Analysis of a quasistatic contact problem with wear and damage for thermo-viscoelastic materials
Downloads
DOI:
https://doi.org/10.26637/MJM0602/0001Abstract
We consider a quasistatic contact problem for an thermo visco-elastic body with wear and damage between a
thermo-viscoelastic body and a rigid obstacle. The contact is frictional and bilateral which results in the wear and
damage of contacting surface. The evolution of the wear function is described with Archard’s law.The evolution
of the damage is described by an inclusion of parabolic type. We establish a variational formulation for the model
and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence
and uniqueness result on parabolic in ´ equalities, differential equations and fixed point argument
Keywords:
thermoviscoelastic,, variationel inequality, wear, damage field, fixed point.Mathematics Subject Classification:
Mathematics- Pages: 299-309
- Date Published: 01-04-2018
- Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
A. Azeb, S.Boutechebak, Analysis of a dynamic thermoelastic-viscoplastic contact problem, Electron. J. Qual. Theory Differ. Equ.,2013, No. 71, 1-17.
V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, (1984). MR 0742624, Zbl 0574.49005
S. Boutechebak, A dynamic problem of frictionless contact for elastic-thermo-viscoplastic materials with damage, Int. J. Pure Appl. Math.86, 1,(2013) 173-197. DOI 10.12732/ijpam.v86i1.12
A.Djabi, A.Merouani, A.Aissaoui, A frictional contact problem with wear involving elastic-viscoplastic materials with damage and thermal effects, Electronic Journal of Qualitative Theory of Differentiel Equations 2015,No. $27,1-18$.
S.Djabi, A monotony method in quasistatic processes for viscoplastic materials with internal state variables, $mathrm{Re}-$ vue Roumaine de Maths Pures et Appliquées, 42(1997), $5-6,401-408$.
G. Duvaut and J.L. Lions, Les inequations en mecanique et en physique, Springer-Verlag (1976).
A. M. A. El-Sayed, Fatma. M. Gaafar, R. O. Abd-ElRahman and M. M. El-Haddad, Existence of solutions of q-functional integral equations with deviated argument, Malaya Journal of Matematik, Volume 4, Issue 3, 2016 , Pages:373-379.
C. Eck, J. Jarušek, M. Krbeč; Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics 270, Chapman/CRC Press, New York, 2005.
M. Frémond and B. Nedjar; Damage in concrete: the unilateral phenomenon, Nuclear Engng. Design, 156, (1995), 323-335.
M. Frémond and B. Nedjar; Damage, Gradient of Damage and Principle of Virtual Work, Int. J. Solids Structures, 33 (8), 1083-1103. (1996).
T.Hadj ammar; Quasistatic contact problem between thermo-electroelastic bodies with long-term memory and adhesion, Malaya Journal of Matematik, Volume 4, Issue 2, 2016, Pages:211-223,
W. Han, M. Sofonea; Evolutionary Variational inequalities arising in viscoelastic contact problems, SIAM Journal of Numerical Analysis $mathbf{3 8}$ (2000), 556-579.
W. Han, M. Sofonea; Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society, Providence, RI - Intl. Press, Sommerville, MA, 2002.
P. Ireman, A. Klarbring, N.Strömberg, A model of damage coupled to wear, Int. J. Solids Structures, 40 (2003) 2957-2974. DOI 10.1016/S0020-7683(03)00121-5.
J.J. Bikerman, Thermodynamics, adhesion, and sliding friction, J. Lube. Technol. 92, 243-247 (1970). DOI $10.1115 / 1.3451372$.
N. Lebri, S.Djabi and S. Boutchbek, Bilateral contact with Tresca's friction law and internal state variables, Applied mathematical sciences, vol.2, 2008, $mathrm{n}^{circ} 10,479$ 488
A. Merouani and S.Djabi, A monotony method in quasistatic processes for viscoplastic materials, vol. $mathrm{n}^{circ} 1$. 2008; St Babes Bolyai, Roumanie.
A. Merouani, F. Messelmi, Dynamic evolution of damage in elastic-thermo-viscoplastic materials, Electron. J. Differential Equations, Vol. (2010), No. 129, pp. 1-15.
M. Selmani, L. Selmani; Analysis of frictionless Contact problem for elastic-viscoplastic materials, Nonlinear Analysis, Modelling and control, 2012, Vol. 17, No. 1, $99-77$.
M. Shillor, M. Sofonea, A quasistatic viscoelastic contact problem with friction, Int. J. Engng. Sci., 38, 14(2000), 1517-1533. DOI 10.1016/S0020-7225(99)00126-3
M. Shillor, M. Sofonea, J. J. Telega; Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Springer. Berlin. 2004.
M. Sofonea, W. Han, M. Shillor; Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, Vol. 276, Chapman, Hall/CRCPress, New york, 2006.
N. Strömberg, L. Johansson, A. Klarbring; Derivation and analysis of a generalized standard model for contact friction and wear, Int. J. Solids Structures, 33 (1996), 1817-1836.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.