Hamiltonian property of intersection graph of zero divisors of the ring $Z_n$
Downloads
DOI:
https://doi.org/10.26637/MJM0601/0017Abstract
The intersection graph $G_Z^{\prime}\left(Z_n\right)$ of zero-divisors of the ring $Z_n$, the ring of integers modulo $n$ is a simple undirected graph with the vertex set is $Z\left(Z_n\right)^*=Z\left(Z_n\right) \backslash\{0\}$, the set of all nonzero zero-divisors of the ring $Z_n$ and for any two distinct vertices are adjacent if and only if their corresponding principal ideals have a nonzero intersection. We determine some results concerning the necessary and sufficient condition for the graph $G_Z^{\prime}\left(Z_n\right)$ is Hamiltonian. Also, we investigate for all values of for which the graph $G_Z^{\prime}\left(Z_n\right)$ is Hamiltonian and as an example we show that how the results give as easy proof of the existence of a Hamilton cycle.
Keywords:
Finite commutative ring,, Zero-divisors, Principal ideals, Intersection graph, Hamilton CycleMathematics Subject Classification:
Mathematics- Pages: 133-139
- Date Published: 01-01-2018
- Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
D. F. Anderson and P. S. Livindston, The Zero-Divisor Graph of a Commutative Ring, J. of Algebra, 217(1999), $434-447$.
T. M. Apostol, Introduction to Analytical Number Theory, Springer International Student First Edition, Narosa publishing house, (1989).
J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, (2000).
I. Beck, Coloring of commutative rings, J. of Algebra, $116(1988), 208-226$.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press Ltd, Great Britain, (1976).
S. Bonvicini and T. Pisanski, Hamiltonian cycles in I-graphs, Electronic Notes in Discrete Mathematics, $40(2013), 43-47$.
J. Bosak, The graphs of semigroups, In theory of graphs and its applications, Proc. Sympos. Smolenice (June1963), Academic Press, New York, (1965), 119-125.
I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection Graphs of Ideals of Rings, Discrete Mathematics, 309(2009), 5381-5392.
B. Csakany and G. Pollak, The Graph of Subgroups of a Finite Group, Czechoslovak Math. J., (1969), 241-247.
L. Euler, Solutio problematic ad Geometrian situs pertinentis, Comm. Acad. Petropolitanae, 8(1736), 128-140. Translated in: Speiser klassische Stücke der Mathematik, Zürich (1927), 127-138.
R. Gould, Advances on the hamiltonian problem: a survey, Graphs Combin. 19(2003), 7-52.
I. Kaplansky, Commutative rings, rev. ed., Univ. of Chicago press, Chicago, (1974).
K. Kutnar and D. Maru, Hamilton cycles and paths in vertex-transitive graphs-Current directions, Discrete Mathematics, 309(2009), 5491-5500.
L. Madhavi and T. Chalapathi, Enumeration of Triangles in Cayley Graphs, Pure and Applied Mathematics Journal, 4(3), (2015), 128-132.
M. B. Nathanson, Methods in Number Theory, Springer (India) Private Limited, (2005).
S. Sajana, K. K. Srimitra and D. Bharathi, Intersection Graph of Zero-divisors of a Finite Commutative Ring, International Journal of Pure and Applied Mathematics, Volume 109, 7(2017), 51-58.
S. Sajana, D. Bharathi and K. K. Srimitra, Signed Intersection Graph of Ideals of a Ring, International Journal of Pure and Applied Mathematics, Volume 113, 10(2017), 175-183.
D. B. West, Introduction to Graph Theory, Prentice-Hall of India Private Limited, New Delhi (2003).
Similar Articles
- S. Sekar, A. S. Thirumurugan, Numerical investigation of the weakly singular Volterra integro-differential equations using He0s Homotopy perturbation method , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.