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1 Faculty of Science, Department of Mathematics, Bartın University, Bartın, Turkey.

Received 12 November 2020; Accepted 17 March 2021

Abstract. In this study, we investigate the notion of lacunary Iσ arithmetic convergence for real sequences and examine
relations between this new type convergence notion and the notions of lacunary invariant arithmetic summability, lacunary
strongly q-invariant arithmetic summability and lacunary σ-statistical arithmetic convergence which are defined in this study.
Finally, giving the notions of lacunary Iσ arithmetic statistically convergence, lacunary strongly Iσ arithmetic summability,
we prove the inclusion relation between them.
AMS Subject Classifications: 40A05, 40A99, 46A70, 46A99.
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1. Introduction and Background

The idea of arithmetic convergence was firstly originated by Ruckle [22]. Then, it was further investigated by
many authors (for examples, see [9, 10, 34–38]).

A sequence x = (xm) is called arithmetically convergent if for each ε > 0, there is an integer n such that for
every integer m we have |xm − x〈m,n〉| < ε, where the symbol 〈m,n〉 denotes the greatest common divisior of
two integers m and n. We denote the sequence space of all arithmetic convergent sequence by AC.

Statistical convergence of a real number sequence was firstly originated by Fast [2]. It became a notable topic
in summability theory after the work of Fridy [3] and Šalát [23].

By a lacunary sequence, we mean an increasing integer sequence θ = {kr} such that

k0 = 0 and hr = kr − kr−1 →∞ as r →∞.

The intervals determined by θ is denoted by Ir = (kr−1, kr]. The idea of lacunary statistical convergence was
investigated by Fridy and Orhan [4] and then studied by several authors (for examples, see [5, 6, 13, 17, 27]).

In the wake of the study of ideal convergence defined by Kostyrko et al. [11], there has been comprehensive
research to discover applications and summability studies of the classical theories. A lot of development have
been seen in area about I-convergence of sequences after the work of [1, 7, 8, 12, 16, 24, 28–30, 32].

An ideal I on N for which I 6= P (N) is called a proper ideal. A proper ideal I is called admissible if I
contains all finite subsets of N.

∗Corresponding author. Email address: okisi@bartin.edu.tr (Ömer KİŞİ)
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A family of sets I ⊆ 2N is called an ideal if and only if (i) ∅ ∈ I, (ii) For eachA,B ∈ I we haveA∪B ∈ I,
(iii) For each A ∈ I and each B ⊆ A we have B ∈ I.

A family of sets F ⊆ 2N is a filter in N if and only if (i) ∅ /∈ F , (ii) For each A,B ∈ F we have A∩B ∈ F ,
(iii) For each A ∈ F and each B ⊇ A we have B ∈ F .

If I is proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N\ A}

is a filter of N, it is called the filter associated with the ideal.
Let I ⊂ 2N be a proper admissible ideal in N. The sequence (xk) of elements of R is said to be I-convergent

to L ∈ R if for each ε > 0,
A (ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I.

If (xk) is I-convergent to L, then we write I − limx = L.

An admissible ideal I ⊆ 2N is said to have the property (AP ) if for any sequence {A1, A2, ...} of mutually
disjoint sets of I, there is sequence {B1, B2, ...} of sets such that each symmetric differenceAi∆Bi (i = 1, 2, ...)

is finite and
∞⋃
i=1

Bi ∈ I.

Let σ be a mapping such that σ : N+ → N+ (the set of all positive integers). A continuous linear functional
Φ on l∞, the space of real bounded sequences, is said to be an invariant mean or a σ mean, if it satisfies the
following conditions:

(1) Φ (xn) ≥ 0, when the sequence (xn) has xn ≥ 0 for all n ∈ N;

(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;

(3) Φ
(
xσ(n)

)
= Φ (xn) for all (xn) ∈ l∞.

The mappings Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers n and m, where
σm (n) denotes the m th iterate of the mapping σ at n. Thus, Φ extends the limit functional on c, the space of
convergent sequences, in the sense that Φ (xn) = limxn, for all (xn) ∈ c.

In case σ is translation mappings σ (n) = n+ 1, the σ-mean is often called a Banach limit.
The space Vσ , the set of bounded sequences whose invariant means are equal, can be shown that

Vσ =

{
(xk) ∈ l∞ : lim

m→∞

1

m

m∑
k=1

xσk(n) = L

}
uniformly in n.

Several authors studied invariant mean and invariant convergent sequence (for examples, see [14, 15, 18–
21, 25, 26, 31, 33]).

