Coupled Caputo-Fabrizio fractional differential systems in generalized Banach spaces

Downloads

Abstract

This paper deals with existence and uniqueness of solutions for some coupled systems of Caputo-Fabrizio
fractional differential equations. Some applications are made of generalizations of classical fixed point theorems
on generalized Banach spaces. An illustrative example is presented in the last section.

Keywords:

Fractional differential equation, Caputo–Fabrizio integral of fractional order, Caputo–Fabrizio fractional derivative, coupled system, generalized Banach space, fixed point

Mathematics Subject Classification:

Mathematics
  • Pages: 20-25
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

S. Abbas, N. Al Arifi, M. Benchohra and J. Graef, Random coupled systems of implicit Caputo-Hadamard fractional differential equations with multi-point boundary conditions in generalized Banach spaces, Dynam. Syst. Appl., 28(2) (2019), 229-350.

S. Abbas, N. Al Arifi, M. Benchohra and G. M. N'Guérékata, Random coupled Caputo-Hadamard fractional differential systems with four-point boundary conditions in generalized Banach spaces, Annals Commun. Math., 2(1) (2019), 1-15.

S. Abbas, N. Al Arifi, M. Benchohra and Y. Zhou, Random coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces, Mathematics 7 285 (2019), $1-15$.

S. Abbas, M. Benchohra, J. R. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.

S. Abbas, M. Benchohra J. E. Lazreg and J. J. Nieto, On a coupled system of Hilfer and Hilfer-Hadamard fractional differential equations in Banach spaces, J. Nonlinear Funct. Anal., Vol. 2018 (2018), Article ID 12, pp. 1-12.

S. Abbas, M. Benchohra, J.E. Lazreg and Y.Zhou, A Survey on Hadamard and Hilfer fractional differential equations: Analysis and Stability, Chaos, Solitons Fractals 102 (2017), 47-71.

S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.

S. Abbas, M. Benchohra and G. M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.

S. Abbas, M. Benchohra, B. Samet and Y. Zhou, Coupled implicit Caputo fractional q-difference systems, $A d v$. Difference Equ., 2019:527, $19 mathrm{pp}$.

S. Abbas, M. Benchohra and S. Sivasundaram, Coupled Pettis Hadamard fractional differential systems with retarded and advanced arguments, J. Math. Stat., $14(1)(2018), 56-63$.

B. Ahmad, S. K. Ntouyas and A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals, 83 (2016), 234-241.

G. Allaire and S. M. Kaber, Numerical Linear Algebra; ser. Texts in Applied Mathematics, Springer, New York, 2008.

T. Bashiri, S.M. Vaezpour and J. J. Nieto, Approximating solution of Fabrizio-Caputo Volterra's model for population growth in a closed system by homotopy analysis method, J. Funct. Spaces, 2018 (2018), Article ID 3152502.

M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ: Appl., 1 (2) (2015), 73-85.

V. Daftardar-Gejji and H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763.

J. F. Gómez-Aguilar, H. Yépez-Martínez, J. TorresJiménez, T. Cérdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ. 2017, 68 (2017).

J. Henderson and R. Luca, Positive solutions for a system of semipositone coupled fractional boundary value problems, Bound. Value Probl. 2016 (2016), 61.

J. Henderson and R. Luca, A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18 (2) (2015), 361-386.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.

J. Losada and J.J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ: Appl., 1 (2) (2015), 87-92.

D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.

I. R. Petre and A. Petrusel, Krasnoselskii's theorem in generalized Banach spaces and applications, Electron. J. Qual. Theory Differ. Equ., (2012), No. 85, 20 pp.

S. N. Rao and M. M. Zico, Positive solutions for a coupled system of nonlinear semipositone fractional boundary value problems, Int. J. Differ. Equ. 2019 (2019), Article ID $2893857,9 mathrm{pp}$.

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.

M. L. Sinacer, J. J Nieto and A. Ouahab, Random fixed point theorems in generalized Banach spaces and applications, Random Oper. Stoch. Equ., 24 (2016), 93-112.

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beiiing 2010.

V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.

X. J. Xiao-Jun, H. M. Srivastava and J.T. Machado, A new fractional derivative without singular kernel, Therm. Sci., 20 (2) (2016), 753-756.

Y. Zhou, J.-R. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Sa¨ıd Abbas, Mouffak Benchohra, and Johnny Henderson. “Coupled Caputo-Fabrizio Fractional Differential Systems in Generalized Banach Spaces”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 20-25, https://www.malayajournal.org/index.php/mjm/article/view/957.