The zero-divisor Cayley graph of the residue class ring $\left(Z_n, \oplus, \odot\right)$

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0036

Abstract

In this paper the notion of the zero-divisor Cayley graph $G\left(Z_n, D_0\right)$, where $\left(Z_n, \oplus, \odot\right)$ is the ring of residue classes modulo $n, n \geq 1$, an integer and $D_0$ is the set of nonzero zero-divisors, is introduced and it is shown that $G\left(Z_n, D_0\right)$ can be decomposed into components, if $n$ is a power of a single prime and it is connected, if $n$ is a product of more than one prime power.

Keywords:

Zero-Divisors, Symmetric set, Cayley Graph, Zero-divisor Cayley Graph

Mathematics Subject Classification:

Mathematics
  • Jangiti Devendra Department of Applied Mathematics, Yogi Vemana University, Kadapa-516003, Andhra Pradesh, India.
  • Levaku Madhavi Department of Applied Mathematics, Yogi Vemana University, Kadapa-516003, Andhra Pradesh, India.
  • Tippaluri Nagalakshumma Department of Applied Mathematics, Yogi Vemana University, Kadapa-516003, Andhra Pradesh, India.
  • Pages: 590-594
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

S. Akbari, and A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra, (2007), 168-184.

S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, J. Algebra (2006), 462-479.

D. Anderson, and M. Naseer, Beck's Colouring of Commutative Ring, J. Algebra (Grenoble), 159 (1983), 500514.

D. F. Anderson, M. C. Axtell, and Joe A. Jr. Stickles, Zero-divisor graphs in commutative rings, $M$. Fontana et al. (eds.), Commutative Algebra: Noetherian and NonNoetherian 23 Perspectives, DOI 10.1007/978-1-44196990-3-2.

D.F. Anderson and P.S. Livingston, The zero-divisor graph of commutative ring, J. Algebra, 217 (1999), 434447.

D. Anderson and M. Naseer, Beck's Colouring of Commutative Ring, J. Algebra (Grenoble), 159 (1983), 500514.

M. Apostol, Introduction to Analytical Number Theory, Springer International, Student Edition (1989).

I. Beck, Colouring of commutative rings, J. Algebra, 116 (1998), 208-216.

P. Bierrizbeitia and R. E. Giudici, Counting pure k-cycles in sequences of Cayley graphs, Discrite math. 149, 11-18.

P. Bierrizbeitia and R. E. Giudici, On cycles in the sequence of unitary Cayley graphs, Reporte Techico No. 01-95, universided Simon Bolivear, Depto.DeMathematics, Caracas, Venezuela (1995)

J. A. Bondy and U. S. R, Murty, Graph theory with Applications, Macillan, London (1976).

R.Frucht, Graphs of degree three with a given abstract group, Canada. J. Math, (1949), 365-378.

J. A. Gallian, Contemporary Abstract Algebra, Narosa publishing house, 9th Edition (2018).

D. Konig, Theorie der endlichen and unedndlichen Graphen, Leipzig (1936), 168-184.

L. Madhavi, Studies on Domination Parameters and Enumeration of cycles in some arithmetic grpahs, Ph.D Thesis, Sri Venkateswara University, Tirupati, India, (2003).

B. Maheswari and L. Madhavi, Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs, Chamchuri Journal of Mathematics, Volume 1 $(2009), 95-1036$.

B. Maheswari and L. Madhavi, Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, Graph Theory Notes of Newyork LIX, (2010), 28-31. The Mathematical Association of America.

K.R. Parthasarathy and A. Mohammadian, Basic graph Theory, Tata Mc. Graw-Hill Publishing Company Limited, (1994).

P.S. Livingston, structure in zero-divisor Graphs of commutative rings, J. Algebra, Masters Thesis, The University of Tennessee, Knoxville, TN, December (1997).

N.O. Smith, Planar Zero-Divisor Graph, International Journal of Commutative Rings, (4) (2002), 73-869.

Wu. Tangsuo, On Directed Zero-Divisor Graphs of Finite Rings, Discrete Mathematics, 296(1) (2005), 73-86.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2019

How to Cite

Jangiti Devendra, Levaku Madhavi, and Tippaluri Nagalakshumma. “The Zero-Divisor Cayley Graph of the Residue Class Ring $\left(Z_n, \oplus, \odot\right)$”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 590-4, doi:10.26637/MJM0703/0036.