Numerical solution of nonlinear fractional integro-differential equation by Collocation method
Downloads
DOI:
https://doi.org/10.26637/MJM0601/0011Abstract
In this paper, we presents the Collocation Method with the help of shifted Chebyshev polynomials and shifted Legendre polynomials for the numerical solution of nonlinear fractional integro-differential equations (NFIDEs). The method introduces a promising tool for solving many NFIDEs with the help of Newton's iteration method.
Keywords:
Fractional Integrodifferential Equations, Collocation method, Chebyshev Polynomials, Legendre polynomialsMathematics Subject Classification:
Mathamatics- Pages: 73-79
- Date Published: 01-01-2018
- Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
G. Adomain; Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, (1994).
G. Adomain; A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501-544.
Rubayyi T. Alqahtani; Approximate Solution of non-linear fractional Klein-Gordon equation using Spectral Collocation mehtod, J. Appl. Math., 6 (2015), 2175-2181.
R.L. Bagley and P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheology, 27(3), (1983), 201-210.
X. Cao and Y. Li; Fractional Runge-Kutta methods for nonlinear Fractional differential equations, J. Nonl. Syst. Appl. (2011), 189-194.
V. Daftardar-Gejji and H. Jafari; Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518.
V. Daftardar-Gejji and H. Jafari; An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763.
K. Diethelm and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, J.Comput. Methods Appl. Mech. Eng., 194, (2005), 743-773.
E. A. Ibijola and B. J. Adegboyegun; A comparison of Adomain's decomposition method and Picard iterations method in solving nonlinear differential equations, Global J. Sci. Frontier Research Math. Deci. Sci., 12 (7), (2012).
A. Kadem and D. Baleanu, Fractional radiative transfer equation within Chebyshev spectral approach, $J$. Compu.and Math. with Appl., 59, (2010), 1865-1873.
M. M. Khader and A. S. Hendy, The approximate and exact solutions of the fractional order delay differential equations using Legendre pseudospectral method, Int. $J$. Pure and Appl. Math., 74(3),(2012), 287-297.
M. M. Khader, N. H. Sweilam and A. M. S. Mahdy, Numerical study for the fractional differential equations generated by optimization problem using Chebyshev collocation method and FDM, J. Appl. Math. and Info. Sci., 7(5), (2013), 2011-2018.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo; Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam , (2006).
D. Sh. Mohammed; Numerical solution of fractional integrodifferential equations by Least squares method and shifted Chebyshev polynomial, Math. Probl. Engg., (2014), $1-5$.
Necati Ozisik; Finite Difference Methods in Heat Transfer CRC Press, (1994).
I. Podlubny; Fractional differential equations, Academic Press, San Diego, (1999).
E.A. Rawashdeh, Numerical solution of fractional integrodifferential equations by collocation method,J. Appl. Math. Comput., 176, (2006), 1-6.
M. A. Snyder, Chebyshev Methods of Partial Differential Equations, Oxford University Press, (1965).
S. Momani, M.A. Noor, Numerical methods for fourthorder fractional integro-differential equations, Appl. Math. Comput., 182, (2006), 754-760.
Abdul-Majid Wazwaz; Linear and Nonlinear Integral equations, Methods and Applications, Springer, (2011).
C. Yang and J. Hou; Numerical solution of integrodifferential equations of fractional order by Laplace decomposition method,Wseas Transactions on Mathematics, 12 (12), (2013), 1173-1183.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.