Oscillatory properties of third-order delay difference neutral equations

Downloads

Abstract

The aim of article is to investigate oscillatory manner for remediation of thirdorder linear delay difference neutral equation term
$$
\Delta\left(c_2(t) \Delta\left(c_1(t) \Delta y(t)\right)\right)+p(t) x(t-\sigma)=0, \quad t \geq t_0>0
$$
here $y(t)=x(t)+q(t) x(t-\xi)$. By using comparability concepts with related $1^{\text {st }}$ and $2^{\text {nd }}$ order difference delay inequality. Examples are given to major outcomes.

Keywords:

Linear difference equation, delay, third-order

Mathematics Subject Classification:

Mathematics
  • S. Revathy Department of Mathematics, Selvam College of Technology, Namakkal-637003, Tamil Nadu, India.
  • R. Kodeeswaran Department of Mathematics, Kandaswami Kandar’s College, P. Velur, Namakkal-638182, Tamil Nadu, India.
  • Pages: 95-100
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Marcel Dekker, New York, 2000.

R. P. Agarwal, M. Bohner, S. R. Grace, D. O. Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.

R. P. Agarwal, S. R. Grace, Oscillation of certain thirdorder difference equations, Comput. Math. Appl, 42(3-5), (2001), 379-384.

R. P. Agarwal, S. R. Grace, D. O. Regan, On the oscillation of certain third-order difference equations, $A d v$. Difference Equ, 3(2005), 345-367.

M. F. Atlas, A. Tiryaki, A. Zafer, Oscillation of thirdorder nonlinear delay difference equations, Turkish $J$. Math, 36(3), (2012), 422-436.

M. Bohner, C. Dharuman, R. Srinivasan, E. Thandapani, Oscillation criteria for third-order nonlinear functional difference equations with damping, Appl. Math. Inf. Sci, $11(3)(2017), 669-676$.

S. R. Grace, R. P. Agarwal, J. R. Graef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Dicrete Math, 3(1)(2009), 27-38.

J. R. Graef, E. Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcial. Ekvac, 42(3), (1999), 355-369.

Horng-Jaan Li and Cheh-Chih Yeh, Oscillation Criteria for Second-Order Neutral Delay Difference Equations, Computers Math. Applic, 36(10-12)(1998), 123-132.

W. G. Kelley, A. C. Peterson, Difference Equations; An Introduction with Application, New York, Academic Press, 1991.

Martin Bohner, C. Dharuman, R. Srinivasan and E. Thandapani, Oscillation Criteria for Third Order Nonlinear Functional Difference Equations With Damping, Appl. Math. Inf. Sci, 11(3)(2017), 1-8.

S. H. Saker, Oscillation of third-order difference equations, Port. Math, 61(2004), 249-257.

E. Thandapani, S. Pandian, R. K. Balasubramaniam, Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Zilina Math. Ser, $19(1)(2005), 65-78$.

E. Thandapani, S. Selvarangam, Oscillation theorems of second order quasilinear neutral difference equations, $J$. Math. Comput. Sci, 2(2012), 866-879.

Yadaiah Arupula, V. Dharmaiah, Oscillation of third order nonlinear delay difference equation, Int. J. Math. Appl, $6(3)(2018), 181-191$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

S. Revathy, and R. Kodeeswaran. “Oscillatory Properties of Third-Order Delay Difference Neutral Equations”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 95-100, https://www.malayajournal.org/index.php/mjm/article/view/977.