On Steiner domination in graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0602/0013

Abstract

The steiner dominating set is a variant of dominating set in graphs. For a non - empty set $W$ of vertices in a connected graph $G$, the steiner distance $d(W)$ of $W$ is the minimum size of a connected subgraph $G$ containing $W$. Necessarily, each such subgraph is a tree and is called a steiner tree or a steiner $W$ - tree. The set of all vertices of $G$ that lie on some steiner $W$ - tree is denoted by $S(W)$. If $S(W)=V(G)$ then $W$ is called a steiner set for $G$. The steiner number $s(G)$ is the minimum cardinality of a steiner set. The minimum cardinality of a steiner dominating set is called the steiner domination number of graph. We present here some new results on steiner domination in graphs.

Keywords:

Dominating set, domination number, steiner dominating set, steiner domination number

Mathematics Subject Classification:

Mathematics
  • Samir K Vaidya Department of Mathematics, Saurashtra University, Rajkot - 360 005, Gujarat, India.
  • Raksha N Mehta Atmiya Institute of Technology and Science, Rajkot - 360 005, Gujarat, India.
  • Pages: 381-384
  • Date Published: 01-04-2018
  • Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)

G. Chartrand, O. R. Oellermann, S. Tian and H. B. Zou, Steiner Distance in Graphs, Casopis Pro. Pest. Mat., 114, (1989), $399-410$.

G. Chartrand and P. Zhang, The Steiner Number of a Graph, Discrete Mathematics, 242, (2002), 41-54.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).

C. Hernando, T. Jiang, M. Mora, I. M. Pelayo and C. Seara, On the Steiner, Geodetic and Hull Number of Graphs, Discrete Mathematics, 293, (2005), 139 - 154.

J. John, G. Edwin and P. Arul Paul Sudhahar, The Steiner Domination Number of a Graph, International Journal of Mathematics and Computer Application Research, Vol $3(3),(2013), 37-42$,

J. Joseline Manora and S. Veeramanikandan, Intersection Graph on Non Split Majority Dominating Graph, Malaya Journal of Matematik, Special Issue (2), (2015), 476-480.

E. Kubicka, G. Kubicki and O. Oellermann, Steiner Intervals in Graphs. Discrete Appl. Math., 81,(1998), 181 190.

A. R. Latheesh Kumar and V. Anil Kumar, A Note on Global Bipartite Domination in Graphs, Malaya Journal of Matematik. 4(3), (2016), 438-442.

S. Pious Missier, A. Anto Kinsley and E. P. Fernando, Algorithm to Determine an Independent Dominating Set of $operatorname{ESC}(n, k)$, Malaya Journal of Matematik, 2(4), (2014), 352-362.

I.M. Pelayo, Comment on The Steiner Number of a Graph by G. Chartrand and P. Zhang Discrete Mathematics 242, (2002), 41 - 54; Discrete Math., 280, (2004), 259 - 263.

A.P. Santhakumaran and J. John, The Forcing Steiner Number of a Graph, Discussion Mathematicae Graph Theory, 31, (2011), 171 - 181.

S. K. Vaidya and S. H. Karkar, On Strong Domination Number of Corona Related Graphs, Malaya Journal of Matematik, 5(4), (2017), 636-640.

S. K. Vaidya and S. H. Karkar, Steiner Domination Number of Some Graphs, International Journal of Mathematics and Scientific Computing, 5(1), (2015), 1 - 3.

S. K. Vaidya and R. N. Mehta, Steiner Domination Number of Some Wheel Related Graphs, International Journal of Mathematics and Soft Computing, 5(2), (2015), 15-19.

D. B. West, Introduction to Graph Theory, 2/e, Prentice Hall of India, New Delhi, (2003).

Metrics

Metrics Loading ...

Published

01-04-2018

How to Cite

Samir K Vaidya, and Raksha N Mehta. “On Steiner Domination in Graphs”. Malaya Journal of Matematik, vol. 6, no. 02, Apr. 2018, pp. 381-4, doi:10.26637/MJM0602/0013.