General solution and generalized Ulam - Hyers stability of $r_i$-type $n$ dimensional quadratic-cubic functional equation in random normed spaces: Direct and fixed point methods

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0022

Abstract

In this paper, the authors introduce and establish the general solution and generalized Ulam- Hyers stability of a $r_i$ type $n$-dimensional Quadratic-Cubic functional equation
$$
\begin{aligned}
& \sum_{i=0}^n\left[f\left(r_{2 i} x_{2 i}+r_{2 i+1} x_{2 i+1}\right)\right] \\
& =\sum_{i=0}^n\left(\sum_{u=0}^1\left[\sum_{v=0}^1\left(\frac{r_{2 i} r_{2 i+1}(-1)^{u+v}+r_{2 i} r_{2 i+1}^2(-1)^u+r_{2 i}^2 r_{2 i+1}(-1)^v}{4}\right)\left(f\left((-1)^u x_{2 i}+(-1)^v x_{2 i+1}\right)\right)\right]\right. \\
& +\left(\frac{r_{2 i}^3+r_{2 i}^2-r_{2 i} r_{2 i+1}^2}{4}\right) f\left(x_{2 i}\right)+\left(\frac{r_{2 i}^2-r_{2 i}^3+r_{2 i} r_{2 i+1}^2}{4}\right) f\left(-x_{2 i}\right) \\
& \left.+\left(\frac{r_{2 i+1}^3+r_{2 i+1}^2-r_{2 i}^2 r_{2 i+1}}{4}\right) f\left(x_{2 i+1}\right)+\left(\frac{r_{2 i+1}^2-r_{2 i+1}^3+r_{2 i}^2 r_{2 i+1}}{4}\right) f\left(-x_{2 i+1}\right)\right)
\end{aligned}
$$
where $r_{2 i}, r_{2 i+1} \in R-\{0\},(i=0,1,2 \cdots n)$ and $n$ is a positive integer in Random normed spaces.

Keywords:

Quadratic functional equation, Cubic functional equation, Mixed functional equation, Generalized Ulam - Hyers stability, fixed point, Random normed spaces

Mathematics Subject Classification:

Mathematics
  • Matina J. Rassias Department of Statistical Science, University College London, 1-19 Torrington Place, 140, London, WC1E 7HB, UK
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • P. Agilan Department of Mathematics, Jeppiaar Institute of Technology, Sriperumbudur, Chennai - 631 604, Tamil Nadu, India.
  • Pages: 162-176
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

M. Arunkumar, P.Agilan, Solution and Ulam-Hyers Stability of a Type Dimensional Additive Quadratic Functional Equation In Quasi Beta Normed Spaces, Malaya J Mat. S(1) (2015), 203-214.

M. Arunkumar, P.Agilan, Stability of a Quadratic-Cubic Functional Equation in Intuitionistic Fuzzy Normed Spaces, International Journal of Applied Engineering Research, Vol. 11 No.1 (2016).

I.S. Chang and Y.S. Jung, Stability of functional equations deriving from cubic and quadratic functions, $mathbf{J}$. Math. Anal. Appl., 283 (2003), 491-500.

S.S. Chang, Y. J. Cho, and S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Huntington, NY, USA, 2001.

Y. J. Cho, M. E. Gordji, S. Zolfaghari, Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces, Journal of Inequalities and Applications, Vol. 2010, Article ID 403101, doi: $10.1155 / 2010 / 403101,16$ pages.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J.Math. Anal Appl(1994), 431-436.

M. E. Gordji, M. B. Savadkouhi, Stability Of A Mixed Type Additive, Quadratic And Cubic Functional Equation In Random Normed Spaces, Filomat 25:3 (2011), 4354 DOI: $10.2298 / mathrm{FIL} 1103043 mathrm{G}$.

O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, vol. 536 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 2001 .

O. Hadzic, E. Pap and M. Budincevic, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika, vol. 38 , no. 3, pp. 363-82, 2002.

D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A., 27 (1941) 222-224.

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.

K. W. Jun and H. M. Kim, On the stability of an ndimensional quadratic and additive type functional equation, Math. Ineq. Appl 9(1) (2006), 153-165.

K.W. Jun and H.M.Kim, The generalized Hyers-UlamRassias stability of a cubic functional equation, Math. J., Anal. Appl. 274, (2002), 867-878. [16] S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J.Math. Anal. Appl. 222 (1998), 126-137.

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27, No.3-4, (1995), 368372.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathe-matics, 2009.

G.H.Kim and H.Y.Shin, Generalized Hyers-Ulam Stability of Cubic Type Functional Equations in Normed Spaces, Journal of the Chungcheong Mathematical Society , Vol 28, No. $3,(2015), 398-408$.

B. Margolis, J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 12674 (1968), 305-309.

A. Najati, M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal.Appl. 337 (2008), 399-415.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297300 .

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dor-drecht, Bostan London, 2003.

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No.08, 36-47.

K. Ravi, M. Arunkumar and J.M. Rassias, On A Functional Equation Characterizing polynomials of degree three, International Review of Pure and Applied Mathematics, Vol.3 No.2(2007), 165-172.

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics North-Holland Publishing, New York, NY, USA, 1983.

A. N. Sherstnev, On the notion of a random normed space, Doklady Akademii Nauk SSSR, vol. 149,pp. 28083, 1963 (Russian).

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

Z.H. Wang and W.X. Zhang, Fuzzy stability of quadratic cubic functional equations, Acta Mathematica Sinica, English Series Vol.27 (2011). 2191-2204.

Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.

Matina J. Rassias, M. Arunkumar, E. Sathya, Stability of a $k$ cubic functional equation in Quasi beta normed spaces: direct and Fixed point methods, British Journalof Mathematics and Computer Science, 8 (5), (2015), 346360.

J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III, 34(54) No. 3(1999), 243-252.

J. M. Rassias, Solution of the Ulam problem for cubic mappings, An. Univ. Timi s, oara Ser. Mat.-Inform., 38 No. 1(2000), 121-132.

J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi $beta$ normed spaces J. Math. Anal. Appl. 356 (2009), no. 1 , 302-309.

John M. Rassias, M. Arunkumar, E. Sathya, N. MaheshKumar, Solution And Stability Of A ACQ Functional Equation In Generalized 2-Normed Spaces, Intern. J.Fuzzy Mathematical Archive, Vol. 7, No. 2, (2015), $213-224$

T.Z. Xu, J.M. Rassias, W.X Xu,Generalized Ulam-Hyers stability of a general mixed $A Q C Q$-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math., 3 (2010), 1032-1047.

T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi $beta$-normed spaces, J. Inequal.Appl. 2010, Art. ID 423231, 23 pp.

T.Z. Xu, J. M. Rassias, W.X. Xu, A fixed point approach to the stability of a general mixed $A Q C Q$-functional equation in non-Archimedean normed spaces, Discrete Dyn.Nat. Soc. 2010 , Art. ID 812545,24 pages.

T.Z. Xu, J.M. Rassias, Approximate Septic and Octic mappings in quasi $beta$ normed spaces, J. Comput. Anal. Appl., 15, No. 6 (2013), 1110-1119.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

Matina J. Rassias, M. Arunkumar, and P. Agilan. “General Solution and Generalized Ulam - Hyers Stability of $r_i$-Type $n$ Dimensional Quadratic-Cubic Functional Equation in Random Normed Spaces: Direct and Fixed Point Methods”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 162-76, doi:10.26637/MJM0601/0022.