Solution and two types of Ulam-Hyers stability of $n$-dimensional cubic-quartic functional equation in intuitionistic normed spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0026

Abstract

In this paper, the authors investigate the generalized Ulam-Hyers stability of $n$ - dimensional cubic-quartic functional equation
$$
\begin{aligned}
f\left(\sum_{b=1}^{n-1} v_b+r v_n\right)+f\left(\sum_{b=1}^{n-1} v_b-r v_n\right)= & r^2\left[f\left(\sum_{b=1}^n v_b\right)+f\left(\sum_{b=1}^{n-1} v_b-v_n\right)\right] \\
& -2\left(r^2-1\right) f\left(\sum_{b=1}^{n-1} v_b\right)+\frac{2(r+1)}{r}\left[f\left(r v_n\right)-r^3 f\left(v_n\right)\right]
\end{aligned}
$$
where $r$ is a positive integer with $r \neq \pm 0,1$ in the setting of intuitionistic fuzzy normed spaces using direct and fixed point methods.

Keywords:

Cubic functional equation, quartic functional equation, generalized Ulam-Hyers stability, fixed point, intuitionistic fuzzy normed spaces.

Mathematics Subject Classification:

Mathematics
  • John M. Rassias Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Athens 15342, Greece.
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • P. Agilan Department of Mathematics, Jeppiaar Institute of Technology, Sriperumbudur, Chennai - 631 604, Tamil Nadu, India.
  • Pages: 213-229
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the Generalized Arun-additive functional equation in Intuitionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol.4, No. V, December 2010, 135-146.

M. Arunkumar, S. Karthikeyan, Solution and Stability $O f$ n-Dimensional Mixed Type Additive and Quadratic Functional Equation, Far East Journal of Applied Mathematics, 541 (2011) 47-64.

M. Arunkumar, S. Karthikeyan, Solution and Stability of n-Dimensional Quadratic Functional Equation: Direct and Fixed Point Methods, International Journal of Advanced Mathematical Sciences, Vol. 2 (1), pp, 21-33, 2014

M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279-305.

M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol. 7 No. I (January, 2013), 383-391.

M. Arunkumar, Generalized Ulam - Hyers stability of derivations of a $A Q$ - functional equation, "Cubo A Mathematical Journal" dedicated to Professor Gaston M. N'Guérékata on the occasion of his 60th Birthday Vol.15, No 1, (March 2013), 159-169.

M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Fixed Point Ap- proach, International Journal of pure and Applied Mathematics, Vol. 86, No.6, (2013), 951 - 963.

M. Arunkumar, P. Agilan, Additive Quadratic Functional Equation are Stable in Banach space: A Direct Method, Far East Journal of Applied Mathematics, Vol. 80, No. 1, (2013), $105-121$.

M. Arunkumar, G.Shobana, S. Hemalatha, Ulam - Hyers, Ulam - TRassias, Ulam-GRassias, Ulam - JRassias Stabilities of A Additive - Quadratic Mixed Type Functional Equation In Banach Spaces, International Journal of Pure and Applied Mathematics, Vol. 101, No. 6 (2015), 1027- 1040.

M. Arunkumar, P. Agilan, C. Devi Shyamala Mary, Permanence of $A$ Generalized $A Q$ Functional Equation In Quasi-Beta Normed Spaces, International Journal of Pure and Applied Mathematics, Vol. 101, No. 6 (2015), 10131025 .

M. Arunkumar, Perturbation of $n$ Dimensional $A Q$ mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences, 2 (1) (2014), 34-56.

M. Arunkumar, S. Karthikeyan, S. Ramamoorthi, Immovability of $n$-dimensional quartic functional equation in Felbins type spaces, Malaya Journal of Matematik, 5(1) (2017) 58-71.

K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.

D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951) $223-237$.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.

G. Deschrijver, E.E. Kerre On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 23 (2003), 227-235.

M. Eshaghi Gordji, Stability of an Additive-Quadratic Functional Equation of Two Variables in F-Spaces, J. Nonlinear Sci. Appl. 2 (2009), no. 4, 251-259

M. Eshaghi Gordji, N.Ghobadipour, J. M. Rassias, Fuzzy Stability of Additive-Quadratic Functional Equations, arxiv:0903.0842v1 [math.fa]. 2009

Z. Gajda and R.Ger, Subadditive multifunctions and Hyers-Ulam stability, in General Inequalites 5 , Internat Schrifenreiche Number. Math.Vol. 80, Birkhauser $backslash$ Basel, 1987.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

S.B. Hosseini, D. O'Regan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007) 53- 64.

D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.

D.H. Hyers, G. Isac, Th.M. Rassias,Stability of functional equations in several variables, Birkhauser, Basel, 1998.

K.W. Jun and H.M.Kim, The generalized Hyers-UlamRassias stability of a cubic functional equation, Math. J., Anal. Appl. 274, (2002), 867-878.

M.Maria Susai Manuel, M. Arunkumar, S. Murthy, G. Ganapathy, Quartic Functional Equation Involving Sum Of Functions Of Consecutive Variables Is Stable In Felbin's Type Cone Normed Spaces, Malaya Journal of Matematik, 5(1) (2017), 29-40.

B. Margoils, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 12674 (1968), 305-309.

A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6, 720-729.

A.K. Mirmostafaee, M. Mirzavaziri, M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730-738.

A.K. Mirmostafaee, M.S. Moslehian, Fuzzy almost quadratic functions, Results Math. doi: $10.1007 / mathrm{s} 00025-$ 007-0278-9.

M. Mursaleen, S.A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 42 (2009), no. 5, 2997-3005.

J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.

C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory and Applications, doi: $10.1186 / 1687-1812-2011-66$

Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.

J.M. Rassias, M.J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on the restricted domains, J. Math. Anal. Appl., 281 (2003), 516-524.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), $297-$ 300.

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

K. Ravi, M. Arunkumar, J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.

R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006), 331344.

R. Saadati, J.H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85-90.

S. Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli. Vol.2 No. 2 (2009), 105 112.

Sun Sook Jin, Yang Hi Lee, A Fixed Point Approach to The Stability of the Cauchy Additive and Quadratic Type Functional Equation, Journal of Applied Mathematics 16 pages, doi:10.1155/2011/817079

Sun Sook Jin, Yang Hi Lee, Fuzzy Stability of a Quadratic-Additive Functional Equation, International Journal of Mathematics and Mathematical Sciences 6 pages, doi:10.1155/2011/504802

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

G. Zamani Eskandani, Hamid Vaezi, Y. N. Dehghan, Stability of a Mixed Additive and Quadratic Functional Equation in Non-Archimedean Banach Modules, Taiwanese Journal of Mathematics, vol. 14, no. 4, (2010), $1309-1324$.

Ding Xuan Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory 69 (1992), 167-172.

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

John M. Rassias, M. Arunkumar, and P. Agilan. “Solution and Two Types of Ulam-Hyers Stability of $n$-Dimensional Cubic-Quartic Functional Equation in Intuitionistic Normed Spaces”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 213-29, doi:10.26637/MJM0601/0026.