On marker set distance Laplacian eigenvalues in graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0602/0011Abstract
In our previous paper, we had introduced the marker set distance matrix and its eigenvalues. In this paper, we extend them naturally to the Laplacian eigenvalues. To define the Laplacian, we have defined the distance degree sequence of the marker set in the graph. Here we have considered the study of the Laplacian matrix, its characteristic polynomial and related results.
Keywords:
Marker set of a graph, M-set distance matrix, M-set distance Laplacian, characteristic polynomial, eigenvaluesMathematics Subject Classification:
Mathematics- Pages: 369-374
- Date Published: 01-04-2018
- Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
C. Adiga, M. Smitha, On Maximum Degree Energy of a Graph, Int. J. Contemp. Math. Sciences, Vol. 4, No. 8, (2009), $385-396$.
R. Balakrishnan, The energy of a graph, Lin. Algebra Appl 387, (2004), 287-295.
R. B. Bapat, Graphs and Matrices, Texts and Readings in Mathematics, Hindustan Book Agency, (2010).
A. E. Brouwer, W. H. Haemers, Spectra of graphs , Springer, (2011).
F. Buckley, F. Harary, Distances in graphs, Addison Wesley Publishing Company, 1990.
R. Grone, R. Merris, The Laplacian spectrum of a graph II , SIAM J. Discrete Math. 7 (1994) 221- 229.
R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) $218-238$
I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungz. Graz 103, (1978), 1-22 .
I. Gutman, The energy of a graph: Old and new results , Alge. Comb. and Applns, Springer Verlag , Berlin, (2001), 196-211.
R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, (1985).
Medha Itagi Huilgol and S.Anuradha, On marker set eigenvalues in graph, Advances and Applications in Discrete Mathematics, (2017), 18, 13-32.
Medha Itagi Huilgol and S.Anuradha, On marker set distance cospectral graphs, Global Journal of Pure and Applied Mathematics, Volume 13, Number 11, (2017), $7819-7827$.
Medha Itagi Huilgol and S.Anuradha, Properties of characteristic polynomial of marker set distance and its Laplacian, Journal of Mathematical and Computational Science, Volume 8, Number 2, (2018), 278-289.
G. Indulal, I. Gutman, On the distance spectra of some graphs Math. Commun 13, (2008), 123-131.
G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of a graph, MATCH Commun. Math. Comput. Chem.60 , (2008), 461-472.
G. Indulal, A. Vijaykumar, On a pair of equienergetic graphs , MATCH Commun. Math. Comput. Chem. 55, (2006), 83-90.
R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994).
L. L. Pennisi, Coefficients of the characteristic polynomial, Mathematics Magazine, 60, (1986), 31-33.
R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, John Wiley and Sons, (2008).
S. Vishveshwara, K. V. Brinda, N. Kannan, Protein structure: Insights from graph theory, Journal of Theoretical and Computational Chemistry, Vol. 1, No. 1, 1-25, (2002).
D. B. West, Introduction to graph theory , Prentice Hall, (1996).
Similar Articles
- Levaku Madhavi, Tekuri Chalapathi, Enumeration of disjoint Hamilton cycles in a divisor Cayley graph , Malaya Journal of Matematik: Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.