Savaş and Nuray [18] introduced the concepts of σ-statistical convergence and lacunary σ-statistical
convergence and gave some inclusion relations. Nuray et al. [20] defined the concepts of σ-uniform density of
subsets A of the set N, Iσ-convergence for real sequences and investigated relationships between
Iσ-convergence and invariant convergence also Iσ-convergence and [Vσ]p-convergence. Ulusu and Nuray [33]
investigated lacunary I-invariant convergence and lacunary I-invariant Cauchy sequence of real numbers.
Recently, the concept of strong σ-convergence was generalized by Savaş [25]. The concept of strongly
σ-convergence was defined by Mursaleen [14].

Let θ be a lacunary sequence, E ⊆ N and

sr : = min
n
{|E ∩ {σm (n) : m ∈ Ir}|}

Sr : = max
n
{|E ∩ {σm (n) : m ∈ Ir}|} .

If the following limits exist

V θ (E) = lim
r→∞

sr
hr
, V θ (E) = lim

r→∞

Sr
hr
,
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I-invariant arithmetic convergence

then they are called a lower lacunary invariant uniform density and an upper lacunary invariant uniform density
of the set E, respectively. If V θ (E) = V θ (E), then Vθ (E) = V θ (E) = V θ (E) is called the lacunary invariant
uniform density of E.

The class of all E ⊆ N with V θ (E) = 0 will be denoted by Iσθ. Note that Iσθ is an admissible ideal.
A sequence (xm) is lacunary Iσ-convergent to L, if for each ε > 0,

E (ε) := {m ∈ N : |xm − L| ≥ ε} ∈ Iσθ,

i.e., Vθ (E (ε)) = 0. In this case, we write Iσθ − limxm = L.
The arithmetic statistically convergence and lacunary arithmetic statistically convergence was examined by

Yaying and Hazarika [38].
A sequence x = (xm) is said to be arithmetic statistically convergent if for ε > 0, there is an integer n such

that

lim
t→∞

1

t
|{m ≤ t : |xm − x〈m,n〉| ≥ ε}| = 0.

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. We shall write ASC −
limxm = x〈m,n〉 to denote the sequence (xm) is arithmetic statistically convergent to x〈m,n〉.

A sequence x = (xm) is said to be lacunary arithmetic statistically convergent if for ε > 0 there is an integer
n such that

lim
r→∞

1

hr
|
{
m ∈ Ir : |xm − x〈m,n〉| ≥ ε

}
= 0.

We will useASCθ− limxm = x〈m,n〉 to denote the sequence (xm) is lacunary arithmetic statistically convergent
to x〈m,n〉.

Kişi [9] investigated the concepts of invariant arithmetic convergence, strongly invariant arithmetic
convergence, invariant arithmetic statistically convergence, lacunary invariant arithmetic statistical convergence
and obtained interesting results.

In [10], arithmetic I-statistically convergent sequence space and I-lacunary arithmetic statistically
convergent sequence space were given and established interesting results.

Kişi [10] examined I-invariant arithmetic convergence, I∗-invariant arithmetic convergence, q-strongly
invariant arithmetic convergence of sequences.

A sequence x = (xp) is said to be invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

xσp(s) = x〈p,n〉

uniformly in s. In this case we write xp → x〈p,n〉 (AVσ) and the set of all invariant arithmetic convergent
sequences will be demostrated by AVσ.

A sequence x = (xp) is said to be strongly invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,n〉| = 0

uniformly in s. In this case we write xp → x〈p,n〉 [AVσ] to denote the sequence (xp) is strongly invariant
arithmetic convergent to x〈p,n〉 and the set of all invariant arithmetic convergent sequences will be demostrated
by [AVσ] .

A sequence x = (xp) is said to be invariant arithmetic statistically convergent if for every ε > 0, there is an
integer n such that

lim
m→∞

1

m

∣∣{p ≤ m : |xσp(s) − x〈p,n〉| ≥ ε}
∣∣ = 0

3
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uniformly in s. We shall use ASσC to denote the set of all invariant arithmetic statistical convergent sequences.
In this case we write ASσC − limxp = x〈p,n〉 or xp → x〈p,n〉 (ASσC) .

A sequence x = (xp) is said to be lacunary invariant arithmetic statistical convergent if for every ε > 0, there
is an integer n such that

lim
r→∞

1

hr
|{p ∈ Ir : |xσp(s) − x〈p,n〉| ≥ ε}| = 0

uniformly in s. We shall use ASσθC to denote the set of all lacunary invariant arithmetic statistical convergent
sequences. In this case we write ASσθC − limxp = x〈p,n〉.

The I-invariant arithmetic convergence was defined by [10] as below:
A sequence x = (xp) is said to be I-invariant arithmetic convergent if for every ε > 0, there is an integer η

such that {
p ∈ N : |xp − x〈p,η〉| ≥ ε

}
∈ Iσ .

In this case we write AIσC − limxp = x〈p,η〉. We shall use AIσC to denote the set of all I-invariant arithmetic
convergent sequences.

