Global dynamics of (1;2)-type systems of difference equations

Downloads

DOI:

https://doi.org/10.26637/MJM0602/0018

Abstract

We study the global dynamics of following $(1,2)$ - type systems of difference equations:
$$
\begin{aligned}
x_{n+1} & =\frac{\eta y_{n-1}}{1+\mu x_{n-2}^p}, y_{n+1}=\frac{\mu x_{n-1}}{1+\eta y_{n-2}^p}, \\
x_{n+1} & =\frac{\eta y_{n-1}}{1+\mu y_{n-2}^p}, y_{n+1}=\frac{\mu x_{n-1}}{1+\eta x_{n-2}^p},
\end{aligned}
$$
where $\eta, \mu, p$ and initial conditions $x_l, y_l, l=-2,-1,0$ are non-negative real numbers. Several numerical simulations are provided to support obtained results.

Keywords:

(1;2), equilibrium point, stability, rate of convergence

Mathematics Subject Classification:

Mathematics
  • Muhammad Naeem Qureshi Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan.
  • Abdul Qadeer Khan Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan.
  • Pages: 408-416
  • Date Published: 01-04-2018
  • Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)

E. A. Grove and G. Ladas, Periodicities in nonlinear difference equations, Chapman and Hall/CRC Press, Boca Raton, 2004.

H. Sedaghat, Nonlinear difference equations:theory with applications to social science models, Kluwer Academic Publishers, Dordrecht, 2003.

M. R. S. Kulenović and G. Ladas, Dynamics of secondorder rational difference equations, Chapman and Hall/CRC, 2002.

E. Camouzis and G. Ladas, Dynamics of third-order ra- tional Difference Equations: with open problems and conjectures, Chapman and Hall/HRC, Boca Raton, 2007.

A. S. Kurbanli, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=$ $frac{x_{n-1}}{y_n x_{n-1}-1}, y_{n+1}=frac{y_{n-1}}{x_n y_{n-1}-1}, z_{n+1}=frac{1}{y_n z_n}$, Ad. Diff. Eq., $2011(2011), 40$.

S. Kalabuŝić, M. R. S. Kulenović and E. Pilav, Global dynamics of a competitive system of rational difference equations in the Plane, $A d$. Diff. Eq., (2009), 1-30.

Q. Zhang, L. Yang and J. Liu, Dynamics of a system of rational third order difference equation, $A d$. Diff. Eq., (2012), 136 .

A. Q. Khan, M. N. Qureshi and Q. Din, Global dynamics of some systems of higher-order rational difference equations, Ad. Diff. Eq., (2013), 1-23.

A. Q. Khan, M. N. Qureshi and Q. Din, Qualitative behavior of two systems of second-order rational difference equations, J. Comput. Anal. Appl., 8(6)(2015), 1027 1041.

A. Q. Khan, Global dynamics of two systems of exponential difference equations by Lyapunov function, $A d$. Diff. Eq., (2014), 297.

A. Q. Khan and M. N. Qureshi, Global dynamics of a competitive system of rational difference equations, Math. Method. Appl. Sci., 38(10)(2015), 4786-4796.

A. Q. Khan and M. N. Qureshi, Stability analysis of a discrete biological model, Int. J. Biomath., 9(2)(2016), $1-19$.

A. Q. Khan and M. N. Qureshi, Dynamics of a modified Nicholson-Bailey host-parasitoid model, Ad. Diff. Eq., (2015), 23.

A. Q. Khan and M. N. Qureshi, Behavior of an exponential system of difference equations, Disc. Dyn. Nat. Soc , (2014), 1-9.

A. Q. Khan and M. N. Qureshi, Qualitative behavior of two systems of higher-order difference equations. Math. Meth. Appl. Sci., 39(2016), 3058-3074

S. Kalabuŝić, M. R. S. Kulenović and E, Pilav, Multiple attractors for a competitive system of rational difference equations in the plane, Abstr. Appl. Anal. , (2011), 1-35.

E. M. Elsayed, Solution for systems of difference equations of rational form of order two, Comput. Appl. Math.), $33(3)(2014), 751-765$.

N. Touafek and E. M. Elsayed, On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roumanie, 2(2012), 217-224.

N. Touafek and E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Model., 55(2012), 1987-1997.

S. Kalabuŝić, M. R. S. Kulenović and E. Pilav, Dynamics of a two-dimensional system of rational difference equations of Leslie-Gower type, Ad. Diff. Eq., (2011),

A. S. Kurbanli, C. Çinar and I. Yalçinkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=frac{x_{n-1}}{y_n x_{n-1}+1}, y_{n+1}=frac{y_{n-1}}{x_n y_{n-1}+1}$, Math. Comput. Model., 53(2011), 1261-1267.

H. M. El-Owaidy, A. M. Ahmed and A. M. Youssef, The dynamics of the recursive sequence $x_{n+1}=frac{alpha x_{n-1}}{beta+gamma_{n-2}^p}$, Appl. Math. Lett., 18(9)(2005), 1013-1018.

M. Gümüş and Y. Soykan, Global analysis of a six dimensional rational system of difference equations, Disc. Dyn. Nat. Soc , (2016), 1-.[24] M. Pituk, More on Poincare's and Perron's theorems for difference equations, J. Differ. Equ. Appl., 8(2002), 201216.

Metrics

Metrics Loading ...

Published

01-04-2018

How to Cite

Muhammad Naeem Qureshi, and Abdul Qadeer Khan. “Global Dynamics of (1;2)-Type Systems of Difference Equations”. Malaya Journal of Matematik, vol. 6, no. 02, Apr. 2018, pp. 408-16, doi:10.26637/MJM0602/0018.