Existence results for \((p_1,...,p_n)\)-biharmonic systems under Navier boundary conditions

Downloads

DOI:

https://doi.org/10.26637/mjm1001/006

Abstract

The authors study the existence of weak solutions for a \((p_1,...,p_n)\)-biharmonic system via mountain pass theorem and establish semitrivial principal and strictly principal eigenvalues, positivity and simplicity results.

Keywords:

Nonlinear eigenvalue problems, Variational methods, Boundary value problems., \((p_1...p_n)\)-biharmonic systems

Mathematics Subject Classification:

35D30, 35J35, 35J58, 35P30
  • Pages: 63-78
  • Date Published: 01-01-2022
  • Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)

R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975).

G. BARLETTA AND R. LivREA Infinitely many solutions for a class of differential inclusions involving the p-biharmonic, Differ. Integral Equ., 26 (2013), 1157-1167.

J. Benedikt, Uniqueness theorem for p-biharmonic equations, Electron. J. Differential Equations, 53 (2002), 1-17.

J. BENEDIKT, On the discretness of the spectra of the Dirichlet and Neumann p-biharmonic problem, Abstr. Appl. Anal., 293 (2004), 777-792.

P. A. Binding and Y. X. Huang, The eigencurve for the p-laplacian, Differential Integral Equations, 8(2)(1995), 405-414.

G. Bonanno And B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.

M. Cuesta And L. Leadi, Weighted eigenvalue problems for quasilinear elliptic operator with mixed RobinDirichlet boundary conditions, J. Math. Anal. Appl., 422 (2015), 1-26.

M. Cuesta and Humberto Ramos Quoirin, A weighted eigenvalue problem for the p-laplacian plus a potential, NoDEA Nonlinear Equations Appl., 16(4) (2009), 469-491.

P. DrÁBEK AND M. ÔTANi, Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations, 48 (2001), 1-19.

A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the p-biharmonic operator In: 2002-Fez Conference on Partial Differential Equations, Electron. J. Differential Equations, 09 (2002), 161-170.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, New York, (1983).

J. R. Graef and S. Heidarkhani, Multiple solutions for a class of $left(p_1, ldots, p_nright)$-biharmonic systems, Communications on Pure and Applied Analysis, 12(3)(2013), doi:10.3934/cpaa.2013.12.1393.

El Miloud Hssini, Mohammed Massar and Najib Tsouli, Infinitely many solutions for the Navier boundary (p,q)-biharmonic systems, Electron. J. Differential Equations, 2012(163) (2012), 1-9.

A. C. Lazer and P. J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.

Liamidi Leadi and Humberto Ramos Quoirin, Principal eigenvalue for quasilinear cooperative elliptic systems, Differential and integral equations, 24(11-12)(2011), 1107-1124.

L. Leadi and A. Marcos, A weighted eigencurve for Steklov problems with a potential, NoDEA Nonlinear Differential Equations Appl., 16 (2013), 687-713.

L. Leadi and R. L. Toyou, Principal Eigenvalue for Cooperative $(p, q)$-biharmonic Systems, J. Partial Diff. Eq., 32 (2019), 33-51.

Lin Li and Yu Fu, Existence of Three Solutions for $left(p_1, ldots, p_nright)$-biharmonic Systems, International Journal of Nonlinear Sciences, 10(4)(2010), 495-506.

M. TAlbi And N. Tsouli, On the spectrum of the weighted p-biharmonic operator with weight, Mediterr. J. Math., 4 (2007), 73-86.

Willem, Minimax Theorems, Birkhäuser, Boston, (1996).

  • NA

Metrics

Metrics Loading ...

Published

01-01-2022

How to Cite

Doumate, J., R. Toyou, and L. Leadi. “Existence Results for \((p_1,. ,p_n)\)-Biharmonic Systems under Navier Boundary Conditions”. Malaya Journal of Matematik, vol. 10, no. 01, Jan. 2022, pp. 63-78, doi:10.26637/mjm1001/006.