Hopf real hypersurface of a complex space form
Downloads
DOI:
https://doi.org/10.26637/MJM0603/0022Abstract
In this paper we study Hopf real hypersurface of complex space form. We give a characterization of projective and hyperbolic complex space form based on curvature conditions of real hypersurface of complex space form.
Keywords:
Hopf hypersurface, Complex space form, Real hypersurface, structure Jacobi operatorMathematics Subject Classification:
Mathematics- Pages: 610-613
- Date Published: 01-07-2018
- Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)
J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1980), 132-141.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans Amer. Math. Soc. 269 (1982), 481-499.
F. Defever, Ricci Semi-Symmetric hypersurfaces, Balkan $mathrm{J}$ of Geom and Its Appl 5 (2000), 81-91.
U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32(1990), $207=$ 221.
Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
$mathrm{S}$. Montiel and Romero, $O n$ some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata. $20(1986), 245-261$
R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, tight and taut submanifolds (eds. T. E. Cecil and S. S. Chern), Math. Sci. Res. Inst. Publ.32(1997), Cambridge Univ. Press, 233-305.
Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J. 20 (1986), 4659.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), $355-364$
Z. Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y) cdot R=0$, the local version, J.Differential Geom. 17 (1982), 531-582.
$mathrm{R}$. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
R. Takagi, Real hypersurfaces in complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27 (1975), 43-53.
M. M. Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16(1999), 67-71.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.