The zero-divisor Cayley graph of the residue class ring $\left(Z_n, \oplus, \odot\right)$
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0036Abstract
In this paper the notion of the zero-divisor Cayley graph $G\left(Z_n, D_0\right)$, where $\left(Z_n, \oplus, \odot\right)$ is the ring of residue classes modulo $n, n \geq 1$, an integer and $D_0$ is the set of nonzero zero-divisors, is introduced and it is shown that $G\left(Z_n, D_0\right)$ can be decomposed into components, if $n$ is a power of a single prime and it is connected, if $n$ is a product of more than one prime power.
Keywords:
Zero-Divisors, Symmetric set, Cayley Graph, Zero-divisor Cayley GraphMathematics Subject Classification:
Mathematics- Pages: 590-594
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
S. Akbari, and A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra, (2007), 168-184.
S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, J. Algebra (2006), 462-479.
D. Anderson, and M. Naseer, Beck's Colouring of Commutative Ring, J. Algebra (Grenoble), 159 (1983), 500514.
D. F. Anderson, M. C. Axtell, and Joe A. Jr. Stickles, Zero-divisor graphs in commutative rings, $M$. Fontana et al. (eds.), Commutative Algebra: Noetherian and NonNoetherian 23 Perspectives, DOI 10.1007/978-1-44196990-3-2.
D.F. Anderson and P.S. Livingston, The zero-divisor graph of commutative ring, J. Algebra, 217 (1999), 434447.
D. Anderson and M. Naseer, Beck's Colouring of Commutative Ring, J. Algebra (Grenoble), 159 (1983), 500514.
M. Apostol, Introduction to Analytical Number Theory, Springer International, Student Edition (1989).
I. Beck, Colouring of commutative rings, J. Algebra, 116 (1998), 208-216.
P. Bierrizbeitia and R. E. Giudici, Counting pure k-cycles in sequences of Cayley graphs, Discrite math. 149, 11-18.
P. Bierrizbeitia and R. E. Giudici, On cycles in the sequence of unitary Cayley graphs, Reporte Techico No. 01-95, universided Simon Bolivear, Depto.DeMathematics, Caracas, Venezuela (1995)
J. A. Bondy and U. S. R, Murty, Graph theory with Applications, Macillan, London (1976).
R.Frucht, Graphs of degree three with a given abstract group, Canada. J. Math, (1949), 365-378.
J. A. Gallian, Contemporary Abstract Algebra, Narosa publishing house, 9th Edition (2018).
D. Konig, Theorie der endlichen and unedndlichen Graphen, Leipzig (1936), 168-184.
L. Madhavi, Studies on Domination Parameters and Enumeration of cycles in some arithmetic grpahs, Ph.D Thesis, Sri Venkateswara University, Tirupati, India, (2003).
B. Maheswari and L. Madhavi, Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs, Chamchuri Journal of Mathematics, Volume 1 $(2009), 95-1036$.
B. Maheswari and L. Madhavi, Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, Graph Theory Notes of Newyork LIX, (2010), 28-31. The Mathematical Association of America.
K.R. Parthasarathy and A. Mohammadian, Basic graph Theory, Tata Mc. Graw-Hill Publishing Company Limited, (1994).
P.S. Livingston, structure in zero-divisor Graphs of commutative rings, J. Algebra, Masters Thesis, The University of Tennessee, Knoxville, TN, December (1997).
N.O. Smith, Planar Zero-Divisor Graph, International Journal of Commutative Rings, (4) (2002), 73-869.
Wu. Tangsuo, On Directed Zero-Divisor Graphs of Finite Rings, Discrete Mathematics, 296(1) (2005), 73-86.
- NA
Similar Articles
- M. Simaringa, S. Muthukumaran, Edge vertex prime labeling of graphs , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- M Simaringa , S. Muthukumaran, Edge vertex prime labeling of some graphs , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
- M. Simaringa, K. Vijayalakshmi, Vertex edge neighborhood prime labeling of some graphs , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- S. K. Vaidya, N. H. Shah, Prime cordial labeling of some wheel related graphs , Malaya Journal of Matematik: Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
- N. Mohamed Rilwan, R. Radha, Edge vertex prime labeling of Cayley (di)graphs , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- Akul Rana, On the \(k\)-distant total labeling of graphs , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- M. Simaringa, K. Vijayalakshmi, Graph identification of different operations of vertex edge neighborhood prime , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.