Exponential stability to a laminated beam in thermoelasticity of type III with delay
Downloads
DOI:
https://doi.org/10.26637/mjm1001/002Abstract
In this paper, we study the well-posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III with delay term in the fourth equation. We first give the well-posedness of the system by using semigroup method and Lumer-Philips theorem. Then, by using the perturbed energy method and construct some Lyapunov functionals, we obtain the exponential decay result for the case of equal wave speeds.
Keywords:
Laminated beam, thermoelasticity of type III, delay, well-posedness, exponential stabilityMathematics Subject Classification:
35B40, 35L56, 93D20, 74F05- Pages: 20-35
- Date Published: 01-01-2022
- Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)
T. A. Apalara, Uniform stability of a laminated beam with structural damping and second sound, Z. Angew. Math. Phys., 68(2)(2017), 1-16.
D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, Appl. Mech. Rev., 51(12)(1998), 705-729.
M. M. ChEN, W. J. Liu AND W. C. Zhou, Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms, Adv. Nonlinear Anal., 7(4)(2018), 547-569.
R. Datкo, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26(3)(1988), 697-713.
R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24(1986), 152-156.
A. Djebabla and N. E. TATAR, Exponential stabilization of the timoshenko system by a thermo-viscoelastic damping, J. Dyn. Control Syst., 16(2010), 189-210.
M. Douib, S. Zitouni, And A. Djebabla, Well-posedness and exponential decay for a laminated beam in thermoelasticity of type III with delay term, Mathematica, 62(2021), 58-76.
S. Drabla, S. A. Messaoudi and F. Boulanouar, A general decay result for a multidimensional weakly damped thermoelastic system with second sound, Discrete Contin. Dyn. Syst. Ser. B, 22(4)(2017), 13291339 .
A. Fareh and S. A. MeSsaoudi, Stabilization of a type III thermoelastic timoshenko system in the presence of a time-distributed delay, Math. Nachr., 290(7)(2017), 1017-1032.
J. A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985.
A. E. Green And P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. London Ser. A, 432(1885)(1991), 171-194.
A. E. Green and P. M. NAghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15(2)(1992), 253-264.
A. E. Green And P. M. NAghdi, Thermoelasticity without energy dissipation, J Elasticity, 31(1993), 189208 .
A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30(4)(2013), 507-526.
S. W. HAnsen, A model for a two-layered plate with interfacial slip, Control and estimation of distributed parameter systems: nonlinear phenomena (Vorau, 1993), Internat. Ser. Numer. Math., Birkhauser, Basel, (1994), 143-170.
S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vibration, 204(2)(1997), 183-202.
J. HAO AND P. WANG, symptotical stability for memory-type porous thermoelastic system of type III with constant time delay, Math. Methods Appl. Sci. 39(2016), 3855-3865.
M. Kafini, S. A. Messaoudi, M. I. Mustafa and T. Apalara, Well-posedness and stability results in a timoshenko-type system of thermoelasticity of type III with delay, Z. Angew. Math. Phys., 66 (4)(2015), 1499-1517.
G. Li, X. Y. Kong And W. J. LIU, General decay for a laminated beam with structural damping and memory: the case of non equal wave speeds, J. Integral Equ. Appl., 30(1)(2018), 95-116.
W. J. LiU, K. W. CHEN AND J. Yu, Existence and general decay for the full von Kármán beam with a thermoviscoelastic damping, frictional dampings and a delay term, IMA J. Math. Control Inform., 34 (2)(2017), 521-542.
W. J. LiU And W. F. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math. Optim., 80(1)(2019), 103-133.
A. Lo And N. E. TATAR, Stabilization of laminated beams with interfacial slip, Electron. J. Differential Equations, 2015(129)(2015), 1-14.
W. LiU, Y. LuAn, Y. LiU AND G. Li, Well-posedness and asymptotic stability to a laminated beam in thermoelasticity of type III, Math. Methods Appl. Sci., 43(6)(2020), 3148-3166.
S. A. Messaoudi and T. A. Apalara, General stability result in a memory-type porous thermoelasticity system of type III, Arab J. Math. Sci., 20(2)(2014), 213-232.
S. A. MEssaOUdi And A. FAREh, Energy decay in a timoshenko-type system of thermoelasticity of type III with different wave-propagation speeds, Arab. J. Math. (Springer), 2(2)(2013), 199-207.
J. E. MuÑoz Rivera And R. RACKe, Mildly dissipative nonlinear timoshenko systems- global existence and exponential stability, J. Math. Anal. Appl., 276 (1)(2002), 248-278.
M. I. Mustafa, On the decay rates for thermoviscoelastic systems of type III, Appl. Math. Comput., $mathbf{2 3 9}(2014)$, 29-37.
S. NiCAISE AND C. PignotTi, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45(5)(2006), 1561-1558.
S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary timevarying delay, Discrete Contin. Dyn. Syst. Ser. S, 4(3)(2011), 693-722.
A. PAZy, Semigroups of Linear Operators and Applications to Partial Differential Equations, SpringerVerlag, New York, 1983.
N. E. TATAR, Stabilization of a laminated beam with interfacial slip by boundary controls, Bound. Value Probl., 2015(2015), 1-15.
G. Q. XU, S. P. Yung And L. K. LI, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (4)(2006), 770-785.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Madani Douib, Salah Zitouni, Abdelhak Djebabla
This work is licensed under a Creative Commons Attribution 4.0 International License.