On quadratic integral equations of Volterra type in Fréchet spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0604/0007

Abstract

In this work, we investigate the existence of solutions to a quadratic integral equation of Volterra type. By using the Schauder Tychonoff fixed point theorem in $C(\Omega, \mathbb{R})$, the Fréchet Space of real continuous functions on unbounded open subset $\Omega \subset \mathbb{R}^n$, we establish the existence of at least one solution.

Keywords:

Quadratic integral equation, Schauder-Tychonoff fixed point theorem, Volterra operator, Fréchet space

Mathematics Subject Classification:

Mathematics
  • Latifa Benhamouche Department of Mathematics, Faculty of Sciences, BP 270. Blida, 09000. Algeria.
  • Smaïl Djebali Department of Mathematics, Faculty of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Saad Dahlab University, route de Soumaa.
  • Smaïl Djebali Laboratoire "Théorie du Point Fixe et Applications", ENS, BP 92 Kouba. Algiers, 16006. Algeria.
  • Pages: 744-750
  • Date Published: 01-10-2018
  • Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)

R.P. Agarwal, M. Meehan, and D.O'Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics, 141. Cambridge University Press, Cambridge, 2001.

A. Aghajani, R. Allahyari, and M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, $J$. Comput. Appl. Math., 260(2014), 68-77.

J. Appell, J. Banaś, and N. Merentes, Measures of noncompactness in the study of asymptotically stable and ultimately nondecreasing solutions of integral equations, Z. Anal. Anwend., 29(3)(2010), 251-273.

R. Arab, R. Allahyari, and A.S. Haghighi, Construction of a measure of noncompactness on $B C(Omega)$ and its application to Volterra integral equations, Mediterr. J. Math., $13(3)(2016), 1197-1210$.

J. Banas, K. Sadarangani, Compactness conditions in the study of functional, differential, and integral equations, Abstr. Appl. Anal., 2013, Art. ID 819315, 14 pp.

A. Bellour, D. O'Regan, and M.A. Taoudi, On the existence of integrable solutions for a nonlinear quadratic integral equation, J. Appl. Math. Comput., 46(1-2)(2014), 67-77.

M. Benchohra, M. A. Darwish, On quadratic integral equations of Urysohn type in Fréchet spaces, Acta Math. Univ. Comenian., 79(1)(2010), 105-110.

M.A. Darwish, J. Banaś, and E.O. Alzahrani, The existence and attractivity of solutions of an Urysohn integral equation on an unbounded interval, Abstr. Appl. Anal., 2013, Art. ID $147409,9 mathrm{pp}$.

S. Dudek, L. Olszzowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces, 2015, Art. ID 471235 , $9 mathrm{pp}$.

G.L.Jr. Cain, M.Z. Nashed, Fixed points and stability for a sum of two operators in locally convex spaces, Pac. $J$. Math., 39(1971), 581-592.

H.H.G. Hashem, A.M.A. Elsayed Solvability of nonlinear quadratic functional equations, App. Math. Inf. Sci., $9(5)(2015), 2715-2720$.

L. Olszowy, Fixed point theorems in the Fréchet space $Cleft(mathbb{R}_{+}right)$and functional integral equations on an unbounded interval, Appl. Math. Comput., 218(18)(2012), 9066-9074.

V. Runde, A Taste of Topology, Universitext. Springer, New York, 2005.

F. Wang, H. Zhou, Fixed point theorems in locally convex spaces and a nonlinear integral equation of mixed type, Fixed Point Theory Appl., 2015, 2015:228, 11 pp.

T. Zhu, G. Li, Existence of nondecreasing solutions of a quadratic integral equation of Volterra type, Appl. Math. Comput., 221(2013), 214-220.

Metrics

Metrics Loading ...

Published

01-10-2018

How to Cite

Latifa Benhamouche, Smaïl Djebali, and Smaïl Djebali. “On Quadratic Integral Equations of Volterra Type in Fréchet Spaces”. Malaya Journal of Matematik, vol. 6, no. 04, Oct. 2018, pp. 744-50, doi:10.26637/MJM0604/0007.