2. Main Results

Definition 2.1. A sequence x = (xp) is said to be lacunary invariant arithmetic summable to x〈p,η〉 if

lim
r→∞

1

hr

∑
p∈Ir

xσp(s) = x〈p,η〉,

uniformly in s, for an integer η.

Also, the set of lacunary strongly invariant arithmetic convergence sequences is defined as below:

[AVσθ] =

x = (xp) : lim
r→∞

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ = 0


uniformly in s. In this case, we write xp → x〈p,η〉 ([AVσθ]) to demonstrate the sequence (xp) is lacunary strongly
invariant arithmetic summable to x〈p,η〉.

Definition 2.2. A sequence x = (xp) is said to be lacunary strongly q-invariant arithmetic summable
(0 < q <∞) to x〈p,η〉 if

lim
r→∞

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q = 0,

uniformly in s and it is indicated by xp → x〈p,η〉

(
[AVσθ]q

)
.

Definition 2.3. A sequence x = (xp) is said to be lacunary σ-statistical arithmetic convergent to x〈p,η〉 if for
every ε > 0, there is an integer η such that

lim
r→∞

1

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣ = 0,

uniformly in s.

Definition 2.4. A sequence x = (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉, if for each ε > 0, there is
an integer η such that

K (ε) :=
{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ ε} ∈ Iσθ,

i.e., Vθ (K (ε)) = 0. In this case, we write xp → x〈p,η〉 (AIσθ) or AIσθ − limxp = x〈p,η〉.

4



I-invariant arithmetic convergence

Theorem 2.5. Let (xp) is bounded sequence. If (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉, then (xp) is
lacunary invariant arithmetic summable to x〈p,η〉.

Proof. Let s ∈ N be arbitrary and ε > 0. Also, we suppose that (xp) is bounded sequence and (xp) is lacunary
Iσ arithmetic convergent to x〈p,η〉. Now, we estimate

tθ (s) :=

∣∣∣∣∣∣ 1

hr

∑
p∈Ir

xσp(s) − x〈p,η〉

∣∣∣∣∣∣ .
For every s = 1, 2, ..., we have

tθ (s) ≤ t1θ (s) + t2θ (s) ,

where

t1θ (s) :=
1

hr

∑
p∈Ir, |xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣
and

t2θ (s) :=
1

hr

∑
p∈Ir, |xσp(s)−x〈p,η〉|<ε

∣∣xσp(s) − x〈p,η〉∣∣ .
For every s = 1, 2, ..., it is obvious that t2θ (s) < ε. Since (xp) is bounded sequence, there is a M > 0 such that∣∣xσp(s) − x〈p,η〉∣∣ ≤M, (p ∈ Ir, s = 1, 2, ...)

and so we have
t1θ (s) = 1

hr

∑
p∈Ir, |xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣
≤ M

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣

≤M maxs|{p∈Ir:|xσp(s)−x〈p,η〉|≥ε}|
hr

= M Sr
hr

.

Hence, due to our assumption, (xp) is lacunary invariant arithmetic summable to x〈p,η〉. �

In general, the converse of the Theorem 2.5 does not hold. For example, let x = (xp) be the sequence defined
as follows:

xp :=


1,

if pr−1 < p < pr−1 +
[√
hr
]

,
and p is an even integer,

0,
if pr−1 < p < pr−1 +

[√
hr
]

,
and p is an odd integer.

When σ (s) = s + 1, this sequence is lacunary invariant arithmetic summable to 1
2 but it is not lacunary Iσ

arithmetic convergent.
Now, we will give the following theorems which state relations between the notions of lacunary Iσ arithmetic

convergence and lacunary strongly q-invariant arithmetic summability, and we will denote that these notions are
equivalent for bounded sequences.

Theorem 2.6. If a sequence x = (xp) is lacunary strongly q-invariant arithmetic summable to x〈p,η〉, then it is
lacunary Iσ arithmetic convergent to x〈p,η〉.

5
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Proof. Let 0 < q < ∞. Suppose that xp → x〈p,η〉

(
[AVσθ]q

)
for an integer η. Then, for every s = 1, 2, ... and

ε > 0 we have ∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q
≥

∑
p∈Ir,|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣q
≥ εq

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣

≥ εq maxs
∣∣{p ∈ Ir :

∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣
and so

1
hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q ≥ εqmaxs|{p∈Ir:|xσp(s)−x〈p,η〉|≥ε}|
hr

= εq Srhr .

Hence, due to our assumption, AIσθ − limxp = x〈p,η〉. �

Theorem 2.7. Let (xp) is bounded sequence. If x = (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉, then it
is lacunary strongly q-invariant arithmetic summable to x〈p,η〉.

