Oscillation of first order delay differential equations
Downloads
Abstract
In this article, we establish some new criteria for the oscillation of the delay differential equation
$$
y^{\prime}(x)+q(x) y(\tau(x))=0, x \geq x_0, \tau(x)<x .
$$
For the case where
$$
\int_{\tau(x)}^x q(t) d t \geq \frac{1}{e} \text { and } \lim _{x \rightarrow \infty} \int_{\tau(x)}^x q(t) d t=\frac{1}{e} .
$$
An open problem by A. Elbert and I. P. Stavroulakis (1995, Proc. Amer. Math. Soc., 123, 1503-1510) is solved.
Keywords:
Oscillation,, Non oscillation, Delay Differential equationMathematics Subject Classification:
Mathematics- Pages: 124-129
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Dekker, New York, 1987.
I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon, Oxford, 1991.
L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Dekker, New York, 1995.
G. Ladas, Sharp conditions for oscillations caused by delay, Appl. Anal, 9(1979), 93-98.
A. Elbert and I. P. Stavroulakis, Oscillation and non oscillation criteria for delay differential equations, Proc. Amer. Math. Soc, 123(1995), 1503-1510.
$mathrm{B}$. $mathrm{Li}$, Oscillations of delay differential equations with variable coefficients, J. Math.Anal. Appl, 192(1995), 312321 .
L. H. Erbe and B. G. Zhang, Oscillation for first order linear differential equations with deviating arguments, Differential Integral Equation 1, (1988), 305-314.
J. S. Yu et al., Oscillations of differential equations with deviating arguments, Panamer. Math. J, 2(1992), 59-78.
J. S. Yu and Z. C. Wang, Some further results on oscillation of neutral differential equations, Bull. Austral. Math. Soc, 46(1992), 149-157.
X. H. Tang and J. H. Shen, Oscillations of delay differential equations with variable coefficients, J. Math. Anal. Appl, 217(1998), 32-42.
A. D. Myshkis, Linear homogeneous differential equations of first order with deviating arguments, Uspekhi Mat. Nauk, 5(1950), 160-162.
A. D. Myshkis, Linear Differential Equations with Retarded Argument, 2nd ed, Nauka,
Moscow, 1972.
R. G. Koplatadze and T. A. Chanturija, On the oscillatory and monotonic solutions of first order differential equations with deviating arguments, Differential' nyeUravneniya, 18(1982), 1463-1465.
J. S. Yu and J. Yan, Oscillation in first order neutral differential equations with integrally small coefficients, $J$. Math. Anal. Appl, 187(1994), 361-370.
E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc, 64(1948), 234-252.
Similar Articles
- A. Vijayalekshmi, S. Abisha, Total dominator color class total dominating sets in ladder and mobius ladder graph , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- A. Vijayalekshmi, S. Abisha, Total dominator color class total dominating sets in Dutch windmill graph and coconut tree graph , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- A. Vijayalekshmi, S. Abisha, An introduction of total dominator color class total dominating sets in graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- A. E. Prabha, A. Vijayalekshmi, Color class dominating sets in ladder and grid graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- A. Vijayalekshmi, A. E. Prabha, Introduction of color class dominating sets in graphs , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- A. Vijayalekshmi, A. E. Prabha, Color class dominations sets in various classes of graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- Sivagnanam Mutharasu, V. Nirmala , Unique isolate domination in graphs , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- S. K. Vaidya, D. M. Vyas, Eccentric domination number of some path related graphs , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- S. Palaniammal , B. Kalins, Isolate restrained domination in graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- Tushar J Bhatt, G. C. Bhimani, Perfect domination number of path graph $P_n$ and its Corona product with another path graph $P_{n-1}$ , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.