Enumeration of disjoint Hamilton cycles in a divisor Cayley graph

Downloads

DOI:

https://doi.org/10.26637/MJM0603/0006

Abstract

Hamilton cycles are cycles of largest length and triangles are cycles of smallest length in a graph. In this paper an enumeration method of determining the number of disjoint Hamilton cycles in the Divisor Cayley graph associated with the arithmetical function, namely the divisor function $d(n), n \geq 1$ is presented.

Keywords:

Outer Hamilton cycle, Divisor Cayley graph, Hamilton cycle, Symmetric set, Cayley graph

Mathematics Subject Classification:

Mathematics
  • Pages: 492-498
  • Date Published: 01-07-2018
  • Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)

P. Berrizbeitia and R. E. Giudici, Counting Pure k-cycles in Sequences of Cayley graphs, Discrete Mathematics, 149(1996), 11-18.

P. Berrizbeitia and R. E. Giudici, On cycles in the Sequence of Unitary Cayley graphs. Reporte Techico No.0195, Universidad Simon Bolivar, Dpto. de Matahematicas, Caracas, Venezula,(1995).

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, (1976).

T. Chalapathi, L. Madhavi and S. Venkata Ramana, Enumeration of Triangles in a Divisor Cayley graph, Momona Ethiopian Journal of Science, 5(2013), 163-173.

G. Chartrand, R. Muntean, V. Saenpholphat and P. Zhang, Which graphs are divisor graphs?, Proceedings of the Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, LA, Congr. Numer., 151 (2001), 189-200.

I. Dejter and R. E. Giudici, On Unitary Cayley graphs, JCMCC, 18(1995), 121-124.

L. Madhavi and T.Chalapathi, Enumeration of Triangles in Cayley Graphs, Pure and Applied Mathematics Journal, 4(2015), 128-132.

L. Madhavi, Studies on Domination Parameters and Enumeration of Cycles in some Arithmetic Graphs, Doctoral Thesis, Sri Venkateswara University, Tirupati, India, (2002).

B. Maheswari and L. Madhavi, Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley graphs, Chamchuri Journal of Mathematics, 1(2009), 95-103.

B. Maheswari and L. Madhavi, Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley graphs, Graph Theory Notes of New York LIX, (2010), 28-31.

M. B. Nathanson, Connected Components of arithmetic graphs, Monatshefte für Mathematik, 29(1980), 219-220.

G. S. Singh and G. Santosh, Divisor Graphs - I, Preprint, $(2000)$.

T. M. Apostol, Introduction to Analytic Number Theory, Springer International, Student Edition (1989).

T. Yu-Ping, A simple research of divisor graphs, The 29th Workshop on Combinatorial Mathematics and Computa tion theory,(2012) 186-190.

Metrics

PDF views
32
Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20265.0
|

Published

01-07-2018

How to Cite

Levaku Madhavi, and Tekuri Chalapathi. “Enumeration of Disjoint Hamilton Cycles in a Divisor Cayley Graph”. Malaya Journal of Matematik, vol. 6, no. 03, July 2018, pp. 492-8, doi:10.26637/MJM0603/0006.