Min-Max $\pi g^* \beta$-continuous and Max-Min $\pi g^* \beta$-continuous functions in topological spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0603/0011

Abstract

The aim of this paper is to study the notions of minimal $\pi g^* \beta$-closed set, maximal $\pi g^* \beta$-open set, minimal $\pi g^* \beta$-open set, maximal $\pi g^* \beta$-closed set, minimal $\pi g^* \beta$-continuous, maximal $\pi g^* \beta$-continuous, minimal $\pi g^* \beta$ irresolute, maximal $\pi g^* \beta$-irresolute, minimal-maximal $\pi g^* \beta$-continuous and maximal-minimal $\pi g^* \beta$-continuous and their basic properties are studied.

Keywords:

minimal $\pi g^* \beta$-closed set, $\pi g^* \beta$-continuous, maximal $\pi g^* \beta$-continuous, minimal $\pi g^* \beta$-irresolute, maximal $\pi g^* \beta$-irresolute , min-max $\pi g^* \beta$ continuous and max-min $\pi g^* \beta$-continuous

Mathematics Subject Classification:

Mathematics
  • A. Devika Department of Mathematics, PSG College of Arts and Science, Coimbatore-641014, Tamil Nadu, India
  • R. Vani Department of Mathematics, PSG College of Arts and Science, Coimbatore-641014, Tamil Nadu, India.
  • Pages: 530-535
  • Date Published: 01-07-2018
  • Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)

S.S. Benchalli, B.M. Ittangi and R.S. Wali, On Minimal open sets and functions in topological spaces, J. Comp. & Math. Sci., 2(2)(2011), 208-220. DOI: https://doi.org/10.20454/jast.2012.247

A. Devika and R. Vani, On $pi g^* beta$-closed sets in topological spaces, (Communicated to an International Journal).

N. Levine, Generalized closed sets in topology, Tend Circ. Mat. Palermo, (2)(19)(1970), $89-96$. DOI: https://doi.org/10.1007/BF02843888

F. Nakaoka and N. Oda, Some Applications of Minimal Open Sets, Int. J. Math. Sci., 27(8)(2001), 471-476. DOI: https://doi.org/10.1155/S0161171201006482

F. Nakaoka and N. Oda, On Minimal Closed Sets, Proceeding of Topological Spaces Theory and its Applications, 5(2003), 19-21.

F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, Int. J. Math. Sci., 21(2003), $1331-1340$. DOI: https://doi.org/10.1155/S0161171203207262

Metrics

Metrics Loading ...

Published

01-07-2018

How to Cite

A. Devika, and R. Vani. “Min-Max $\pi g^* \beta$-Continuous and Max-Min $\pi g^* \beta$-Continuous Functions in Topological Spaces”. Malaya Journal of Matematik, vol. 6, no. 03, July 2018, pp. 530-5, doi:10.26637/MJM0603/0011.