Weak synchronization of fuzzy automata
Downloads
DOI:
https://doi.org/10.26637/MJM0604/0025Abstract
The purpose of this paper is to study the structural characterizations of weak synchronization of fuzzy automata. We introduce weak reducubilty, weak stability relation, weak synchronization of fuzzy automata. We prove weak stability relation is an equivalence relation, algorithm is given to find weak synchronized word for fuzzy automata using weak stability relation.
Keywords:
Weak reducibility, Weak stability, Weak synchronizationMathematics Subject Classification:
Mathematics- Pages: 862-865
- Date Published: 01-10-2018
- Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)
R. L. Adler, L. W. Goodwyn, and B. Weiss, Equivalence of topologicl markov shifts, Israel Journal of Mathemat ics, 27 (1977), 49-63. DOI: https://doi.org/10.1007/BF02761605
V. Karthikeyan, and M. Rajasekar, Strong $gamma$ syncronization in fuzzy automata, International Mathematical Forum, 31 (6) (2011), 1521-1528.
V. Karthikeyan, and M. Rajasekar, Relation in fuzzy automata, Advances in Fuzzy Mathematics, 6 (1) (2011), 121-126.
J. N. Mordeson, and D. S. Malik, Fuzzy automata and languages-theory and applications, Chapman & Hall CRC Press, (2002). DOI: https://doi.org/10.1201/9781420035643
E. S. Santos, General formulation sequential machines, Information and Control, 12 (1968), 5-10. DOI: https://doi.org/10.1016/S0019-9958(68)90123-X
Rm. Somasundaram, and M. Rajasekar, Synchronization in fuzzy automata, Bulletin of Pure and Applied Sciences, 24E (1) (2005), 117-121.
F. Steimann, and K.P. Adlassnig, Clinical monitoring with fuzzy automata, Fuzzy Sets and Systems, 61 (1994), $37-42$. DOI: https://doi.org/10.1016/0165-0114(94)90282-8
W. G. Wee, On generalizations of adaptive algorithms and application of the fuzzy sets concepts to pattern classification Ph.D. Thesis, Purdue University, (1967).
L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Similar Articles
- Rebati Mohan Roy, On maximal and minimal µ-clopen sets in GT spaces , Malaya Journal of Matematik: Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.