Ulam-Hyers stability of Euler-Lagrange additive functional equation in intuitionistic fuzzy Banach spaces: Direct and fixed point methods

Downloads

DOI:

https://doi.org/10.26637/MJM0601/0031

Abstract

In this paper, authors verify the generalized Ulam - Hyers stability of the following Euler - Lagrange additive functional equation
$$
r f(s(x-y))+s f(r(y-x))+(r+s) f(r x+s y)=(r+s)(r f(x)+s f(y))
$$
in Intuitionistic Fuzzy Banach Spaces using direct and fixed point methods.

Keywords:

Additive functional equations, Euler - Lagrange functional equations, generalized Ulam - Hyers stability, intuitionistic fuzzy Banach Space, fixed point

Mathematics Subject Classification:

Mathematics
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • E. Sathya Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • S. Ramamoorthi Department of Mathematics, Arunai Engineering College, Tiruvannamalai, TamilNadu, India - 606 603.
  • P. Agilan Department of Mathematics, Jeppiaar Institute of Technology, Sriperumbudur, Chennai - 631 604, Tamil Nadu, India.
  • Pages: 276-285
  • Date Published: 01-01-2018
  • Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.

M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the Generalized Arun-additive functional equation in Intuitionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications, 4 No. V (2010), 135-146.

M. Arunkumar and S. Karthikeyan, Solution and Intuitionistic Fuzzy Stability of n-Dimensional Quadratic Functional Equation: Direct and Fixed Point Methods, Int. J. of Advanced Mathematical Sciences, 2 (1) (2014), 21-33.

M. Arunkumar, T. Namachivayam, Intuitionistic fuzzy stability of a n-dimensional cubic functional equation: Direct and fixed point methods, Intern. J. Fuzzy Mathematical Archive, 7 (1) (2015), 1-11.

M. Arunkumar, John M. Rassias and S. Karthikeyan, Stability of a Leibniz type additive and quadratic functional equation in intuitionistic fuzzy normed spaces, Advances in theoretical and applied mathematics, 11 (2016), No.2, $145-169$.

M. Arunkumar, A. Bodaghi, J. M. Rassias and E. Sathya, The general solution and approximations of a decic type functional equation in various normed spaces, J. Chung. Math. Soc. 29, No. 2, 287-328.

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems. 20 No. 1 (1986), 87-96.

A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, $mathrm{J}$. Intel. Fuzzy Syst. 30 (2016), 2309-2317.

A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam. 38, No. 4 (2013), 517-528.

A. Bodaghi, C. Park and J. M. Rassias Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc. 31, No. 4 (2016).

L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25-48.

L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.

G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227-235.

M. Eshaghi Gordji, Stability of an Additive-Quadratic Functional Equation of Two Variables in F-Spaces, J. Nonlinear Sci. Appl. 2 No.4 (2009), 251-259

P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

S.B. Hosseini, D. O'Regan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007), $53-64$.

D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941) $222-$ 224.

D. H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhäuser, Basel, 1998.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.

A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154.

I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.

B.Margolis, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.

A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159 (2008), no. 6, 720-729.

S. A. Mohiuddine and Q. M. Danish Lohani, On general-ized statistical convergence in intuitionistic fuzzy normed space, Chaos, Solitons Fract., 42 (1), (2009), 731-1737.

M. Mursaleen and S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 42 (2009), 29973005 .

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.

J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), $126-130$.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc. 72 (1978), 297300.

Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals. 27 (2006), $331-344$.

R. Saadati, J. H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85-90.

R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons and Fractals, 38 (2008), 36-47.

S.Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli. 22 (2009), 105-112.

S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338353.

D. X. Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory, 69 (1992), 167-172.

Metrics

Metrics Loading ...

Published

01-01-2018

How to Cite

M. Arunkumar, E. Sathya, S. Ramamoorthi, and P. Agilan. “Ulam-Hyers Stability of Euler-Lagrange Additive Functional Equation in Intuitionistic Fuzzy Banach Spaces: Direct and Fixed Point Methods”. Malaya Journal of Matematik, vol. 6, no. 01, Jan. 2018, pp. 276-85, doi:10.26637/MJM0601/0031.