Proof. Assume that (xp) ∈ l∞ and AIσθ − limxp = x〈p,η〉. Let 0 < q < ∞ and ε > 0. The boundedness of
(xp) implies that there exists a M > 0 such that

∣∣xσp(s) − x〈p,η〉∣∣ ≤ M , (p ∈ Ir, s = 1, 2, ...). Therefore, we
obtain

1
hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q = 1
hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣q + 1
hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|<ε

∣∣xσp(s) − x〈p,η〉∣∣q

≤M maxs|{p∈Ir:|xσp(s)−x〈p,η〉|≥ε}|
hr

+ εq

= M Sr
hr

+ εq.

Therefore, we obtain

lim
r→∞

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q = 0,

uniformly in s. Hence, we get xp → x〈p,η〉

(
[AVσθ]q

)
. �

Theorem 2.8. A sequence (xp) ∈ l∞. Then, x = (xp) to lacunary Iσ arithmetic convergent to x〈p,η〉 iff it is
lacunary strongly q-invariant arithmetic summable to x〈p,η〉.

Proof. This is an immediate consequence of Theorem 2.6 and Theorem 2.7. �

Now, without proof, we will state a theorem that gives a relation between the notions of lacunary Iσ arithmetic
convergence and lacunary σ-statistical arithmetic convergence.

Theorem 2.9. A sequence x = (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉 iff this sequence is lacunary
σ-statistical arithmetic convergent to x〈p,η〉.

Finally, introducing the notion of lacunary I∗σ arithmetic convergence, we will give the relation between this
notion and the notion of lacunary Iσ arithmetic convergence.

6



I-invariant arithmetic convergence

Definition 2.10. A sequence x = (xp) is said to be lacunary I∗σ arithmetic convergent or AI∗σθ-convergent to
x〈p,η〉, if there exists a set M = {m1 < m2 < ... < mp < ...} ∈ F (Iσθ) (N \M = H ∈ Iσθ) and there is an
integer η such that

lim
p→∞

xmp = x〈p,η〉.

In this case, we write AI∗σθ − limxp = x〈p,η〉 or xp → x〈p,η〉 (AI∗σθ) .

Theorem 2.11. If a sequence x = (xp) is lacunary I∗σ arithmetic convergent to x〈p,η〉, then this sequence is
lacunary Iσ arithmetic convergent to x〈p,η〉.

Proof. Let ε > 0. Since AI∗σθ − limxp = x〈p,η〉, there exists a set H ∈ Iσθ such that for

M = N\H = {m1 < m2 < ... < mp < ...}

and so there exists a p0 ∈ N such that |xmp − x〈p,η〉| < ε for every p > p0. Then, for every ε > 0, we have

K (ε) = {p ∈ N :
∣∣xp − x〈p,η〉∣∣ ≥ ε}

⊂ H ∪ {m1 < m2 < ... < mp < ...} .

Since Iσθ is admissible ideal,
H ∪ {m1 < m2 < ... < mp < ...} ∈ Iσθ

and so we have K (ε) ∈ Iσθ. Hence, we get AIσθ − limxp = x〈p,η〉. �

The converse of the Theorem 2.11 holds if the ideal Iσθ has the property (AP ) .

Theorem 2.12. Let the ideal Iσθ be with property (AP ). If a sequence x = (xp) is lacunary Iσ arithmetic
convergent to x〈p,η〉, then this sequence is lacunary I∗σ arithmetic convergent to x〈p,η〉.

Proof. Let the ideal Iσθ be with the property (AP ) and ε > 0. Also, we suppose that AIσθ − limxp = x〈p,η〉.
Then, for every ε > 0 we have

K (ε) =
{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ ε} ∈ Iσθ.
Denote K1,K2, ...,Kn as following

K1 :=
{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ 1
}

and

Kn :=

{
p ∈ N :

1

n
≤
∣∣xp − x〈p,η〉∣∣ < 1

n− 1

}
,

where n ≥ 2 (n ∈ N). Note that Ki∩Kj = ∅ (i 6= j) and Ki ∈ Iσθ (for each i ∈ N). Since Iσθ has the property
(AP ), there exists a set sequence {Fn}n∈N such that the symmetric differencesKi∆Fi are finite (for each i ∈ N)

and F =
∞⋃
j=1

Fj ∈ Iσθ. Now, to complete the proof, it is enough to prove that

lim
p→∞

xp = x〈p,η〉, p ∈M, (2.1)

where M = N \ F . Let γ > 0. Select n ∈ N such that 1
n+1 < γ. Then, we get

{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ γ} ⊂ n+1⋃
i=1

Ki.
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Since the symmetric differences Ki∆Fi (i = 1, 2, ..., n+ 1) are finite, there exists a p0 ∈ N such that(
n+1⋃
i=1

Ki

)
∩ {p ∈ N : p > p0}

=

(
n+1⋃
i=1

Fi

)
∩ {p ∈ N : p > p0} .

