On TL-bi-ideals of ternary semigroups

Downloads

DOI:

https://doi.org/10.26637/MJM0602/0024

Abstract

We introduce the notions of $T L$-ternary subsemigroup and $T L$-bi-ideals of a ternary semigroup. We redefine $T L$-ternary subsemigroup and $T L$-bi-ideals using $T$-product on $L$-sets . We introduce the notion of $T$-intersection of $L$-sets. We establish that $T$-intersection of two $T L$-bi-ideals is again a $T L$-bi-ideal. We establish necessary and sufficient conditions for a pre-image of $L$-set under homomorphism to be a $T L$-ideal. We introduce the notion of $T L$-level sets. We characterize $T L$-bi-ideal by $T L$-level sets.

Keywords:

T-norm, L-set, TL-subsemigroup, TL-bi-ideal, TL-level set

Mathematics Subject Classification:

Mathematics
  • G. Mohanraj Department of Mathematics, Annamalai University, Annamalainagar-608 002, Tamilnadu, India.
  • M. Vela Department of Mathematics, Annamalai University, Annamalainagar-608 002, Tamilnadu, India.
  • Pages: 451-456
  • Date Published: 01-04-2018
  • Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)

F. Birkhoff, Lattice Theory, American Mathmatical Social Colleny Publishers, Rhode Island, 1967.

P. Dheena and G. Mohanraj, T-fuzzy ideals in rings, International Journal of Computational Cognition, $9(2)(2011), 98-101$.

N.V. Dixit and D. Sarita, A note an quasi and bi-ideals in ternary semigroups, International Journal of Mathemat ics and Mathematical Sciences, 18(3)(1995), 501-508.

J. A. Goguen, L-fuzzy sets, Journal of Mathematics Analysia and Application, (1967), 145-174.

G. Gratzer, Lattice Theory, W.H.Freeman and Company, San Fransico, 1998.

Y.B. Jun, J. Neggers and H.S. Kim, On L-fuzzy ideals semirings I, Czechoslovak Mathmatics Journal, 48(4)(1998), 669-675.

E.P. Klement, R. Mesiar and E. Pap, Triangular Norms. Kluwer Academic Puplishers, Dordrecht, 2000.

S. Kar and P. Sarkar, Fuzzy quasi-ideals and bi-ideals of ternary semigroups, Annals of Fuzzy Mathematics and Informatics, 4(2)(2012), 407-423.

S. Kar and P. Sarkar, Fuzzy ideals of ternary semigroups, Fuzzy Information and Engineering, 2(2012), 181-193.

N. Kuroki, Ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and System, 5(1981), 203-215.

H. Lehmer, A ternary analogue of abelian groups, American Journal of Mathematics, 54(1932), 329-338.

G. Mohanraj, On intuitionistic $(in, in, vee q)$-fuzzy ideals of semiring, Annamalai University Science Journal, $46(1)(2010), 81-88$.

G. Mohanraj, D. Krishnaswamy and R. Hema, On generalized redefined fuzzy prime ideals of ordered semigroups, Annals of Fuzzy Mathematics and Informatics, 6(1)(2013), 171-179.

G. Mohanraj and M. Vela, OnT-fuzzy lateral ideals of ternary semigroups, Global Journal of Pure and Applied Mathematics, 4(12)(2016), 60-63.

G. Mohanraj and E. Prabu, Redefined $T$-fuzzy right $h$ ideals of Hemirings, Global Journal of Pure and Applied Mathematics, 4(12)(2016), 35-38.

J. Neggers J.B. Jun and H.S. Kim, Extensions of $L$-fuzzy ideals in Semirings, Kyungpook Mathmatics Journal, $38(1)(1998), 131-135$.

J. Neggers J.B. Jun and H.S. Kim, On L-fuzzy ideals in Semirings, Czechoslovak Mathmatics Journal, $49(1)(1999), 127-133$.

C. Ronnason and M. Sathinee, L-fuzzy ternary subsemirings and $L$-fuzzy Ideals in Ternary semirings, $I A E N G$ International Journal of Applied Mathematics, 40(3)(2010), $32-36$

M.L. Santiago and S.S. Bala, Ternary semigroups, Semigroups Forum, 81(2010), 380-388.

F.M. Sioson, Theory in ternary semigroups, Mathematica Japonica, 10(1965), 63-84.

L.A. Zadeh, Fuzzy sets, Information and Control, $8(1965), 338-353$.

Metrics

Metrics Loading ...

Published

01-04-2018

How to Cite

G. Mohanraj, and M. Vela. “On TL-Bi-Ideals of Ternary Semigroups”. Malaya Journal of Matematik, vol. 6, no. 02, Apr. 2018, pp. 451-6, doi:10.26637/MJM0602/0024.