A new idea on interval valued T-fuzzy soft subhemirings of a hemiring

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0023

Abstract

In this paper, we study some operations of interval valued $T$-fuzzy soft sets and give fundamental properties of interval valued $T$-fuzzy soft sets. Then, we illustrate properties of homomorphism and anti-homomorphism, normal operations by giving theroems.

Keywords:

Interval valued fuzzy subset, interval valued T-fuzzy soft subhemiring, and interval valued T-soft normal subhemiring.

Mathematics Subject Classification:

Mathematics
  • N. Anitha Department of Mathematics, Periyar University PG Extension Center, Dharmapuri-636 705, Tamil Nadu, India. https://orcid.org/0000-0003-0381-2437
  • M.Latha Department of Mathematics, Periyar University PG Extension Center, Dharmapuri-636 705, Tamil Nadu, India.
  • Pages: 177-181
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

M. I. Ali, and M. Shabir, Comments on De Morgan's law in fuzzy soft sets, The Journal of Fuzzy Math., 18 (3)(2010), 679-68.

M. I. Ali, F. Feng, X.Y. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 2621-2628, (2008).

M. I. Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl., 61(2011), 2647-2654.

K. Atanassov, Fuzzy sets. Fuzzy Sets and Systems, 20(1986) 87- 96.

F. Feng, Y.B. Jun and X.Z. Zhao, Soft semirings, Computers and Math. with Appl., 56(2008), 26212628.

F. Feng, C. Li, B. Davvaz and M.I. Ali, Soft sets combined with fuzzy sets and rough sets: Atentative approach, Soft Computing, 14(2010), 899-911.

W.L. Gau, and D.J. Buehrer, Vague sets, IEEE Trans. System, Man and Cybernet., 23 (2)(1993), 610-614.

${ }^{[8]}$ Z. Kong, L. Gao, L. Wong and S. Li, The normal parameter reduction of soft sets and its algorithm, Comp. Appl. Math., 56(2008), 3029-3037.

P. K. Maji, R. Biswas and A.R. Roy, Soft set theory, Computers and Math. with Appl., 45(2003), 555562.

P. K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, The J. Fuzzy Math., 9(2001), 589-602.

P. K. Maji, A.R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44(2002) 1077-1083.

D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37(1999), 19-31

Z. Pawlak, Rough sets, Internat. J. Inform. Comput. Sci., 11(1982), 341-356

D. Pie, and D. Miao, From soft sets to information systems. Granular computing, IEEE Inter. Conf., 2(2005), 617-621.

A. R. Roy, and P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, J.of Comp. and App. Math., 203(2007), 412-418.

A. Solairaju and R.Nagarajan, Charactarization of interval valued Anti fuzzy Left $h$-ideals over Hemirings, Advances in fuzzy Mathematics, 4(2), 129136(2006).

M. Shabir, and M. Naz, On soft topological spaces, Comp. and Math. with App., 61(2011) 1786 -1799.

L. A. Zadeh, Fuzzy sets, Inform. and Control, $8(1965), 338-353$.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

N. Anitha, and M.Latha. “A New Idea on Interval Valued T-Fuzzy Soft Subhemirings of a Hemiring”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 177-81, doi:10.26637/MJM0601/0023.