree based topological indices like multiplicative first and second Zagreb, multiplicative first and second hyper Zagreb, general first and second multiplicative Zagreb, multiplicative sum connectivity, multiplicative product connectivity, general multiplicative Zagreb, multiplicative geometric arithmetic indices of $T U C_4 C_6 C_8[m, n]$ and $C_4 C_6 C_8[m, n]$ nanotori.

Keywords:

Molecular graph, topological index, multiplicative indices, nanotubes

Mathematics Subject Classification:

Mathematics
  • P. Gayathri Department of Mathematics, A.V.C.College, Mayiladuthurai-609305, Tamil Nadu, India.
  • S. Sunantha Department of Mathematics, Vivekananda College of Arts & Science for Women, Thenpathi, Sirkali-609111, Tamil Nadu, India.
  • Pages: 561-565
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

A. R. Ashrafi, T. Doslic and M. Saheli, The eccentric connectivity index of $T U C_4 C_8(R)$ nanotubes, $M A T C H$ Commun. Math. Comput. Chem., 65(2011), 221-230.

M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68(2012), 217-230.

I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

S. Hayat and M. Imran, On degree based topological indices of certain nanotubes, Journal of Computational and Theoretical Nano Science, 12(2015), 1599-1605.

V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012.

V. R. Kulli, Edge version of multiplicative atom bend connectivity index of certain nanotubes and nanotorus, International Journal of Mathematics And its Applications, 6(1-E)(2018), 977-982.

V. R. Kulli, Edge version of F-index, General sum connectivity index of certain nanotubes, Annals of Pure and Applied Mathematics, 14(3)(2017), 449-455.

V. R. Kulli, Multiplicative hyper-Zagreb indices and coindices of graphs, International Journal of Pure Algebra, 67(2016), 342-347.

V. R. Kulli, Branden Stone and Bing Wei, Generalized multiplicative indices of polycyclic aromatic hydrocarbons and benzenoid systems, Zeitschrift fur Naturforschung, 72(6)(2017), 573-576.

V. R. Kulli, Multiplicative connectivity indices of certain nanotubes, Annals of Pure and Applied Mathematics, $12(2)(2016), 169-176$.

V. R. Kulli, Multiplicative Connectivity Indices of Nanostructures, Journal of Ultra Scientist of Physical Sciences, $29(1)(2017), 1-10$.

I. Nadeem and $H$. Shaker, On eccentric connectivity index of $mathrm{TiO}_2$ nanotubes, Acta Chim. Slov., 63(2016), 363-368.

R. Todeschini and V. Consonni, Molecular Descriptors for Chemo informatics, Wiley-VCH, Weinheim, 2009.

R. Todeshine and V. Consonni, New vertex invariants and descriptors based on functions of vertex degrees, $M A T C H$ Commun. Math. Comput. Chem., 64(2010), 359-372.

Bo. Zhou and Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem., 63(2010), 181198.

  • NA

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-07-2019

How to Cite

P. Gayathri, and S. Sunantha. “Multiplicative Indices of $T U C_4 C_6 C_8[m, n]$ Nanotube and $C_4 C_6 C_8[m, n]$ Nanotori”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 561-5, doi:10.26637/MJM0703/0032.