Hamiltonian property of intersection graph of zero divisors of the ring $Z_n$

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0017

Abstract

The intersection graph $G_Z^{\prime}\left(Z_n\right)$ of zero-divisors of the ring $Z_n$, the ring of integers modulo $n$ is a simple undirected graph with the vertex set is $Z\left(Z_n\right)^*=Z\left(Z_n\right) \backslash\{0\}$, the set of all nonzero zero-divisors of the ring $Z_n$ and for any two distinct vertices are adjacent if and only if their corresponding principal ideals have a nonzero intersection. We determine some results concerning the necessary and sufficient condition for the graph $G_Z^{\prime}\left(Z_n\right)$ is Hamiltonian. Also, we investigate for all values of for which the graph $G_Z^{\prime}\left(Z_n\right)$ is Hamiltonian and as an example we show that how the results give as easy proof of the existence of a Hamilton cycle.

Keywords:

Finite commutative ring,, Zero-divisors, Principal ideals, Intersection graph, Hamilton Cycle

Mathematics Subject Classification:

Mathematics
  • Shaik Sajana Department of Mathematics, S.V. University, Tirupati-517502, India.
  • D Bharathi Department of Mathematics, S.V. University, Tirupati-517502, India.
  • Pages: 133-139
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

D. F. Anderson and P. S. Livindston, The Zero-Divisor Graph of a Commutative Ring, J. of Algebra, 217(1999), $434-447$.

T. M. Apostol, Introduction to Analytical Number Theory, Springer International Student First Edition, Narosa publishing house, (1989).

J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, (2000).

I. Beck, Coloring of commutative rings, J. of Algebra, $116(1988), 208-226$.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press Ltd, Great Britain, (1976).

S. Bonvicini and T. Pisanski, Hamiltonian cycles in I-graphs, Electronic Notes in Discrete Mathematics, $40(2013), 43-47$.

J. Bosak, The graphs of semigroups, In theory of graphs and its applications, Proc. Sympos. Smolenice (June1963), Academic Press, New York, (1965), 119-125.

I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection Graphs of Ideals of Rings, Discrete Mathematics, 309(2009), 5381-5392.

B. Csakany and G. Pollak, The Graph of Subgroups of a Finite Group, Czechoslovak Math. J., (1969), 241-247.

L. Euler, Solutio problematic ad Geometrian situs pertinentis, Comm. Acad. Petropolitanae, 8(1736), 128-140. Translated in: Speiser klassische Stücke der Mathematik, Zürich (1927), 127-138.

R. Gould, Advances on the hamiltonian problem: a survey, Graphs Combin. 19(2003), 7-52.

I. Kaplansky, Commutative rings, rev. ed., Univ. of Chicago press, Chicago, (1974).

K. Kutnar and D. Maru, Hamilton cycles and paths in vertex-transitive graphs-Current directions, Discrete Mathematics, 309(2009), 5491-5500.

L. Madhavi and T. Chalapathi, Enumeration of Triangles in Cayley Graphs, Pure and Applied Mathematics Journal, 4(3), (2015), 128-132.

M. B. Nathanson, Methods in Number Theory, Springer (India) Private Limited, (2005).

S. Sajana, K. K. Srimitra and D. Bharathi, Intersection Graph of Zero-divisors of a Finite Commutative Ring, International Journal of Pure and Applied Mathematics, Volume 109, 7(2017), 51-58.

S. Sajana, D. Bharathi and K. K. Srimitra, Signed Intersection Graph of Ideals of a Ring, International Journal of Pure and Applied Mathematics, Volume 113, 10(2017), 175-183.

D. B. West, Introduction to Graph Theory, Prentice-Hall of India Private Limited, New Delhi (2003).

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

Shaik Sajana, and D Bharathi. “Hamiltonian Property of Intersection Graph of Zero Divisors of the Ring $Z_n$”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 133-9, doi:10.26637/MJM0601/0017.