A study on $I$-Cauchy sequences and $I$-divergence in $S$-metric spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0602/0004

Abstract

The notion of $S$-metric space was introduced by Sedghi et al. In this paper we study the ideas of $I$ and $I^*$-Cauchy sequences in $s$-metric spaces and investigate their relation following the same approach as done by Das and Ghosal. We then study the ideas of $I$ and $I^*$-divergent sequences in $S$-metric spaces and examine their relation under certain general assumption.

Keywords:

Ideal, S-metric space, I-Cauchy, I-divergence, I-divergence, condition (AP).

Mathematics Subject Classification:

Mathematics
  • Amar Kumar Banerjee Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India.
  • Apurba Banerjee Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India.
  • Pages: 326-330
  • Date Published: 01-04-2018
  • Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)

V. Baláž, J. Črveńanský, P. Kostyrko, T. S̆alát, Iconvergence and I-continuity of real functions, Acta Math. (Nitra), 5 (2002), 43-50.

M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.

A.K. Banerjee, A. Banerjee, A note on I-convergence and $I^*$-convergence of sequences and nets in topological spaces, Mat. Vesnik, 67, 3 (2015), 212-221.

A.K. Banerjee, R. Mondal, A note on convergence of double sequences in a topological space, Mat. Vesnik, 69, 2 (2017), 144-152.

A.K. Banerjee, Anindya Dey, Metric spaces and complex analysis, New age International $(P)$ Limited Publishers, 2008 .

P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), Computers and Mathematics with Applications, 59 (2010), 2597-2600.

P. Das, S.K. Ghosal, On I-Cauchy nets and completeness, Topology and its Applications, 157 (2010), 1152-1156.

ogy and its Applications, 173 (2014), 9-27.

K. Demirci, I-limit superior and limit inferior, Mathematical Communications, 6 (2001), 165-172.

K. Dems: On I-Cauchy sequences, Real Analysis Exchange, 30(1) (2004/2005), 123-128.

H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

H. Halberstem, K.F. Roth, Sequences, Springer, New York, 1993.

P. Kostyrko, T. S̆alát, W. Wilczyński, I-convergence, Real Analysis Exchange, 26 (2)(2000/2001), 669-686.

P. Kostyrko, M. Mačaj, T. S̆alat, M. Sleziak, Iconvergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.

K. Kuratowski, Topologie I, PWN, Warszawa, 1961.

B.K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Mathematical Communications, 8 (2003), $151-156$.

B.K. Lahiri, P. Das, I and $I^*$-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.

B.K. Lahiri, P. Das, I and $I^*$-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.

M. Mačaj, T. S̆alát, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.

A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math., 11 (2) (2007), 569-576.

T. S̆alát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.

I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.

S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (3) (2012), 258-266.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.

Metrics

Metrics Loading ...

Published

01-04-2018

How to Cite

Amar Kumar Banerjee, and Apurba Banerjee. “A Study on $I$-Cauchy Sequences and $I$-Divergence in $S$-Metric Spaces”. Malaya Journal of Matematik, vol. 6, no. 02, Apr. 2018, pp. 326-30, doi:10.26637/MJM0602/0004.