A study on Ss-Semilocal modules in vıew of singularity
Downloads
DOI:
https://doi.org/10.26637/mjm1001/008Abstract
In this paper, we define weakly δss- supplemented modules and give a characterization for them named with δss-semilocal modules. In particular, we determine the suitable conditions for a δss- semilocal module to be δ-semilocal and ss-semilocal, respectively. In addition to these we supply contrast examples pointing the relations are proper between these classes of modules.
Keywords:
(weakly) δss- supplemented module, δss-perfect ring, semisimple module, δss- semilocal moduleMathematics Subject Classification:
16D10, 16D99, 16L99- Pages: 90-97
- Date Published: 01-01-2022
- Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)
R. Alizade and A. Pancar, Homoloji cebire giriş, Ondokuz Mayls University, Samsun-Turkey (1999), $177 mathrm{p}$.
E. BÜYÜKAŞIK AND C. LOMP, When $delta$-semiperfect rings are semiperfect, Turkish Journal of Mathematics , 34(3)(2010), 317-324.
J. Clark, C. Lomp, N. VAnaJA And R. Wisbauer, Lifting modules, supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser, Verlag-Basel, (2006).
F. KASCH, Modules and rings, London Mathematical Society Monographs 17, Academic Press, Inc. [Harcourt Brace Jonavich, Publishers], London-New York., ()(1982).
E. Kaynar, H. Çalişici and E. Türkmen, Ss-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat.., 69(1)(2020), 473-485.
M.T. Koşan, $delta$-lifting and $delta$-supplemented modules, Algebra Colloquium, 14(1)(2007), 53-60.
C. Lomp, On semilocal modules and rings, Communications in Algebra, 27(4)(1999), 1921-1935.
K. NISHIDA, Bicommutators of locally projective modules, Communications in Algebra, 9(1)(1981), 81-94.
A. Olgun And E. TÜRkmen, On a class of perfect rings, Honam Mathematical Journal, 42(3)(2020), 591600 .
Y. TALEbi And B.TAlaEe, On generalized $delta$-supplemented modules, Vietnam Journal of Mathematics, 37(4)(2009), 515-525.
Y. Talebi and A.R.M Hamzekolaei, Closed weak $delta$-supplemented modules, JP Journal of Algebra, Number Theory and Applications, 13(2)(2009), 193-208.
R. Tribaк, When finitely generated $delta$-supplemented modules are supplemented, Algebra Colloquium, 22(1))(2015), 119-130.
B. NiŞAnCI TÜrkmen And E. TÜrkmen, $delta_{s s}-$ supplemented modules and rings, Analele St. Univ. Ovidius Constanta, 28(3)(2020), 193-216.
R. WisbaUer, Foundations of module and ring theory, Gordon and Breach, Reading, (1991).
Y. ZHOU, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloquium, 7(3)(2000), 305-318.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 ESRA ÖZTÜRK SÖZEN
This work is licensed under a Creative Commons Attribution 4.0 International License.