Iterative solution of quadratic fractional integral equation involving generalized Mittag Leffler function

Downloads

Abstract


The present paper verifies and validates the factual and estimated outcomes of a certain quadratic fractional
integral equation involving the generalized Mittag-Leffler function via algorithm that representatively embodies
successive estimations under fragile partial fractional Lipschitz and compactness type circumstances. The
paper also validate the existence and convergence of a nonlinear quadratic fractional integral equation with the
generlized Mittag Leffler function which is the generalization of Mittag-Leffler function, on a closed and bounded
interval of the real line with the help of some conditions.

Keywords:

Quadratic fractional integral equation, Fractional derivatives and Integrals.

Mathematics Subject Classification:

Mathematics
  • SAYYED JALIL Department of Mathematics , Hutatma Jaywantrao Patil Mahavidayalya, Himayatnagar, Nanded, M.S., India.
  • Mohammed Mazhar Ul Haque Department of Mathematics, Gramin College of Engineering, Vishnupuri, Nanded, Maharashtra, India.
  • Md. Indraman Khan Department of Mathematics, PETTIGREW College, Ukhrul, Manipur University, Manipur, India
  • Pages: 57-63
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, $J$. Math. Anal. Appl. 278 (2003) 434-442.

M. Cichon, A.M.A. El-Sayed, H.A.H. Salem, Existence theorem for nonlinear functional integral equations of fractional orders, Comment. Math. 41 (2001) 59-67.

M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005) 112-119.

A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary order, Nonlinear Anal. 33 (1998) 181186.

A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order: Methods, results, problems I, Appl. Anal. 78 (2001) 153-192.

K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

J. Banas, J.R. Rodriguez, K. Sadarangani, On a class of Urysohn-Stieltjes quadratic integral equations and their applications, J. Comput. Appl. Math. 113 (2000) 35-50.

S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261-266.

C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equations 4 (1982) 221-237.

B. Cahlon, M. Eskin, Existence theorems for an integral equation of the Chandrasekhar H-equation with perturba(s)) dson, J. Math. Anal. Appl. 83 (1981) 159-171.

S. Chandrasekhar, Radiative Transfer, Oxford Univ. Press, London, 1950.

J.H. He, Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering'98, Dalian, China, 1998, pp. 288 291.

J.H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol. 15 (2) (1999) 86-90.

R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheology 27 (3) (1983) 201-210.

R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J. 23 (6) (1985) 918-925.

F. Mainardi, Fractional calculus: 'Some basic problems in continuum and statistical mechanics', in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Verlag, New York, 1997, pp. 291-348.

B. Mandelbrot, Some noises with $1 / mathrm{f}$ spectrum, a bridge between direct current and white noise, IEEE Trans. Inform. Theory 13 (2) (1967) 289-298.

Y.A. Rossikhin, M.V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev. 50 (1997) $15-67$

R.T. Baillie, Long memory processes and fractional integration in econometrics, J. Econometrics 73 (1996) 5-59.

R.L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng. 32 (1) (2004) 1-104.

R.L. Magin, Fractional calculus in bioengineering-part 2 , Crit. Rev. Biomed. Eng. 32 (2) (2004) 105-193.

R.L. Magin, Fractional calculus in bioengineering-part 3 , Crit. Rev. Biomed. Eng. 32 (3/4) (2004) 194-377.

R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004) $161-208$.

T.S. Chow, Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Phys. Lett. A $342(2005) 148-155$

Agarwal R.P. A propos d'une note M. Pierre Humbert,C.R.Acad.Sci. Paris 236 (1953),pp.2031-2032.

Chouhan Amit and Satishsaraswat, Some Rmearks on Generalized Mittag-Leffler Function and Fractional operators ,IJMMAC Vol2, No.2, pp. 131-139.

GM.Mittag - Leffler, Sur la nouvelle function of $E_alpha(x)$ ,C.R.Acad. Sci. Paris 137 (1903), pp.554-558.

Humbert P. and Agarwal R.P., Sur la function de Mittag - Leffler et quelquesunes deses generalizations, Bull. Sci.Math. (2)77(1953), pp.180-186.

Shukla A.K. and Prajapati J.C., On a generalization of Mittag - Leffler function and its properties, J.Math.Anal.Appl.336(2007),pp.79-81 .

Salim T.O. and Faraj O., A generalization of MittagLeffler function and Integral operator associated with the Fractional calculus, Journal of Fractional Calculus and Applications,3(5) (2012),pp.1-13.

Wiman A., Uber de fundamental satz in der theorie der funktionen, Acta Math. 29(1905),pp.191-201.

B.C. Dhage, A nonlinear alternative in Banach algebras with applications to functional differential equations, Nonlinear Funct. Anal. & Appl. 8 (2004), 563-575.

B.C. Dhage, Fixed point theorems in ordered Banach algebras and applications, PanAmer. Math. J. 9(4) (1999), 93-102.

B.C. Dhage, Partially condensing mappings in ordered normed linear spaces and applications to functional integral equations, Tamkang J. Math. 45 (4) (2014), 397-426.

B.C. Dhage, Nonlinear $mathscr{D}$-set-contraction mappings in partially ordered normed linear spaces and applications to functional hybrid integral equations, Malaya J. Mat. $3(1)(2015), 62-85$.

T. R. Prabhakar, A singular integral equation with a generalized Mittal-Leffler function in the Kernel, Yokohama Math.J.,19(1971), 7-15.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

SAYYED JALIL, Mohammed Mazhar Ul Haque, and Md. Indraman Khan. “Iterative Solution of Quadratic Fractional Integral Equation Involving Generalized Mittag Leffler Function”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 57-63, https://www.malayajournal.org/index.php/mjm/article/view/968.