Observations on $x^2+y^2+2(x+y)+2=10 z^2$

DOI:

https://doi.org/10.26637/MJM0603/0026

Abstract

The quadratic equation with three unknowns given by $x^2+y^2+2(x+y)+2=10 z^2$ is analysed for its non-zero distinct integer solutions. Given a solution, formula for generating sequence of solutions is obtained.

Keywords:

Second degree equation, three unknowns, lattice points.

Mathematics Subject Classification:

mathematics
  • Shreemathi Adiga Department of Mathematics, Government First Grade College, Koteshwara, Kundapura Taluk, Udupi-576 222, Karnataka, India https://orcid.org/0009-0000-9823-9834
  • N. Anusheela Department of Mathematics,Government Arts College, Udhagamandalam, The Nilgiris-643 002, India.
  • M.A. Gopalan Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.
  • Pages: 632-634
  • Date Published: 01-07-2018
  • Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)

L.E.Dickson, History of Theory of Numbers, Vol.II, Chelsea Publishing Company, New York, 1952.

M.A. Gopalan and G. Srividhya, Observations on $y^2=$ $2 x^2+z^2$, Archimedes J.Math., 2(1)(2012), 7-15.

M.A. Gopalan and G. Sangeetha, Observations on $y^2=$ $3 x^2-2 z^2$, Antarctica J. Math., 9(4)(2012), 359-362.

M.A. Gopalan and R. Vijayalakshmi, On the ternary quadratic equation $x^2=left(alpha^2-1right)left(y^2-z^2right), alpha>1$, Bessel J. Mat.h, 2(2)(2012), 147-151.

Manju Somanath, G. Sangeetha and M.A. Gopalan, On the homogeneous ternary quadratic Diophantine equation $x^2+(2 k+1) y^2=(k+1)^2 z^2$, Bessel J. Math., 2(2)(2012), $107-110$.

Manju Somanath, G. Sangeetha and M.A. Gopalan, Observations on the ternary quadratic equation $y^2=3 x^2+z^2$, Bessel J. Math., 2(2)(2012), 101-105.

M.A. Gopalan, S. Vidhyalakshmi and C. Nithya, Integral points on the ternary quadratic Diophantine equation $3 x^2+5 y^2=128 z^2$, Bulletin of Mathematics and Statistics Research, 2(1)(2014), 25-31.

K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, Integer solutions on the homogeneous cone $4 x^2+3 y^2=28 z^2$, Bulletin of Mathematics and Statistics Research, 2(1)(2012), 47-53.

M.A. Gopalan, S. Vidhyalakshmi and J. Umarani, On the ternary quadratic diophantine equation $6left(x^2+y^2right)-8 x y=$ $21 z^2$, Sch. J. Eng. Tech., 2(2A)(2014), 108-112.

K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, On homogeneous ternary quadratic diophantine equation $2left(x^2+y^2right)-3 x y=16 z^2$, International Journal of Engineering, Science and Mathematics, 3(2)(2014), 93-99.

K. Meena, S. Vidhyalakshmi, S. Divya and M.A. Gopalan, Integral points on the cone $Z^2=41 X^2+Y^2$, Sch. J. Eng. Tech., 2(2B)(2014), 301-304.

M.A. Gopalan, S. Vidhyalakshmi, S. Devibala and J. Umavathy, On the ternary quadratic diophantine equation $3left(x^2+y^2right)-5 x y=60 z^2$, International Journal of Applied Research, 1(5)(2015), 234-238.

S. Vidhyalakshmi, T. Geetha and R. Sridevi, On ternary quadratic diophantine equation $2 x^2-7 y^2=25 z^2$, International Journal of Applied Research, 1(4)(2015), 111-114.

M.A. Gopalan, S. Vidhyalakshmi, U.K. Rajalakshmi, On ternary quadratic diophantine equation $5left(x^2+y^2right)-6 x y=$ $196 z^2$, IJRDO-Journal of Mathematics, 3(5)(2017), 110.

S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, Observation on the elliptic paraboloid $x^2+y^2=19 z$, Asian Journal of Applied Science and Technology, $1(9)(2017), 37-39$.

S. Vidhyalakshmi and S. Thenmozhi, On the ternary quadratic diophantine equation $3left(X^2+Y^2right)-5 X Y=$ $75 Z^2$, Journal of Mathematics and Informatics, 10(2017), $11-19$.

S. Vidhyalakshmi and A. Priya, On the non-homogeneous ternary quadratic diophantine equation $2left(x^2+y^2right)-3 x y+$ $(x+y)+1=z^2$, Journal of Mathematics and Informatics, $10(2017), 49-55$.

L.J. Mordell, Diophantine Equations, Academic press, New York, 1969.

Metrics

Metrics Loading ...

Published

01-07-2018

How to Cite

Shreemathi Adiga, N. Anusheela, and M.A. Gopalan. “Observations on $x^2+y^2+2(x+y)+2=10 z^2$”. Malaya Journal of Matematik, vol. 6, no. 03, July 2018, pp. 632-4, doi:10.26637/MJM0603/0026.