On TL-bi-ideals of ternary semigroups
Downloads
DOI:
https://doi.org/10.26637/MJM0602/0024Abstract
We introduce the notions of $T L$-ternary subsemigroup and $T L$-bi-ideals of a ternary semigroup. We redefine $T L$-ternary subsemigroup and $T L$-bi-ideals using $T$-product on $L$-sets . We introduce the notion of $T$-intersection of $L$-sets. We establish that $T$-intersection of two $T L$-bi-ideals is again a $T L$-bi-ideal. We establish necessary and sufficient conditions for a pre-image of $L$-set under homomorphism to be a $T L$-ideal. We introduce the notion of $T L$-level sets. We characterize $T L$-bi-ideal by $T L$-level sets.
Keywords:
T-norm, L-set, TL-subsemigroup, TL-bi-ideal, TL-level setMathematics Subject Classification:
Mathematics- Pages: 451-456
- Date Published: 01-04-2018
- Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
F. Birkhoff, Lattice Theory, American Mathmatical Social Colleny Publishers, Rhode Island, 1967.
P. Dheena and G. Mohanraj, T-fuzzy ideals in rings, International Journal of Computational Cognition, $9(2)(2011), 98-101$.
N.V. Dixit and D. Sarita, A note an quasi and bi-ideals in ternary semigroups, International Journal of Mathemat ics and Mathematical Sciences, 18(3)(1995), 501-508.
J. A. Goguen, L-fuzzy sets, Journal of Mathematics Analysia and Application, (1967), 145-174.
G. Gratzer, Lattice Theory, W.H.Freeman and Company, San Fransico, 1998.
Y.B. Jun, J. Neggers and H.S. Kim, On L-fuzzy ideals semirings I, Czechoslovak Mathmatics Journal, 48(4)(1998), 669-675.
E.P. Klement, R. Mesiar and E. Pap, Triangular Norms. Kluwer Academic Puplishers, Dordrecht, 2000.
S. Kar and P. Sarkar, Fuzzy quasi-ideals and bi-ideals of ternary semigroups, Annals of Fuzzy Mathematics and Informatics, 4(2)(2012), 407-423.
S. Kar and P. Sarkar, Fuzzy ideals of ternary semigroups, Fuzzy Information and Engineering, 2(2012), 181-193.
N. Kuroki, Ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and System, 5(1981), 203-215.
H. Lehmer, A ternary analogue of abelian groups, American Journal of Mathematics, 54(1932), 329-338.
G. Mohanraj, On intuitionistic $(in, in, vee q)$-fuzzy ideals of semiring, Annamalai University Science Journal, $46(1)(2010), 81-88$.
G. Mohanraj, D. Krishnaswamy and R. Hema, On generalized redefined fuzzy prime ideals of ordered semigroups, Annals of Fuzzy Mathematics and Informatics, 6(1)(2013), 171-179.
G. Mohanraj and M. Vela, OnT-fuzzy lateral ideals of ternary semigroups, Global Journal of Pure and Applied Mathematics, 4(12)(2016), 60-63.
G. Mohanraj and E. Prabu, Redefined $T$-fuzzy right $h$ ideals of Hemirings, Global Journal of Pure and Applied Mathematics, 4(12)(2016), 35-38.
J. Neggers J.B. Jun and H.S. Kim, Extensions of $L$-fuzzy ideals in Semirings, Kyungpook Mathmatics Journal, $38(1)(1998), 131-135$.
J. Neggers J.B. Jun and H.S. Kim, On L-fuzzy ideals in Semirings, Czechoslovak Mathmatics Journal, $49(1)(1999), 127-133$.
C. Ronnason and M. Sathinee, L-fuzzy ternary subsemirings and $L$-fuzzy Ideals in Ternary semirings, $I A E N G$ International Journal of Applied Mathematics, 40(3)(2010), $32-36$
M.L. Santiago and S.S. Bala, Ternary semigroups, Semigroups Forum, 81(2010), 380-388.
F.M. Sioson, Theory in ternary semigroups, Mathematica Japonica, 10(1965), 63-84.
L.A. Zadeh, Fuzzy sets, Information and Control, $8(1965), 338-353$.
Similar Articles
- A. Anguraj, J. Palraj, Numerical study of fluid flow and heat transfer in a backward facing step with a rotating cylinder , Malaya Journal of Matematik: Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.