(2.2)

If p > p0 and p /∈ F , then

p /∈
n+1⋃
i=1

Fi and by (2.2) p /∈
n+1⋃
i=1

Ki.

This give that ∣∣xp − x〈p,η〉∣∣ < 1

n+ 1
< γ

and so (2.1) holds. As a result, AI∗σθ − limxp = x〈p,η〉. �

Definition 2.13. A sequence x = (xp) is said to be lacunary I invariant arithmetic statistically convergent to
x〈p,η〉, for each ε > 0 and δ > 0, there is an integer η such that{

r ∈ N :
1

hr

∣∣{p ∈ Ir :
∣∣xp − x〈p,η〉∣∣ ≥ ε}∣∣ ≥ δ} ∈ Iσθ.

In this case, we write xp → x〈p,η〉 (AIσθ (S)).

Definition 2.14. A sequence x = (xp) is said to be lacunary strongly Iσ arithmetic summable to x〈p,η〉 if for
each ε > 0, there is an integer η such thatr ∈ N :

1

hr

∑
p∈Ir

∣∣xp − x〈p,η〉∣∣ ≥ ε
 ∈ Iσθ.

We will use [A (Iσθ)] − limxp = x〈p,η〉 or xp → x〈p,η〉 ([A (Iσθ)]) to indicate the sequence (xm) is lacunary
strongly Iσ arithmetic convergent to x〈m,n〉.

Theorem 2.15. Let θ = {kr} be a lacunary sequence.

(i) If xp → x〈p,η〉 ([A (Iσθ)]), then xp → x〈p,η〉 (AIσθ (S)).

(ii) If x ∈ l∞ and xp → x〈p,η〉 (AIσθ (S)), then xp → x〈p,η〉 ([A (Iσθ)]) .

(iii) (AIσθ (S)) ∩ l∞ = [A (Iσθ)] ∩ l∞.

Proof. (i) Let ε > 0 and xp → x〈p,η〉 ([A (Iσθ)]). Then, we can write

1
hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ ≥ 1
hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣

≥ ε. 1
hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣

for s = 1, 2, .... So, for any δ > 0,{
r ∈ N : 1

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣ ≥ δ}

⊆

{
r ∈ N : 1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε.δ
}

8
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uniformly in s. Since xp → x〈p,η〉 ([A (Iσθ)]), the set on the right-hand side belongs to Iσθ and so we obtain
xp → x〈p,η〉 (AIσθ (S)).

(ii) Suppose that x ∈ l∞ and xp → x〈p,η〉 (AIσθ (S)). Then, there exists a M > 0 such that∣∣xσp(s) − x〈p,η〉∣∣ ≤M
for s = 1, 2, ....

Given ε > 0, we obtain

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ =
1

hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣+
1

hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|<ε

∣∣xσp(s) − x〈p,η〉∣∣

≤ M

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣+ ε

uniformly in s. Note that

A (ε) ={
r ∈ N : 1

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣ ≥ ε

M

}
.

It is obvious that A (ε) ∈ Iσθ. If r ∈ (A (ε))
c then

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ < 2ε.

Hence r ∈ N :
1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ ≥ 2ε

 ⊂ A (ε)

and so belongs to Iσθ. This shows that xp → x〈p,η〉 ([A (Iσθ)]). This completes the proof.
(iii) This is an immediate consequence of (i) ve (ii). �
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Soc., 37(1978), 508–520.

[6] J.A. FRIDY AND C. ORHAN, Lacunary statistical summability, J. Math. Anal. Appl., 173(2)(1993), 497–504.

9
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[9] Ö. KIŞI, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically
convergence, Palest. J. Math., in press.
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1. Introduction and Background

Let R denote the set of all real numbers and R+ the set of all nonnegative reals. Given a closed and bounded
interval J = [0, T ] ⊂ R, consider the nonlinear hybrid initial value problem (in short HIVP) of ordinary second
order hybrid differential equation (in short HDE),

d2

dt2

(
x(t)

f(t, x(t))

)
= g(t, x(t)) a.e. t ∈ J,

x(0) = 0, x′(0) = 0,

 (1.1)

where f : J × R→ R \ {0} is continuous and f : J × R→ R is a Carathèodory function.

When f ≡ 1 on J×R, the HIVP (1.1) reduces to the well-known nonlinear ordinary second order differential
equation

x′′(t) = g(t, x(t)) a.e. t ∈ J,
x(0) = 0, x′(0) = 0,

}
(1.2)

which is studied earlier extensively in the literature (see Dhage and Dhage [5]).

∗Corresponding author. Email address: bcdhage@gmail.com (Bapurao C. Dhage)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.



