A novel extension of weighted hyper geometric functions and fractional derivative

Downloads

Abstract

In this paper we present a number of weighted hyper geometric functions and the suitable generalization of Caputo fractional derivation. We look into the viable outcomes to find out arrangements of incomplete differential conditions or differential conditions regarding our outcomes. The parameters of the different Erd'elyi-Kober $(E-K)$ cut off basic fulfill the conditions $\beta_k\left(\gamma_k+1\right)>\frac{\mu}{p}-1, \delta_k>0, k=1, \ldots \ldots, m$, at that point $I_{\left(\beta_k\right), m}^{\left.\left(\gamma_k\right), \delta_k\right)}, f(z)$ exists wherever on top of $(0, \infty)$ plus it is a partial direct administrator. In addition, a number of straight and bilinear relatives are acquired by methods like Mellin Function, $H$-Function, $G$-Function, and Appell Functions for the referenced inference administrator. At that point a portion of the considered hyper geometric functions are resolved as far as the summed up Mittag-Leffler work $E_{\left(\rho_j\right)^\lambda}^{\left(\gamma_j\right)\left(I_j\right)}\left[z_1, z_2, \ldots, z_k\right]$ and the summed up polynomials $S_n^m[x]$. The limit conduct of some different class of weighted hyper geometric functions is portrayed as far as Frost man's $\alpha$-limit. It manages results of driving E-K partial integrals both of structures ( $\mathrm{R}-\mathrm{L}$ type) and their right-hand sided analogs. At long last, a function is known utilizing our partial administrator in the issue of fractional analytics of varieties some out of the ordinary cases of the main result here are also well thought-out.

Keywords:

Weighted Hyper geometric Functions, Weighted Caputo Derivative, Mellin Function, H-Function, G-Function,, Apell Functions

Mathematics Subject Classification:

Mathematics
  • Pages: 38-45
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2010 .

H. M. Srivastava, A contour integral involving Foxs Hfunction, Indian J. Math, 14(1972), 1-6.

P. Agarwal, M. Chand and S. D. Purohit, A note on generating functions involving the generalized Gauss hypergeometric function, Nat. Acad. Sci. Lett, 37(5)(2014), $457-459$.

P. Agarwal and C. L. Koul, On generating functions, $J$. Rajasthan Acad. Phys. Sci, 2(3)(2003), 173-180.

E. Ozergin, Some properties of hypergeometric functions, Ph.D. thesis, Eastern Mediterranean University, North Cyprus, (2011).

H. M. Srivastava, Certain generating functions of several variables, Z. Angew. Math. Mech, 57(1977), 339-340.

D. M. Lee, A. K. Rathie, R. Parmar, Y. S. Kim, Generalization of extended beta function, hypergeometric function and confluent hypergeometric functions, Honam Math. J, 33(2011), 187-206.

M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math, $78(1997), 19-32$.

J. H. He, A tutorial review on fractal space time and fractional calculus, Int. J. Theor. Phys, 53(2014), 36983718.

F. J. Liu, Z. B. Li, S. Zhang, H. Y. Liu, He's fractional derivative for heat conduction in a fractal medium arising in silkworm cocoon hierarchy, Therm. Sci, 19(2015), $1155-1159$.

X. J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press, Amsterdam, 2016.

I. O. Kiymaz, A. Cetinkaya, P. Agarwal, An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl, 9(6)(2016), 3611-3621.

V. Daftardar-Gejji and S. Bhalekar, Boundary value problems for multi-term fractional differential equations, $J$. Math. Anal. Appl, 345(2008), 754-765.

S. Jain, J. Choi, P. Agarwal, Generating functions for the generalized Appell function, Int. J. Math. Anal, $10(1)(2016), 1-7$

G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy and M. Vuorinen, Inequalities for zerobalanced hyper geometric functions, Trans. Am. Math. Soc, 347(5)(1995), 1713-1723.

R. Barnard and K. Richards, A note on the hypergeometric mean value, Comput. Methods Funct. Theory, $1(1)(2001), 81-88$.

D. Karp and S. M. Sitnik, Inequalities and monotonicity of ratios for generalized hypergeometric function, $J$. Approx. Theory, 161(2009), 337-352.

M. Chand, P. Agarwal, J. Choi, Note on generating relations associated with the generalized Gauss hypergeometric function, Appl. Math. Sci, 10(35)(2016), 1747-1754.

H. Li, Lipschitz spaces and Q.K. type spaces, Sci. China Math, 53(2010), 771-778. 20.

R. K. Saxena, S. L. Kalla and R. Saxena, Multivariable analogue of generalized Mittag-Leffler function, Integral Transforms Spec. Funct, 22(7)(2011), 533-548.

M. Chand and E. Guariglia, Note on Euler type integrals, Int. Bull. Math. Res, 2(2)(2015), 1-17.

M. M. Djrbashian and V. S. Zakaryan, Classes and Boundary Properties of Functions Meromorphic in the Disc, Nauka, Moscow, 1993.

G. Frederico and D. Torres, Fractional Noether's theorem in the Riesz Caputo sense, Appl. Math. Comput, 217(2010), 1023-1033.

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40(24)(2007), 6287-6303.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Venkata Manikanta Batchu, Yudhveer Singh, and Vinod Gill. “A Novel Extension of Weighted Hyper Geometric Functions and Fractional Derivative”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 38-45, https://www.malayajournal.org/index.php/mjm/article/view/963.