$AQ$ and $CQ$ functional equations

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0024

Abstract

In this paper, the authors test the generalized Ulam - Hyers stability of the additive-quadratic and cubic-quartic functional equations
$$
f(2 x)=3 f(x)+f(-x) ; \quad g(2 x)=12 g(x)+4 g(-x),
$$
via Quasi-Beta Banach space and Intuitionistic fuzzy Banach space using direct and fixed point methods.

Keywords:

Additive functional equation, quadratic functional equation, cubic functional equation, quartic functional equation, mixed additive-quadratic functional equations, mixed cubic-quartic functional equations, generalized Ulam - Hyers stability,, Quasi-Beta Banach space, Intuitionistic fuzzy Banach space, fixed point.

Mathematics Subject Classification:

Mathematics
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • E. Sathya Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • C. Devi Shyamala Mary Department of Mathematics, St.Joseph’s College of Arts and Science, Cuddalore - 607 001, TamilNadu, India.
  • S. Hema Latha Department of Mathematics, Annai Veilankanni’s College of Arts and Science, Saidapet, Chennai - 600 015, TamilNadu, India.
  • Pages: 182-205
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

M. Arunkumar, S. Hema Latha, Orthogonal Stability Of 2 Dimensional Mixed Type Additive And Quartic Functional Equation, International Journal of pure and Applied Mathematics, 63 No.4, (2010), 461-470.

M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279-305.

M. Arunkumar, Matina J. Rassias, Yanhui Zhang, Ulam - Hyers stability of a 2- variable AC - mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier (JMMF), 1 (3), 2012, 10-26.

M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol. 7 No. I (January, 2013), 383-391.

M. Arunkumar, Generalized Ulam - Hyers stability of derivations of a $A Q$ - functional equation, Cubo $mathrm{A}$ Mathematical Journal dedicated to Professor Gaston M. N'Guerekata on the occasion of his 60th Birthday Vol.15, No 01, (159-169), March 2013.

M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Fixed Point Approach, International Journal of pure and Applied Mathematics, 86 No.6, (2013), 951-963,.

M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Direct Method, Far East Journal of Applied Mathematics, Volume 80, No. $1,(2013), 105-121$

M. Arunkumar, P. Agilan, S. Ramamoorthi, Perturbation of AC-mixed type functional equation, Proceedings of National conference on Recent Trends in Mathematics and Computing (NCRTMC-2013), 7-14, ISBN 978-93$82338-68-0$.[11] M. Arunkumar, Perturbation of $n$ Dimensional AQ mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), 2014, 34-56.

M. Arunkumar, P. Agilan, C. Devi Shyamala Mary, Permanence of A Generalized AQ Functional Equation In Quasi-Beta Normed Spaces, A Fixed Point Approach, Proceedings of the International Conference on Mathematical Methods and Computation, Jamal Academic Research Journal an Interdisciplinary, (February 2014), $315-324$.

M. Arunkumar, C. Devi Shyamala Mary, G. Shobana, Simple AQ And Simple CQ Functional Equations, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol 13, Issue $1 / 2$, Jan - Apr 2015, 120 - 151 .

M. Arunkumar, P. Agilan, C. Devi Shyamala Mary, Permanence of $A$ Generalized $A Q$ Functional Equation In Quasi-Beta Normed Spaces, International Journal of Pure and Applied Mathematics, Vol. 101, No. 6 (2015), $1013-$ 1025.

M. Arunkumar, G.Shobana, S. Hemalatha, Ulam - Hyers, Ulam - Trassias, Ulam-Grassias, Ulam - Jrassias Stabilities of A Additive - Quadratic Mixed Type Functional Equation In Banach Spaces, International Journal of pure and Applied Mathematics, Vol. 101, No. 6 (2015), 1027 1040.

${ }^{[16]}$ M. Arunkumar, T. Namachivayam, Intuitionistic fuzzy stability of a n-dimensional cubic functional equation: Direct and fixed point methods, Intern. J. Fuzzy Mathematical Archive, Vol. 7(1)(2015), 1-11 .