Approximation results for nonlinear hybrid boundary value problems

Definition 1.1. A function x ∈ AC1(J,R) is said to be a lower solution of the IVP (1.1) if

d2

dt2

(
x(t)

f(t, x(t))

)
≤ g(t, x(t)) a.e. t ∈ J,

x(0) = 0, x′(0) = 0,

 (1.3)

where,AC1(J,R) is the space of functions x ∈ C(J,R) whose first derivative exists and is absolutely continuous
on I . Similarly, x ∈ AC1(J,R) is called an upper solution of (1.1) on J if the reversed inequalities hold in (1.3).
If equalities hold in (1.3), we say that x is a solution of (1.1) on J .

The existence of the solution to the problem (1.1) may be proved by using hybrid fixed point theorems of
Dhage in a Banach algebra as did in Dhage [2] and Dhage and Imdad [7]. The existence of positive solution to
a nonlinear equation is generally proved using the properties of cones in a partially ordered Banach space (see
Deimling [1] and Granas [8]). However, the existence and approximation result for the second order IVPs and
PBVPs are already proved in Dhage and Dhage [5, 6] without using the properties of the cones via a new Dhage
iteration method developed in [3]. In the present paper, we shall extend above Dhage iteration method to the
HIVP (1.1) and study the existence and approximation of positive solutions of under certain hybrid conditions on
the nonlinearities f and g from algebra, analysis and topology.

2. Auxiliary Results

We need the following definition in what follows.

Definition 2.1. A function β : J × R→ R is called Carathéodory if

(i) the map t 7→ β(t, x) is measurable for each x ∈ R, and

(ii) the map x 7→ β(t, x) is continuous for each t ∈ J .

The following lemma is often used in the study of nonlinear differential equations (see Dhage [2] and
references therein).

Lemma 2.2 (Carathéodory). Let β : J × R→ R be a Carathéodory function. Then the map (t, x) 7→ β(t, x) is
jointly measurable. In particular the map t 7→ β(t, x(t)) is measurable on J for each x ∈ C(J,R).

We need the following hypotheses in the sequel.

(H1) f defines a continuous bounded function f : J × R→ R+ \ {0} with bound Mf .

(H2) There exists a D-function ϕf ∈ D such that

0 ≤ f(t, x)− f(t, y) ≤ ϕf

(
x− y

)
for all ∈ J and x, y ∈ R with x ≥ y. Moreover, T 2Mgϕf (r) < r, r > 0.

(H3) The function g is Carathéodory on J × R into R+.

(H4) g is bounded on J × R with bound Mg .

(H5) g(t, x) is nondecreasing in x for each t ∈ J .

(LS) The HIVP (1.1) and (1.3) has a lower solution u ∈ AC1(J,R).

(US) The HIVP (1.1) and (1.3) has an upper solution v ∈ AC1(J,R).
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Lemma 2.3. Given any function h ∈ L1(J,R), the HIVP

d2

dt2

(
x(t)

f(t, x(t))

)
= h(t) a.e. t ∈ J,

x(0) = 0, x′(0) = 0,

 (2.1)

is equivalent to the quadratic hybrid integral equation (in short HIE)

x(t) =
[
f(t, x(t))

](∫ t

0

(t− s)h(s) ds
)
, t ∈ J. (2.2)

The proof of our main result will be based on the Dhage monotone iteration principle or Dhage monotone
iteration method contained in a applicable hybrid fixed point theorem in the partially ordered Banach algebras.

A non-empty closed convex subset K of the Banach algebra E is called a cone if it satisfies i) K +K ⊂ K,
ii) λK ⊆ K for λ > 0 and iii) {−K} ∩K = {0}. We define a partial order � in E by the relation x � y ⇐⇒
y − x ∈ K. The cone K is called positive if iv) K ◦K ⊆ K, where “◦” is a multiplicative composition in E. In
what follows we assume that the cone K in a partially ordered Banach algebra (E,K) is always positive. Then
the following results are known in the literature.

Lemma 2.4 (Dhage [4]). Every ordered Banach space (E,K) is regular.

Lemma 2.5 (Dhage [4]). Every partially compact subset S of an ordered Banach space (E,K) is a Janhavi set
in E.

Theorem 2.6 (Dhage [3]). Let
(
E,K, ‖ · ‖

)
be a regular partially ordered complete normed linear algebra and

let every chain C in E be a Janhavi set. Suppose thatA,B : E → K are two monotone nondecreasing operators
such that

(a) A is partially bounded and partial D-Lipschitz with D-function ϕA,

(b) B is partially continuous and uniformly partially compact,

(c) MB ϕA(r) < r, r > 0, where MB = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ E such that x0 � Ax0 Bx0 or x0 � Ax0 Bx0.

Then the hybrid operator equation AxBx = x has a solution x∗ in K and the sequence {xn}∞n=0 of successive
iterations defined by xn+1 = Axn Bxn converges monotonically to x∗.

