Some lower bound for holomorphic functions at the boundary
Downloads
DOI:
https://doi.org/10.26637/MJM0601/0019Abstract
In this paper, a boundary version of the Schwarz lemma for classes $\mathscr{H}(\alpha)$ is investigated. For the function $f(z)=1+c_1 z+c_2 z^2+\ldots$ defined in the unit disc such that $f(z) \in \mathscr{H}(\alpha)(0<\alpha \leq 1)$, we estimate a modulus of the angular derivative of $f(z)$ function at the boundary point $b$ with $f(b)=e^{\frac{\pi \alpha}{2}}$. The sharpness of these inequalities is also proved.
Keywords:
Holomorphic function, Jack’s lemma, Angular derivativeMathematics Subject Classification:
Mathematics- Pages: 145-150
- Date Published: 01-01-2018
- Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770785.
D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), 3275-3278.
V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629.
V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. 207 (2015), 825-831.
G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
I. S. Jack, Functions starlike and convex of order $alpha$, J. London Math. Soc. 3 (1971), 469-474.
M. Jeong, The Schwarz lemma and its applications at a boundary point, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
M. Jeong, The Schwarz, lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), 219-227.
D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661-676.
X. Tang and T. Liu, The Schwarz Lemma at the Boundary of the Egg Domain $B_{p_1, p_2}$ in $mathbb{C}^n$, Canad. Math. Bull. 58 (2015), 381-392.
X. Tang, T. Liu and J. Lu, Schwarz lemma at the boundary of the unit polydisk in $mathbb{C}^n$, Sci. China Math. 58 (2015), $1-14$.
M. Mateljević, The Lower Bound for the Modulus of the Derivatives and Jacobian of Harmonic Injective Mappings, Filomat 29:2 (2015), 221-244.
M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Revue Roum. Math. Pures Appl. Vol. 51 (2006) 56, 711-722.
M. Mateljević, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
M. Mateljević, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate.
R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513-3517.
T. Aliyev Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations $mathbf{5 8}$ (2013), 571-577.
B. N. Örnek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), 2053-2059.
Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications. Springer International Publishing, (2014), 135-230.
Taishun Liu, Jianfei Wang, Xiaomin Tang, Schwarz Lemma at the Boundary of the Unit Ball in $mathbb{C}^n$ and Its Applications, J. Geom. Anal 25 (2015), 1890-1914.
$mathrm{H}$. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938), 739-742.
Similar Articles
- Shaik Sajana, D Bharathi, Hamiltonian property of intersection graph of zero divisors of the ring $Z_n$ , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.