On marker set distance Laplacian eigenvalues in graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0602/0011

Abstract

In our previous paper, we had introduced the marker set distance matrix and its eigenvalues. In this paper, we extend them naturally to the Laplacian eigenvalues. To define the Laplacian, we have defined the distance degree sequence of the marker set in the graph. Here we have considered the study of the Laplacian matrix, its characteristic polynomial and related results.

Keywords:

Marker set of a graph, M-set distance matrix, M-set distance Laplacian, characteristic polynomial, eigenvalues

Mathematics Subject Classification:

Mathematics
  • Medha Itagi Huilgol Department of Mathematics, Bangalore University, Central Campus, Bengaluru- 560 001, India.
  • S. Anuradha Department of Mathematics, Bangalore University, Central Campus, Bengaluru- 560 001, India.
  • Pages: 369-374
  • Date Published: 01-04-2018
  • Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)

C. Adiga, M. Smitha, On Maximum Degree Energy of a Graph, Int. J. Contemp. Math. Sciences, Vol. 4, No. 8, (2009), $385-396$.

R. Balakrishnan, The energy of a graph, Lin. Algebra Appl 387, (2004), 287-295.

R. B. Bapat, Graphs and Matrices, Texts and Readings in Mathematics, Hindustan Book Agency, (2010).

A. E. Brouwer, W. H. Haemers, Spectra of graphs , Springer, (2011).

F. Buckley, F. Harary, Distances in graphs, Addison Wesley Publishing Company, 1990.

R. Grone, R. Merris, The Laplacian spectrum of a graph II , SIAM J. Discrete Math. 7 (1994) 221- 229.

R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) $218-238$

I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungz. Graz 103, (1978), 1-22 .

I. Gutman, The energy of a graph: Old and new results , Alge. Comb. and Applns, Springer Verlag , Berlin, (2001), 196-211.

R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, (1985).

Medha Itagi Huilgol and S.Anuradha, On marker set eigenvalues in graph, Advances and Applications in Discrete Mathematics, (2017), 18, 13-32.

Medha Itagi Huilgol and S.Anuradha, On marker set distance cospectral graphs, Global Journal of Pure and Applied Mathematics, Volume 13, Number 11, (2017), $7819-7827$.

Medha Itagi Huilgol and S.Anuradha, Properties of characteristic polynomial of marker set distance and its Laplacian, Journal of Mathematical and Computational Science, Volume 8, Number 2, (2018), 278-289.

G. Indulal, I. Gutman, On the distance spectra of some graphs Math. Commun 13, (2008), 123-131.

G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of a graph, MATCH Commun. Math. Comput. Chem.60 , (2008), 461-472.

G. Indulal, A. Vijaykumar, On a pair of equienergetic graphs , MATCH Commun. Math. Comput. Chem. 55, (2006), 83-90.

R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994).

L. L. Pennisi, Coefficients of the characteristic polynomial, Mathematics Magazine, 60, (1986), 31-33.

R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, John Wiley and Sons, (2008).

S. Vishveshwara, K. V. Brinda, N. Kannan, Protein structure: Insights from graph theory, Journal of Theoretical and Computational Chemistry, Vol. 1, No. 1, 1-25, (2002).

D. B. West, Introduction to graph theory , Prentice Hall, (1996).

Metrics

Metrics Loading ...

Published

01-04-2018

How to Cite

Medha Itagi Huilgol, and S. Anuradha. “On Marker Set Distance Laplacian Eigenvalues in Graphs”. Malaya Journal of Matematik, vol. 6, no. 02, Apr. 2018, pp. 369-74, doi:10.26637/MJM0602/0011.