M. Arunkumar, E. Sathya, P. Narasimman, N. Mahesh kumar, 3 Dimensional Additive Quadratic Functional Equations, Malaya Journal of Matematik, 5(1) (2017), 72-103.

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems. 20 (1986), No. 1, 87-96.

C.Borelli, G.L.Forti, On a general Hyers-Ulam stability, Internat J.Math.Math.Sci, 18 (1995), 229-236.

P.W.Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.

S.Czerwik, On the stability of the quadratic mappings in normed spaces, Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008.

M. Eshaghi Gordji, N.Ghobadipour, J. M. Rassias, Fuzzy stability of additive-quadratic functional Equations, arXiv:0903.0842vl [math.FA] 4 Mar 2009.

M. Eshaghi Gordji, M. Bavand Savadkouhi, and Choonkil Park, Quadratic-Quartic Functional Equations in RN-Spaces, Journal of Inequalities and Applications, Vol. 2009, Article ID 868423 , 14 pages, doi: $10.1155 / 2009 / 868423$

M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory 12 (2011), no. 1, 71-82.

D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A., 27 (1941) 222-224.

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998.

Sun Sook Jin, Yang-Hi Lee, A Fixed Point Approach to the Stability of the Cauchy Additive and Quadratic Type Functional Equation, Journal of Applied Mathematics, doi: $10.1155 / 2011 / 817079,16$ pages.

K.W. Jun, H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc. 42(1) (2005), 133-148.

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.

B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 12674 (1968), 305-309.

S. A. Mohiuddine, Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos, Solitons Fract., 42 (1), (2009), 731-1737.

S. Murthy, M. Arunkumar, G. Ganapathy, P. Rajarethinam, Stability of mixed type additive quadratic functional equation in Random Normed space, International Journal of Applied Mathematics (IJAM), Vol. 26. No. 2 (2013), 123-136.

S. Murthy, M. Arunkumar, G. Ganapathy, Perturbation of $n$-dimensional quadratic functional equation: A fixed point approach, International Journal of Advanced Computer Research (IJACR), Volume-3, Number-3, Issue-11 September-2013, 271-276.

A. Najati, M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl. $337(2008), 399-415$.

Choonkil Park, Orthogonal Stability of an AdditiveQuadratic Functional Equation, Fixed Point Theory and Applications 2011 2011:66.

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.

J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Ku-mar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149 - 175.

M.J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics, Vol. 14 No. 1-2, (2014), 22 - 46

J. M. Rassias, M. Arunkumar, E.sathya, N. Mahesh Kumar, Generalized Ulam - Hyers Stability Of A (AQQ): Additive - Quadratic - Quartic Functional Equation, Malaya Journal of Matematik, 5(1) (2017), 122-142.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297 300.

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

K.Ravi and M.Arunkumar, On a $n$-dimensional additive Functional Equation with fixed point Alternative, Proceedings of International Conference on Mathematical Sciences 2007, Malaysia.

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.

K. Ravi, J.M. Rassias, M. Arunkumar, R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 114, 29 pp.

R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals. 27 (2006), 331-344.

R. Saadati, J. H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 8590.

R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons and Fractals, 38 (2008), 36-47.

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

T.Z. Xu, J.M. Rassias, W.X Xu, Generalized Ulam-Hyers stability of a general mixed $A Q C Q$-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), no. 6, 1032-1047.

T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi- $beta$-normed spaces, J. Inequal. Appl. 2010, Art. ID 423231, 23 pp.

T.Z. Xu, J.M Rassias, W.X. Xu, A fixed point approach to the stability of a general mixed $A Q C Q$-functional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010, Art. ID 812545,24 pp.

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338353.

G. Zamani Eskandani, Hamid Vaezi, Y. N. Dehghan, Stability Of A Mixed Additive And Quadratic Functional Equation In Non-Archimedean Banach Modules, Taiwanese Journal Of Mathematics, Vol. 14, No. 4, (2010), 1309-1324.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

M. Arunkumar, E. Sathya, C. Devi Shyamala Mary, and S. Hema Latha. “$AQ$ and $CQ$ Functional Equations”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 182-05, doi:10.26637/MJM0601/0024.