Fixed points and stability of lcosic functional equation in quasi- $\beta$-normed spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0030

Abstract

In this paper, we introduce the following icosic functional equation. This pioneering icosic functional equation
$$
\begin{gathered}
f(x+10 y)-20 f(x+9 y)+190 f(x+8 y)-1140 f(x+7 y)+4845 f(x+6 y)-15504 f(x+5 y) \\
+38760 f(x+4 y)-77520 f(x+3 y)+125970 f(x+2 y)-167960 f(x+y)+184756 f(x) \\
-167960 f(x-y)+125970 f(x-2 y)-77520 f(x-3 y)+38760 f(x-4 y)-15504 f(x-5 y) \\
+4845 f(x-6 y)-1140 f(x-7 y)+190 f(x-8 y)-20 f(x-9 y)+f(x-10 y)=20 ! f(y),
\end{gathered}
$$
where $20 !=2.432902008 \times 10^8$, is said to be icosic functional equation. Since the functional equation $f(x)=x^{20}$ is the solution. In this paper, we present the general solutions of the said icosic functional equation. We also prove the stability of the icosic functional equation in a quasi- $\beta$-normed space.

Keywords:

Icosic functional equation, \text { Quasi } \beta \text {-normed space }, Fixed point

Mathematics Subject Classification:

Mathematics
  • V. Govindhan Department of Mathematics, Sri Vidya Mandir Arts and Science College, Katteri, Tamilnadu, India.
  • S. Murthy Department of Mathematics, Government Arts and Science College (For Men), Krishnagiri - 635 001, Tamil Nadu, India.
  • G. Gokila Department of Mathematics, Government Arts and Science College (For Men), Krishnagiri - 635 001, Tamil Nadu, India.
  • Pages: 261-275
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

M. Arunkumar, S. Murthy, G. Ganapathy, Solution and Stability of $n$ - dimensional Quadratic functional equation, ICCMSC, 2012 Computer and Information science (CIS), springer verlag - Germany, vol. 238 (2012), 384 - 394.

M. Arunkumar, S. Murthy, V. Govindan, General solution and generalized Ulam - Hyers stability of a generalized $mathrm{n}$ - type additive quadratic functional equation in Banach spaces and Banach Algebra: Using direct and fixed point method, International journal of Advanced Mathematical sciences, 3(1) (2015) 25 - 64 .

Mohan Arunkumar, Abasalt Bodaghi, John Michael Rassias, and Elumalai Sathya, The General Solution and Approximations of a Decic Functional equation in Various normed spaces, Journal of the Chungcheong Mathematical Society, Volume 29, No. 2, May 2016, pp. 287 328.

A. Bodaghi, Stability of a mixed type additive and quartic functional equation, Filomat. 28 (2014), no. 8,1629 . 1640.

P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

Z. Gajda, On the stability of additive mappings, Inter. J. Math. Math. Sci. 14 (1991), $431-434$.

D. H. Hyers, On the stability of linear functional equations, Proc. Natl. Acad. Sci. USA, 27 (1941), 222 - 224.

G. Isac and Th. M. Rassias, Stability of '-Additive Mappings: Applications to Nonlinear Analysis, J. Funct. Anal., 19 (1996), 219-228.

S. S. Jin and Y. H. Lee, Fuzzy stability of the Cauchy additive and quadratic type functional equation, Common korean math. Soc. 27 (2012), 523 - 535.

S. H. Lee, S. M. Im and I. S. Hwang, quadratic functional equations, J. Math. Anal. Appl., 307 (2005) 387 - 394.

R. Murali and V. Vithya, Hyers-Ulam-Rassias Stability of Functional Equations in Matrix Normed Spaces: A Fixed point approach, Assian Journal of Mathematics and Computer Research, 4(3) (2015), 155-163.

J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi- $beta$-normed spaces, Cont. Anal. Appl. Math. 3 (2015), no. 2, 293-309.

J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi$beta$-normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1 , $302-309$

J. M. Rassias, E. Son, and H. M. Kim, On the HyersUlam stability of 3D and 4D mixed type mappings, Far East J. Math. Sci. 48 (2011), no. 1, 83-102.

J. M. Rassias, M. Arunkumar, and T. Namachivayam, Stability Of The Leibniz Additive-Quadratic Functional Equation In Felbin's And Random Normed Spaces: A Direct Method, J. Acad. Res. J. Inter. (2015), 102-110.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, (1978), No. $2,297-300$.

K. Ravi, J. M. Rassias, S. Pinelas and S. Suresh, General Solution and Stability of Quattuordecic Functional Equation in Quasi $beta$-Normed Spaces, Advances in Pure Mathematics, 2016, 6, 921-941.

K. Ravi, J.M. Rassias and B.V. Senthil Kumar, UlamHyers Stability of Undecic Functional Equation in Quasi$beta$-Normed Spaces: Fixed Point Method, Tbilisi Mathematical Science, 9(2) (2016), 83-103.

V. Radu, The fixed point alternative and the stability of functional equation in: Seminer on Fixed point theory Cluj Napoca, Vol.IV, 2003, in press.

P. K. Sahoo and J. K. Chung, On the general solution of a quartic functional equation, Bull. Korean. Math. Soc. 40 (4) (2003), 565 - 576.

Y. Shen, W. Chen, On the Stability of Septic and Octic Functional Equations, J. Computational Analysis and Applications, $18(2),(2015), 277-290$.

S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.

Z.Wang and P. K. Sahoo, Stability of an ACQ- Functional Equation in Various Matrix Normed Spaces, J. Nonlinear Sci. Appl., 8 (2015), 64-85.

T. Z. Xu, J.M. Rassias, M. J. Rassias, and W. X. Xu, A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi- $beta$-Normed Spaces. Journal of Inequalities and Applications, (2010), 1-23.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

V. Govindhan, S. Murthy, and G. Gokila. “Fixed Points and Stability of Lcosic Functional Equation in Quasi- $\beta$-Normed Spaces”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 261-75, doi:10.26637/MJM0601/0030.