Bounds on the covering radius of repetition code in \(\mathbb{Z}_2\mathbb{Z}_6\)
Downloads
DOI:
https://doi.org/10.26637/mjm1004/004Abstract
In this paper, the covering radius of codes over \(R = \mathbb{Z}_2\mathbb{Z}_6\) with different weight are discussed. The block repetition codes over \(R\) is defined and the covering radius for block repetition codes R are obtained.
Keywords:
Finite ring, Additive codes, Covering radius, Different weight.Mathematics Subject Classification:
16P10, 11T71, 94B05, 11H71, 94B65- Pages: 336-342
- Date Published: 01-10-2022
- Vol. 10 No. 04 (2022): Malaya Journal of Matematik (MJM)
P. Das, E. SAVAŞ And S.K. GhosaL, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24(2011), 1509-1514.
T. Abualrub, I. Siap and N. Aydin, $mathbb{Z}_2 mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60(3)(2014), $115-121$.
T. Aoki, P. Gaborit, M. Harada, M. Ozeki and P. Sole, On the covering radius of $mathbb{Z}_4$-codes and their lattices, IEEE Trans. Inform. Theory, 45(6)(1999), 2162-2168.
M. Bilal, J. Borges, S. T. Dougherty and C. Fernandez-Cordoba, Maximum distance separable codes over $mathbb{Z}_4$ and $mathbb{Z}_2 mathbb{Z}_4$, Des. Codes Cryptogr., 61(1)(2011), 31-40.
J. Borges, S. T. Dougherty and C. Fernandez-Cordoba, Characterization and constructions of self-dual codes over $mathbb{Z}_2 mathbb{Z}_4$, Adv. Math. Commun., 6(3)(2012), 287-303.
J. Borges, C. FernandeZ-Cordoba, J. Pujol, J. Rifa and M. Villanueva, $mathbb{Z}_2 mathbb{Z}_4$-linear codes: generator matrices and duality, Des. Codes Cryptogr, 54(2)(2010), 167-179.
P. ChellaPandian, On the Covering radius of Codes over $mathbb{Z}_6$, International Journal on Information Theory (IJIT), 5(2)(2016), 1-9.
Christine Bachoc, Application of coding theory to the construction of modular lattices, Journal of Combin. Theory Ser. A78 (1997), 92-119.
G. D. Cohen, M. G. Karpovsky, H. F. Mattson and J. R. Schatz, Covering radius-Survey and recent results, IEEE Trans. Inform. Theory, 31(3) (1985), 328-343.
C. J. Colbourn and M. K. Gupta, On quaternary MacDonald codes, Proc. Information Technology:Coding and Computing (ITCC), April(2003),212-215.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Rep. Suppl., 10(1973).
P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44(6)(1998), 2477-2504.
S. Dodunekov And J. Simonis, Codes and projective multisets, The Electronic Journal of Communications, 5(R37)(1998).
C. Durairajan, On Covering Codes and Covering Radius of Some Optimal Codes, Ph.D. Thesis, Department of Mathematics, IIT Kanpur, (1996).
M. K. Gupta, D. G. Glynn And T. AAron Gulliver, On senary simplex codes,In International Symposium, on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes(Springer, Berlin Heidelberg), (2001), 112-121.
M. K. Gupta and C. Durairajan, On the Covering Radius of some Modular Codes,Advances in Mathematics of Communications, 8(2)(2014), 129-137.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Chella Pandian P
This work is licensed under a Creative Commons Attribution 4.0 International License.