Common fixed points of a pair of multivalued non-self mappings in partial metric spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0604/0013

Abstract

In this paper, we utilize the concept of the partial Hausdorff metric, first introduced by Aydi et al.[4] for partial metric space, to consider a pair of multivalued mappings which are non-self almost contractions on metrically convex partial metric spaces. We establish the existence of fixed point in such mappings.

Keywords:

Partial Hausdorff metric, multivalued mapping, almost contraction, partial metric space, non-self mapping

Mathematics Subject Classification:

Mathematics
  • Pages: 778-794
  • Date Published: 01-10-2018
  • Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)

M.A. Alghamdi, V. Berinde and N. Shahzad, Fixed points of nonself almost contractions, J. Appl. Math., 6(2013), $621-614$.

N. A. Assad and W. A. Kirk, Fixed point theorems for multivalued mappings of contractive type, Pac. J. Math., $43(1972), 553-562$.

H. Aydi, A. Felhi and S. Sahmim, Fixed points of multivalued nonself almost contractions in metric-like spaces, Math. Sci., 9(2015), 103-108.

H. Aydi, A. Mujaheed and C. Calogero, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology and its Applications, 159(14)(2012), $3234-3242$.

V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian Journal of Mathematics, $19(1)(2003), 7-22$.

M. Berinde and V. Berinde, On a general class of multivalued weakly Picard mappings, Journal of Mathematical Analysis and Applications, 326(2)(2007), 772-782.

S. K. Chatterjea, Fixed-point theorems, Doklady Bolgarskot Akademii Nauk. Comptes Rendus de l'Académie Bulgare des Sciences, 25(1972), 727-730.

M. Imdad and S. Kumar, Rhoades-type fixed-point theorems for a pair of non-self mappings, Comp. Math. Appl., $46(2003), 919-927$.

R. Kannan, Some results on fixed points, Bulletin of the Calcutta Mathematical Society, 60(1968), 71--76.

S. Mathews, Partial metric topology in Papers on General Topology and Applications, Eighth Summer Conference at Queens College. Eds. S. Andima et al. Annals of the New York Academy of Sciences Vol. 728(1994), 183197.

S. B. Nadler, Multivalued contraction mappings, Pac. $J$. Math., 30(1969), 475-488.

Metrics

Metrics Loading ...

Published

01-10-2018

How to Cite

Santosh Kumar, and Terentius Rugumisa. “Common Fixed Points of a Pair of Multivalued Non-Self Mappings in Partial Metric Spaces”. Malaya Journal of Matematik, vol. 6, no. 04, Oct. 2018, pp. 778-94, doi:10.26637/MJM0604/0013.