A study on $I$-Cauchy sequences and $I$-divergence in $S$-metric spaces
Downloads
DOI:
https://doi.org/10.26637/MJM0602/0004Abstract
The notion of $S$-metric space was introduced by Sedghi et al. In this paper we study the ideas of $I$ and $I^*$-Cauchy sequences in $s$-metric spaces and investigate their relation following the same approach as done by Das and Ghosal. We then study the ideas of $I$ and $I^*$-divergent sequences in $S$-metric spaces and examine their relation under certain general assumption.
Keywords:
Ideal, S-metric space, I-Cauchy, I-divergence, I-divergence, condition (AP).Mathematics Subject Classification:
Mathematics- Pages: 326-330
- Date Published: 01-04-2018
- Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
V. Baláž, J. Črveńanský, P. Kostyrko, T. S̆alát, Iconvergence and I-continuity of real functions, Acta Math. (Nitra), 5 (2002), 43-50.
M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.
A.K. Banerjee, A. Banerjee, A note on I-convergence and $I^*$-convergence of sequences and nets in topological spaces, Mat. Vesnik, 67, 3 (2015), 212-221.
A.K. Banerjee, R. Mondal, A note on convergence of double sequences in a topological space, Mat. Vesnik, 69, 2 (2017), 144-152.
A.K. Banerjee, Anindya Dey, Metric spaces and complex analysis, New age International $(P)$ Limited Publishers, 2008 .
P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), Computers and Mathematics with Applications, 59 (2010), 2597-2600.
P. Das, S.K. Ghosal, On I-Cauchy nets and completeness, Topology and its Applications, 157 (2010), 1152-1156.
ogy and its Applications, 173 (2014), 9-27.
K. Demirci, I-limit superior and limit inferior, Mathematical Communications, 6 (2001), 165-172.
K. Dems: On I-Cauchy sequences, Real Analysis Exchange, 30(1) (2004/2005), 123-128.
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
H. Halberstem, K.F. Roth, Sequences, Springer, New York, 1993.
P. Kostyrko, T. S̆alát, W. Wilczyński, I-convergence, Real Analysis Exchange, 26 (2)(2000/2001), 669-686.
P. Kostyrko, M. Mačaj, T. S̆alat, M. Sleziak, Iconvergence and extremal I-limit points, Math. Slovaca, 55 (4) (2005), 443-464.
K. Kuratowski, Topologie I, PWN, Warszawa, 1961.
B.K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, Mathematical Communications, 8 (2003), $151-156$.
B.K. Lahiri, P. Das, I and $I^*$-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
B.K. Lahiri, P. Das, I and $I^*$-convergence of nets, Real Analysis Exchange, 33 (2) (2007/2008), 431-442.
M. Mačaj, T. S̆alát, Statistical convergence of subsequences of a given sequence, Math. Bohemica, 126 (2001), 191-208.
A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math., 11 (2) (2007), 569-576.
T. S̆alát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (3) (2012), 258-266.
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
Similar Articles
- Anju Khandelwal, An amalgamated approach for solving unbalanced assignment problem , Malaya Journal of Matematik: Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.