The details of Dhage monotone iteration principle or method and related definitions of Janhavi set and
uniformly partially compact operator along with some applications may be found in Dhage [3, 4] and the
references therein.

3. Existence and Approximation Result

LetC+(J,R) denote the space of all nonnegative-valued functions ofC(J,R). We assume that the spaceC(J,R)
is endowed with the norm ‖ · ‖ and the multiplication “·” defined by

‖x‖ = max
t∈J
|x(t)| and (x · y)(t) = x(t)y(t) t ∈ J. (3.1)

We define a partial order � in E with the help of the cone K in E defined by

K =
{
x ∈ E | x(t) ≥ 0 for all t ∈ J

}
= C+(J,R), (3.2)
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which is obviously a positive cone in C(J,R). Thus, we have x � y ⇐⇒ y − x ∈ K.

Clearly, C(J,R) is a partially ordered Banach algebra with respect to above supremum norm, multiplication
and the partially order relation in C(J,R). A solution ξ∗ of the HIVP (1.1) is positive if it belongs to the class of
function space C+(J,R).

Theorem 3.1. Suppose that hypotheses (H1)-(H5) and (LS) hold. Then the BVP (1.1) has a positive solution x∗

defined on J and the sequence {xn}∞n=0 of successive approximations defined by

x0(t) = u(t), t ∈ J,

xn+1(t) =
[
f(t, xn(t))

](∫ t

0

(t− s)g(s, xn(t)) ds
)
, t ∈ J,

 (3.3)

converges monotone nondecreasingly to x∗.

Proof. Set E = C(J,R). Then, in view of Lemmas 2.4 and 2.5, E is regular and every compact chain C in E
possesses the compatibility property with respect to the norm ‖ · ‖ and the order relation � so that every compact
chain C is a Janhavi set in E.

Now by Lemma 2.2, the BVP (1.1) is equivalent to the HIE

x(t) =
[
f(t, x(t))

](∫ t

0

(t− s)g(s, x(t)) ds
)
, t ∈ J. (3.4)

Define two operators A and B on E by

Ax(t) = f(t, x(t)), t ∈ J, (3.5)

and

Bx(t) =
∫ t

0

(t− s)g(s, x(t)) ds, t ∈ J. (3.6)

From hypotheses (H1) and (H3), it follows that A and B define the operators A,B : E → K. Now the HIE
(3.4) is equivalent to the quadratic hybrid operator equation

Ax(t)Bx(t) = x(t), t ∈ J. (3.7)

Now, we show that the operators A and B satisfy all the conditions of Theorem 2.6 in a series of following
steps.

Step I: A and B are nondecreasing operators on E.

Let x, y ∈ E be such that x � y. Then, from the hypothesis (H2) it follows that

Ax(t) = f(t, x(t)) ≥ f(t, y(t)) = Ax(t)

for all t ∈ J . Hence Ax � A(y) and that A is nondecreasing on E. Similarly, we have by hypothesis (H5),

Bx(t) =
∫ t

0

(t− s)g(s, x(s))d ≥
∫ t

0

(t− s)g(s, y(s)) ds = By(t)

for all t ∈ J . This implies that Bx � By whenever x � y. Thus, B is also nondecreasing operator on E.

Step II: Next we show that A is partially bounded and partial D- Lipschitz on E.

Now, for any x ∈ E, one has
‖Ax‖ = sup

t∈J
|f(t, x(t))| ≤Mf
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and so A is bounded and consequently partially bounded on E. Nxt let x, y ∈ E be such that x � y. Then, by
hypotesis (H2),

|Ax(t)−Ay(t)| ≤ ϕf (|x(t)− y(t)|) ≤ ϕf (‖x− y‖)

for all t ∈ J . Taking the supremum over t, we get

‖Ax−Ay‖ ≤ ϕf (‖x− y‖)

which shows that A is a D-Lipschitz on E with D-function ϕf .

Step III: B is a partially contiuous and partially compact on E.

Let {xn}n∈N be a sequence in a chain C such that xn → x as n → ∞. Since the f is continuous, by
dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

∫ t

0

(t− s)g(s, xn(s)) ds

=

∫ t

0

(t− s)
[
lim
n→∞

g(s, xn(s))
]
ds = Bx(t),

for all t ∈ J . This shows that Bxn converges to Bx pointwise on J . Next, we show that {Bxn}n∈N is an
equicontinuous sequence of functions in E. Now for any t1, t2 ∈ J , one obtains

|Bxn(t1)− Bxn(t2)| ≤MgT |t1 − t2|+ |p(t1)− p(t2)| ds (3.8)

uniformly for all n ∈ N, where p(t) =
∫ t

0

Mg(T − s) ds.

