Exact solutions for linear systems of local fractional partial differential equations

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0008

Abstract

The basic motivation of the present study is to apply the local fractional Sumudu decomposition method to solve linear system of local fractional partial differential equations. The local fractional Sumudu decomposition methodl (LFSDM) can easily be applied to many problems and it's capable of reducing the size of computational work to find non-differentiable solutions for similar problems. Some illustrative examples are given, revealing the effectiveness and convenience of this method.

Keywords:

Local fractional derivative operator, local fractional Sumudu decomposition method, linear systems of local fractional partial differential equations

Mathematics Subject Classification:

Mathematics
  • Djelloul Ziane Laboratory of mathematics and its applications (LAMAP), University of Oran1 Ahmed Ben Bella, Oran, 31000, Algeria.
  • Mountassir Hamdi Cherif Laboratory of mathematics and its applications (LAMAP), University of Oran1 Ahmed Ben Bella, Oran, 31000, Algeria.
  • Kacem Belghaba Laboratory of mathematics and its applications (LAMAP), University of Oran1 Ahmed Ben Bella, Oran, 31000, Algeria.
  • Pages: 53-60
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

M. Khana, M. A. Gondala and S. K. Vanani, On the Coupling of Homotopy Perturbation and Laplace Transformation for System of Partial Differential Equations, Appl. Math. Sci., 6(10)(2012), 467-478.

G. Adomian and R. Rach, Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations, Comput. Math. Appl., 10(1990), $9-12$.

J. H. He, "Homotopy perturbation technique", Comput. Meth. Appl. Mech. Eng., 178(1999), 257-262.

J. H. He, "A new approach to nonlinear partial differential equations", Comm. Nonlinear. Sci. Numer. Simul., 2(1997), 203-205.

V. Namias, The Fractional Order Fourier Transform and its Application to Quantum Mechanics, IMA. J. Appl. Math., 25(3)(1980), 241-265.

N. H. ASMAR, Partial Differential Equations with Fourier Series and Boundary Value Problems, University of Missouri Columbia, Missouri 65211.

I. Podlubny, The Laplace Transform Method for Linear Differential Equations of the Fractional Order, Slovak Acad. of Sci. Inst. of Exp. Phys, 1997.

A. Kiliçman and H. Eltayeb, On a New Integral Transform and Differential Equations, Math. Problems in Eng., A. ID463579(2010), 13 pp.

S. P. Yan, H. Jafari and H. K. Jassim, Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators, Adv. in Math. Phys., A. ID 161580(2014), 7 pp.

X. J. Yang, D. Baleanu and W. P. Zhong, Approximate Solutions for Diffusion Equations on Cantor SpaceTame, Proceedings of the Romanian Academy, Series A., $14(2)(2013), 127-133$.

X. J. Yang, H. M. Srivastava and C. Cattani, Local Fractional Homotopy Perturbation Method for Solving Fractal Partial Differential Equations Arising in Mathematical Physics, Romanian Repo. in Phys., 67(3)(2015), 752-761.

Y. Zhang, C. Cattani and X. J. Yang, Local Fractional Homotopy Perturbation Method for Solving NonHomogeneous Heat Conduction Equations in Fractal Domains, Entropy., 17(2015), 6753-6764.

D. Kumar, J. Singh, H. M. Baskonus and H. Bulut, An effective computational approach to local fractional telegraph equations, Nonlinear Sci. Lett. A., 8(2)(2017), 200206.

X. J. Yang, D. Baleanu, Y. Khan and S. T. Mohyuddin, Local Fractional Variational Iteration Method for Diffusion and Wave Equation on Cantor Sets, Rom. J. Phys., 59(1-2)(2014), 36-48.

D. Baleanu, J. A. T. Machado, C. Cattani, M. C. Baleanu and X. J. Yang, Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators, Abst. Appl. Anal., A. ID 535048(2014), 6 pp.

C. F. Liu, S. S. Kong and S. J. Yuan, Reconstructive Schemes for Variational Iteration Method within YangLaplace Transform with Application to Heat Conduction Problem, Thermal Science., 17(3)(2013), 715-721.

A. M. Yang, J. Li, H. M. Srivastava, G. N. Xie and X. J. Yang, Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative, Dis. in Nat. and Soc., A. ID 365981(2014), 8 pp.

Y. J. Yang and L. Q. Hua, Variational Iteration Transform Method for Fractional Differential Equations with Local Fractional Derivative, Abst. and Appl. Anal., A. ID $760957(2014), 9 mathrm{pp}$.

Y. J. Yang, D. Baleanu and X. J. Yang, Analysis of Fractal Wave Equations by Local Fractional Fourier Series Method, Adv. in Math. Phys., A. ID 632309(2013), 6 pp.

M. S. Hu, R. P. Agarwal and X. J. Yang, Local Fractional Fourier Series with Application to Wave Equation in Fractal Vibrating String, Abst. and Appl. Anal., A. ID 567401(2012), $15 mathrm{pp}$.

Z. Y. Chen, C. Cattani and W. P. Zhong, Signal Processing for Nondifferentiable Data Defined on Cantor Sets: A Local Fractional Fourier Series Approach, Adv. in Math. Phys., A. ID 561434(2011), 7 pp.

H. Sun and X. H. Liu, Laplace Transform Series Expansion Method for Solving the Local Fractional HeatTransfer Equation Defind on Cantor Sets, Thermal Science., 20(3)(2017), 777-780.

H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu and X. J. Yang, Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets, Abst. and Appl. Anal., A. ID 620529(2014), 7 pp.

Y. Wang, X. X. Lu, C. Cattani, J. L. G. Guirao and X. J. Yang, Solving Fractal Stedy Heat-Transfer Problems with the Local Fractional Sumudu Transform, Thermal Science., 19(2)(2015), 637-641.

A. M. Yang, J. Lia, Y. Z. Zhang and W. X. Liu, A New Coupling Shedule for Series Expansion Method and Sumudu Transform with an Applications to Diffusion Equation in Fractal Heat-Transfer, Thermal Science., $19(1)(2015), 145-149$.

Z. H. Guo, O. Acan and S. Kumar, Sumudu Transform Series Expansion Method for Solving the Local Fractional Laplace Equation in Fractal Thermal Problems, Thermal Science 20(3)(2016), 739-742.

D. Ziane, D. Baleanu, K. Belghaba and M. Hamdi Cherif, Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative, J. of $mathrm{K}$. Saud Univ-Sci., http://dx.doi.org/10.1016/j.jksus.2017.05.002, 2017.

X. J. Yang, Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong, 2011.

X. J. Yang, Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.

H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu and X. J. Yang, Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets, Abs. and Appl. Anal., A. ID 176395 (2014), 7 pp.

H. Jafari, M. Nazari, D. Baleanu and C. M. Khalique, $A$ new approach for solving a system of fractional partial differential equations, Comput. and Math. with Appl., $66(2013), 838-843$.

V. Parthiban and K. Balachandran, Solutions of System of Fractional Partial Differential Equations, Appli. and Appl. Math., 8(1)(2013), 289-304.

M. S. H. Chowdhury, I. Hashim and A. F. Ismail, Analytical Treatment of System of Linear and Nonlinear PDEs by Homotopy-Perturbation Method, Proceedings of the World Congress on Engineering, London, U.K, Vol III, June 30 - July 2, 2010 .

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

Djelloul Ziane, Mountassir Hamdi Cherif, and Kacem Belghaba. “Exact Solutions for Linear Systems of Local Fractional Partial Differential Equations”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 53-60, doi:10.26637/MJM0601/0008.