On maximal and minimal µ-clopen sets in GT spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0604/0023

Abstract

In this paper, we introduce the notions of maximal and minimal $\mu$-clopen sets in a generalized topological space and their some properties. We obtain that maximal and minimal $\mu$-clopen sets are independent of maximal and minimal $\mu$-open and $\mu$-closed sets. We observed that the existence of maximal $\mu$-clopen set in a generalized topological space not only ensure the  $\mu$-disconnectedness of a generalized topological space but also the existence of minimal $\mu$-clopen set in that space.

Keywords:

µ -open set, µ -closed set, maximal µ -open set, minimal µ -closed set, µ -clopen, maximal µ -clopen set, minimal µ-clopen set

Mathematics Subject Classification:

Mathematics
  • Rebati Mohan Roy Department of Mathematics, Mathabhanga College, Cooch Behar-736146, West Bengal, India.
  • Pages: 854-857
  • Date Published: 01-10-2018
  • Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)

Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar, 96(4)(2002), 351-357.

Á. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budapest. Eötvös Sect. Math, $47(2004), 91-96$. $101(4)(2003), 273-279$.

Á. Császár, $gamma$-connected sets, Acta Math.Hungar, 101(4)(2003), 273-279.

N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

A. S. Mashhour, M. E. Abd El-Monsef and S. N. ElDeeb, On precontinuous and weak precontinuous mapping, Proc. Math. Phy. Soc. Egypt, 53(1982), 47-53.

B. Roy and R. Sen, On maximal $mu$-open and $mu$-closed sets via Generalized topology, Acta Math. Hungar, $136(4)(2012), 233-239$.

S. Al Ghour, A. Al-Omari, T. Noiri, On homogeneity and homogeneity components in generalized topological spaces, Filomat, 27(6)(2013), 1097-1105.

A. Mukharjee, On maximality and minimality of $mu$ open and $mu$-closed sets, An. Univ. Oradea Fasc. Mat, $23(2)(2016), 15-19$.

Metrics

Metrics Loading ...

Published

01-10-2018