Ideals and symmetric reverse bi-derivations of prime and semiprime rings
Downloads
DOI:
https://doi.org/10.26637/MJM0601/0033Abstract
Let $R$ be a prime ring of char $R \neq 2$ and $I$ a nonzero ideal of $R$. Suppose that there exist symmetric reverse bi-derivations $D_1(.,):. R X R \rightarrow R$ and $D_2(.,):. R X R \rightarrow R$ such that $D_1\left(d_2(x), x\right)=0$ for all $x \in I$, where $d_2$ denotes the trace of $D_2$. Then either $D_1=0$ or $D_2=0$.
Keywords:
Derivation, Reverse derivation, Symmetric bi-derivation, Symmetric reverse bi-derivation, Prime rings, Semiprime rings, TraceMathematics Subject Classification:
Mathematics- Pages: 291-293
- Date Published: 01-01-2018
- Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
I. N. Herstein, Topics in ring theory, Univ.of Chicago Press., Chicago, 1969.
Y Hirano, K. Kaya and H. Tominaga, On a theorem of Mayne, Math.J. Okayama Univ., 25 (1983), 125-132.
C. Jaya Subba Reddy et al., Reverse derivations on prime rings, Int.J.Res.Math and Comp, 3(3) (2015), 1-5.
C. Jaya Subba Reddy et al., Symmetric reverse biderivations on prime rings, Research.J. Pharm. and Tech, 9(9) (2016), 1496-1500.
K. Kaya, Prime rings with $alpha$-derivations, Hacettepe Bull. of Noth. Sci. and Eng., 16(1987), 63-71.
Gy. Maksa, On the trace of symmetric bi-derivations, C.R. Math. Rep. Sci. Canada., 9(1987), 303-307.
M. Serif Yenigul, N. Argac, Ideals and Symmetric biderivations of prime and semi-prime rings, Math. J. Okayama Univ., 35(1993), 189-192.
J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aequations Math., 38(1989), 245-254.
Similar Articles
- F. Kanca, I. Baglan, G. Öztürk , A geometric modeling of 2-dimensional parabolic problem with periodic boundary condition , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.