Enumeration of disjoint Hamilton cycles in a divisor Cayley graph
Downloads
DOI:
https://doi.org/10.26637/MJM0603/0006Abstract
Hamilton cycles are cycles of largest length and triangles are cycles of smallest length in a graph. In this paper an enumeration method of determining the number of disjoint Hamilton cycles in the Divisor Cayley graph associated with the arithmetical function, namely the divisor function $d(n), n \geq 1$ is presented.
Keywords:
Outer Hamilton cycle, Divisor Cayley graph, Hamilton cycle, Symmetric set, Cayley graphMathematics Subject Classification:
Mathematics- Pages: 492-498
- Date Published: 01-07-2018
- Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)
P. Berrizbeitia and R. E. Giudici, Counting Pure k-cycles in Sequences of Cayley graphs, Discrete Mathematics, 149(1996), 11-18.
P. Berrizbeitia and R. E. Giudici, On cycles in the Sequence of Unitary Cayley graphs. Reporte Techico No.0195, Universidad Simon Bolivar, Dpto. de Matahematicas, Caracas, Venezula,(1995).
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, (1976).
T. Chalapathi, L. Madhavi and S. Venkata Ramana, Enumeration of Triangles in a Divisor Cayley graph, Momona Ethiopian Journal of Science, 5(2013), 163-173.
G. Chartrand, R. Muntean, V. Saenpholphat and P. Zhang, Which graphs are divisor graphs?, Proceedings of the Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, LA, Congr. Numer., 151 (2001), 189-200.
I. Dejter and R. E. Giudici, On Unitary Cayley graphs, JCMCC, 18(1995), 121-124.
L. Madhavi and T.Chalapathi, Enumeration of Triangles in Cayley Graphs, Pure and Applied Mathematics Journal, 4(2015), 128-132.
L. Madhavi, Studies on Domination Parameters and Enumeration of Cycles in some Arithmetic Graphs, Doctoral Thesis, Sri Venkateswara University, Tirupati, India, (2002).
B. Maheswari and L. Madhavi, Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley graphs, Chamchuri Journal of Mathematics, 1(2009), 95-103.
B. Maheswari and L. Madhavi, Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley graphs, Graph Theory Notes of New York LIX, (2010), 28-31.
M. B. Nathanson, Connected Components of arithmetic graphs, Monatshefte für Mathematik, 29(1980), 219-220.
G. S. Singh and G. Santosh, Divisor Graphs - I, Preprint, $(2000)$.
T. M. Apostol, Introduction to Analytic Number Theory, Springer International, Student Edition (1989).
T. Yu-Ping, A simple research of divisor graphs, The 29th Workshop on Combinatorial Mathematics and Computa tion theory,(2012) 186-190.
Similar Articles
- Ayub Khan, Mridula Budhraja, Aysha Ibraheem, Synchronization of dynamical systems of different orders and different dimensions , Malaya Journal of Matematik: Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.