Inequalities for Tricomi functions
Downloads
DOI:
https://doi.org/10.26637/MJM0602/0007Abstract
In this study, we establish new two-sided inequalities for Tricomi functions. Some special and confluent cases of our main aim are established with the help of the inequalities for hypergeometric functions ${ }_0 F_1(-; c ; z), c>0$.
Keywords:
Inequalities for hypergeometric functions, Bessel functions, Modified Bessel functions, Tricomi functionsMathematics Subject Classification:
Mathematics- Pages: 344-348
- Date Published: 01-04-2018
- Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
Bailey, W.N.: Products of generalized hypergeometric series. Proc. Lond. Math. Soc., Vol. 28, No. 2 (1928), 242-254.
Bissu, S.K. and Joshi, C.M.: Inequalities for some special functions. II. Tamkang J. Math., Vol. 26, No. 3 (1995), 235-242.
Bordelon, D.J.: Solution to problem 72-15, inequalities for special functions. SIAM Rev, Vol. 15 (1973) 666-668.
Buschman, R.G.: Inequalities for hypergeometric functions. Mathematics of Computation, Vol. 30 (1976), 303305 .
Carlson, B.C.: Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc., Vol. 17 (1966), 3239.
Çekim, B., Shehata, A., and Srivastava, H.M.: Two-sided inequalities for the struve and Lommel functions. Quaestiones Mathematicae, (2018), 1-19.
Erber, T.: Inequalities for hypergeometric functions. Archive for Rational Mechanics and Analysis, Vol. 4, No. 1 (1959/1960), 341-351.
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vols. I, II. Krieger, Melbourne (1981).
Joshi, C.M. and Arya, J.P.: Inequalities for certain hypergeometric functions. Math. Comp., Vol. 38, No. 157 (1982), 201-205.
Joshi, C.M. and Arya, J.P.: Some inequalities for the Gauss and Kummer hypergeometric functions. Indian J. Pure Appl. Math., Vol. 22, No. 8 (1991), 637-644.
Joshi C.M. and Bissu, S.K.: Some inequalities of Bessel and modified Bessel functions. J. Austral. Math. Soc. Ser. A., Vol. 51 (1991), 333-342.
Joshi, C.M. and Bissu, S.K.: Inequalities for confluent hypergeometric functions of two and three variables. Indian J. Pure Appl. Math., Vol. 24, No. 1 (1993), 43-50.
Joshi, C.M. and Bissu, S.K.: Inequalities for some special functions. J. Comput. Appl. Math., Vol. 69, No. 2 (1996), 251-259.
Laforgia, A.: Inequalities for Bessel functions. J. Comput. Appl. Math., Vol. 15 (1986), 75-81.
Laforgia, A.: Bounds for modified Bessel functions. J. Comput. Appl. Math., Vol. 34 (1991), 263-267.
Laforgia, A.: Inequalities for some special functions. in: G.A. Anastassiou, Ed., Approximation Theory, Lecture Notes in Pure and Appl. Math. 138 (Marcel Dekker, New York, 1992), 385-391.
Lebedev, N.N.: Special Functions and Their Applications, Dover Publications Inc., New York, 1972.
Luke, Y.L.: Inequalities for generalized hypergeometric functions, J. Approx. Theory, Vol. 5 (1972), 41-65.
Luke, Y.L.: Mathematical Functions and their Approximations, Academic Press Inc., New York, San Francisco and London, 1975.
Luke, Y.L.: The Special Functions and Their Approximation, Vol. I, Academic Press, INC, Harcourt Brace Jovanovich, Publishers San Diego New York Berkeley Boston London Sydney Tokyo Toronto, (1969).
Luke, Y.L. The Special Functions and Their Approximation, Vol. II, Academic Press, New York and London, (1969).
Nasell, I.: Inequalities for modified Bessel functions. Math. Comp., Vol. 125, No. 28 (1975), 253-256.
Preece, C.T.: The product of two generalized hypergeometric functions. Proc. Lond. Math. Soc., Vol. 22, No. 2 (1924), 370-380.
Ross, D.K.: Solution to problem 72-15, inequalities for special functions. SIAM Rev, Vol. 15 (1973) 668-679.
Ross, D.K.: Problem 72-15, Inequalities for special functions. SIAM Review, Vol. 14, No. 3 (Jul., 1972), 494-494.
Ross, D.K.: and Bordelon, D.J. Inequalities for special functions, Problem 72-15. SIAM Rev., Vol. 15 (1973), $665-670$.
Shehata, A.: Inequalities for Humbert functions. Journal of the Egyptian Mathematical Society, Vol. 22 (2014), 14-18.
Shehata, A.: Some inequalities for special functions. Journal of Inequalities and Applications, (2015) 2015:164.
Tricomi, F.G.: Funzioni Ipergeometriche Confluenti, Cremonese, Rome, (1954).
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1966) (reprint of the 1944 edition).
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.