Stability of general quadratic-cubic-quartic functional equation in quasi beta Banach space via two dissimilar methods

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0015

Abstract

In this paper, authors proved the generalized Ulam - Hyers stability of mixed type general quartic - cubic -quartic functional equation
$$
f(x+m y)+f(x-m y)=m^2 f(x+y)+m^2 f(x-y)+2\left(1-m^2\right) f(x)+\frac{m^2\left(m^2-1\right)}{6}(f(2 y)+2 f(-y)-6 f(y))
$$
where $m \neq 0, \pm 1$ in Quasi beta Banach space via two dissimilar methods.

Keywords:

Quadratic, cubic, quartic functional equations, Generalized Ulam - Hyers stability, Quasi beta Banach space, fixed point

Mathematics Subject Classification:

Mathematics
  • S. Pinelas Academia Militar, Departamento de Ciias Exactas e Naturais, Av.Conde Castro Guimar, 2720-113 Amadora, Portugal. https://orcid.org/0000-0002-0984-0159
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • N. Mahesh Kumar Department of Mathematics, Arunai Engineering College, Tiruvannamalai, TamilNadu, India - 606 603.
  • E. Sathya Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • Pages: 113-128
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

M. Arunkumar, S.Murthy, G. Ganapathy, Solution and Stability of n-dimensional Quadratic functional equation, ICCMSC, 2012 Computer and Information Science(CCIS), Springer Verlag-Germany, Vol. 238, (2012), 384-394.

M. Arunkumar, S. Ramamoorthi, Solution and stability of a quadratic functional Equation in Banach space and its application, Far East Journal of Dynamical Systems, Vol 18, No 1, (2012), 21 - 32 .

M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an $A Q$-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279-305.

M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Direct Method, Far East Journal of Applied Mathematics, Volume 80, No. $1,(2013), 105-121$.

M. Arunkumar, P. Agilan, C. Devi Shyamala Mary, Permanence of $A$ Generalized $A Q$ Functional Equation In Quasi-Beta Normed Spaces, A Fixed Point Approach, Proceedings of the International Conference on Mathematical Methods and Computation, Jamal Academic Research Journal an Interdisciplinary, (February 2014), 315.324

M. Arunkumar, Perturbation of $n$ Dimensional AQ mixed type Functional Equation via Banach Spaces and alization of Hyers-Ulam stability of additive functionsa question of priority, Aequationes Math., 75 (2008), 289-296.

B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305 309.

V.Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca, Vol. IV, 2003, in press.

Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.

Matina J. Rassias, M. Arunkumar, E. Sathya, Stability of a $k$ - cubic functional equation in Quasi - beta normed spaces: direct and Fixed point methods, British Journal of Mathematics and Computer Science, 8 (5), (2015), 346 $-360$.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) $126-130$.

J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III, 34(54) No. 3 (1999), 243-252.

J. M. Rassias, Solution of the Ulam problem for cubic mappings, An. Univ. Timişoara Ser. Mat.-Inform., 38 No. $1(2000), 121-132$.

J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi$beta$-normed spaces J. Math. Anal. Appl. 356 (2009), no. 1, 302-309.

John M. Rassias, M. Arunkumar, E. Sathya, N. Mahesh Kumar, Solution And Stability Of A ACQ Functional Equation In Generalized 2-Normed Spaces, Intern. J. Fuzzy Mathematical Archive, Vol. 7, No. 2, (2015), 213 224.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297 300.

Th.M.Rassias, On the stability of the functional equations in Banach spaces, J. Math. Anal. Appl. , 251, (2000), 264-284.

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.

S. Rolewicz, Metric Linear Spaces, Reidel, Dordrecht, 1984. [55] P. K. Sahoo, Pl. Kannappan, Introduction to functional equations, CRC, Boca Raton, FL, 2011.

F.Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat.Fis. Milano, 53 (1983), 113-129.

J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004) 243 255.

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.

T.Z. Xu, J.M. Rassias, W.X Xu, Generalized Ulam-Hyers stability of a general mixed $A Q C Q$-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math., 3 (2010), 1032-1047.

T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi- $beta$-normed spaces, J. Inequal. Appl. 2010, Art. ID 423231, 23 pp.

T.Z. Xu, J. M. Rassias, W.X. Xu, A fixed point approach to the stability of a general mixed $A Q C Q$-functional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010 , Art. ID 812545,24 pages.

T.Z. $mathrm{Xu}, mathrm{J} . mathrm{M}$. Rassias, Approximate Septic and Octic mappings in quasi- $beta$-normed spaces, J. Comput. Anal. Appl., 15, No. 6 (2013), 1110-1119.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

S. Pinelas, M. Arunkumar, N. Mahesh Kumar, and E. Sathya. “Stability of General Quadratic-Cubic-Quartic Functional Equation in Quasi Beta Banach Space via Two Dissimilar Methods”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 113-28, doi:10.26637/MJM0601/0015.