Convergence properties on $C^*$-algebra valued fuzzy soft metric spaces and related fixed point theorems

Downloads

DOI:

https://doi.org/10.26637/MJM0602/0002

Abstract

In this article we introduce the notion of $C^*$ - algebra valued fuzzy soft metric space and we prove convergence properties and some related fixed point results. We also give supported examples to our results.

Keywords:

C-algebra, Fuzzy soft points, C-algebra-valued Fuzzy soft metric, contractive mappings, Fixed point theorems.

Mathematics Subject Classification:

Mathematics
  • Ravi P. Agarwal Department of Mathematics, Texas A and M University-Kingsville, 700 University Blvd., MSC 172, Kingsville, Texas 78363-8202.
  • G.N.V.Kishore Department of Mathematics, K L University, Vaddeswaram, Guntur - 522 502, Andhra Pradesh, India.
  • B. Srinuvasa Rao Research Schalor, Department of Mathematics, K L University, Vaddeswaram, Guntur - 522 502, Andhra Pradesh, India.
  • Pages: 310-320
  • Date Published: 01-04-2018
  • Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)

A. Zada, S. Saifullah and Z. Ma, Common fixed point theorems for $G$-contraction in $C^*$-algebra valued metric spaces, International Journal of Analysis and Applications, Vol. 11, no. 1 (2016), 23-27.

Alsulami. H H, Agarwal. R.P , Karapinar E, Khojasteh $mathrm{F}$, A Short note on $C^*$-valued contraction mappings.J.Inequal.Appl.2016,50(2016)

Batul. S, kamran. T, $C^*$ - valued contractive type mappings. Fixed point Theory Appl. 2015, 142 (2015).

Cirić .LB, A generalization of Banach's contraction principle. Proc.Am.Math. Soc.45, 267 - 273 (1974).

D. Shehwar and T. Kamran, $C^*$-Valued G-contraction and fixed points, Journal of Inequalities and Appl., 2015, Article ID 304 (2015).

Das. S, Samanta. SK, Soft metric , Ann.Fuzzy Math.Inform. 6, 77 - 94 (2013).

Das. S, Samanta. SK, Soft real sets, Softreal numbers and their properties, J.Fuzzy Math. 20, 551 - 576 (2012).

Dur-e-Shehwar, Samina Batul, Tayyab Kamran, Adrian Ghiura, Ceristi's fixed point theorem on $C^*$-algebra valued metric spaces. J. Nonlinear Sci. Appl. 9(2016), 584588.

Feng F, Jun Y B, Liu X Y, Li L F , An $a d$ justable approch to fuzzy soft set based decision making, j.Comput.Appl.Math. 234, 10 - 20 (2009).

Ghosh. J, Dinda. B, and Samant. T K, Fuzzy soft rings and fuzzy soft ideals, Int.J.Pure Appl.Sci.Technol, 2(2) (2011), 66-74.

Ma Z, Jiang L, Sun $mathrm{H}, mathrm{C}^*$-algebra valued metric space and related fixed point theoerms. Fixed point theory Appl.2014, Article ID 206(2014).

Maji. P K, Biswas R and Roy A R, Fuzzy soft Sets , Journal of Fuzzy Mathematics, Vol9, no3 (2001)589-602.

Maji. P K, Roy A R and Biswas,R. An application of soft sets in a decision making problem, Comput. Math.Appl.44(8-9) (2002),1077-1083.

Molodstov. D A, Fuzzy soft Sets- First Result, Computers and Mathematics with Application, Vol.37(1999) 19-31.

Murphy. G J, $C^*$-algebras and Operator Theory. Academic press, London(1990).

Rezapour. S, Hamlbarani. R, Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings, J.Math.Anal.Appl. 345, 719 - 724(2008).

Roy. S, and Samanta. T. K, "A note on Fuzzy soft Topological Spaces", Annals of Fuzzy Mathematics and Informatics .2011.

T. Kamran, M. Postolache, A. Ghiura, S. Batul and R. Ali, The Banach contraction principle in $C^*$-algebra-valued $b$-metric spaces with application, Fixed Point Theory and Appl.,2016, Article ID 10 (2016).

Tanay. B, and Kandemir. M. B, ''Topological Structure of fuzzy soft sets ", Comput.Math.Appl.,61(2011), 29522957.

Tayebe Lal Shateri, $C^*$-algebra-valued modular spaces and fixed point theorems, J. Fixed point Theory Appl. DOI 10.1007/s11784-017-0424-2.

Thangaraj Beaula and Christinal Gunaseeli, On fuzzy soft metric spaces . Malaya J. Mat.2(3)(2014) 197-202.

Thangaraj Beaula and Raja. R, Completeness in Fuzzy Soft Metric Space, Malaya J. Mat.S(2)(2015) 438-442.

Tridiv Joti Neog, Dusmanta Kumar Sut and Hazarika. G. C, "'Fuzzy Soft Topological Space", Int.J Latest Tend Math, Vol-2 No.1 March 2012.

Xin Q L, Jiang L N, Fixed point theorems for mappings satisfying the ordered contractive condition on noncommutative space. Fixed point theory Appl.2014, Article ID30(2014).

Z. Kadelburg and S. Radenović, $C^*$-algebra valued metric spaces are direct consequences of their standard metric counterparts, Fixed Point Theory and Appl., 2016, Article ID 53 (2016).

Zadeh LA., Fuzzy Soft, Inform, and Control, 8(1965), 338353.

Zhenhua Ma, Lining, and Hongkai Sun., $C^*$-algebra valued metric space and related fixed point theorems, Fixed point theory Appl.2014, 2014:206.

Zoran Kadelburg, and Stojan Radenović, Fixed point results in $C^*$-algebra valued metric spaces are direct consequence of their standard counterparts, Fixed point theory Appl.2016, 2016:53.

Metrics

Metrics Loading ...

Published

01-04-2018

How to Cite

Ravi P. Agarwal, G.N.V.Kishore, and B. Srinuvasa Rao. “Convergence Properties on $C^*$-Algebra Valued Fuzzy Soft Metric Spaces and Related Fixed Point Theorems”. Malaya Journal of Matematik, vol. 6, no. 02, Apr. 2018, pp. 310-2, doi:10.26637/MJM0602/0002.