Since the functions t → |t| and t → p(t) is continuous on compact J , they are uniformly continuous there.
Therefore, we have

|p(t1)− p(t2)| → 0 as t1 → t2

uniformly on J . As a result, we have that

|Bxn(t1)− Bxn(t2)| → 0 as t1 → t2,

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform and that B is a partially
continuous operator on E into itself.

Next, we show that B is a uniformly partially compact operator on E. Let C be an arbitrary chain in E.
We show that B(C) is uniformly bounded and equicontinuous set in E. First we show that B(C) is uniformly
bounded. Let y ∈ B(C) be any element. Then there is an element x ∈ C such that y = Bx. By hypothesis (H2)

|y(t)| = |Bx(t)| ≤
∫ t

0

(t− s)|g(s, x(s))| ds ≤ T 2Mg,

for all t ∈ J . Taking the supremum over t we obtain ‖y‖ = ‖Bx‖ ≤ Mg T
2 for all y ∈ B(C). Hence B(C) is a

uniformly bounded subset of E. Next, proceeding with the arguments that given in Step II it can be shown that∣∣y(t2)− y(t1)∣∣ = |Bx(t2)− Bx(t1)| → 0 as t1 → t2

uniformly for all y ∈ B(C). This shows that B(C) is an equicontinuous subset of E. Now, B(C) is a uniformly
bounded and equicontinuous subset of functions in E and hence it is compact in view of Arzelá-Ascoli theorem.
Consequently B is a uniformly partially compact operator on E into itself.

Step IV: A and B satisfy the growth inequality MB ϕA(r) < r, r > 0.
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Now, it can be shown ‖B(C)‖ ≤ T 2Mg =MB for all chain C in E. Therefore, we obtain

MBϕA(r) = T 2Mgϕf (r) < r

for all r > 0 and so the hypothesis (c) of Theorem 2.6 is satisfied.

Step VI: The function u satisfies the operator inequality u � AuBu.

By hypothesis (LS), the HIVP (1.1) has a lower solution u defined on J . Then, we have

d2

dt2

(
u(t)

f(t, u(t))

)
≤ g(t, u(t)) a.e. t ∈ J,

u(0)

f(0, u(0))
= 0,

(
u(t)

f(t, u(t))

)′∣∣∣∣∣
t=0

= 0,

 (3.9)

By using this, the fundamental theorem of calculus and the definitions of the operators A and B, it can be
shown that the function u ∈ C(J,R) satisfies the relation u � AuBu on J .

Thus, A and B satisfy all the conditions of Theorem 2.6 and so the quadratic hybrid operator equation
AxBx = x has a positive solution x∗ and the sequence {xn}∞n=0 of successive iterations defined by xn+1 =

Axn Bxn with initial term x0 = u converges monotone nondecreasingly to x∗. Therefore, the HIE (3.4) and
consequently the HIVP (1.1) has a positive solution x∗ and the sequence {xn}∞n=0 of successive approximations
defined by (3.3) with x0 = u, converges monotone nondecreasingly to x∗. This completes the proof. �

Remark 3.2. The conclusion of Theorem 3.1 also remains true if we replace the hypothesis (LS) with (US). The
proof of Theorem 3.1 under this new hypothesis is similar and can be obtained by closely observing the same
arguments with appropriate modifications. In this case the sequence {xn}∞n=0 defined by (3.3) with x0(t) =

v(t), t ∈ [0, T ], converges montone nonincrasingly to the solution x∗ of he HIVP (1.1) on J . Again, the
existence and approximation result, Theorem 3.1 includes similar result for the positive solution of the HIVP
(1.2) as a special case.

Remark 3.3. We note that if the HIVP (1.1) has a lower solution u ∈ AC1(J,R) as well as an upper solution
v ∈ AC1(J,R) such that u � v, then under the given conditions of Theorem 3.1 it has corresponding solutions
x∗ and y∗ and these solutions satisfy the inequality

u = x0 � x1 � · · · � xn � x∗ � y∗ � yn � · · · � y1 � y0 = v.

Hence x∗ and y∗ are respectively the minimal and maximal impulsive solutions of the HIVP (1.1) in the vector
segment [u, v] of the Banach space E = C(J,R), where the vector segment [u, v] is a set of elements in C(J,R)
defined by

[u, v] = {x ∈ C(J,R) | u � x � v}.
This is because of the order cone K defined by (3.2) is a closed convex subset of C(J,R). However, we have not
used any property of the cone K in the main existence results of this paper. A few details concerning the order
relation by the order cones and the Janhavi sets in an ordered Banach space are given in Dhage [4].

4. An Example

Example 4.1.

Given a closed interval J = [0, 1] in R, consider the nonlinear HIVP of hybrid differential equations

d2

dt2

(
x(t)

f(t, x(t))

)
= tanhx(t) + 1 a.e. t ∈ J,

x(0) = 0, x′(0) = 0,

 (4.1)
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where the function f : J × R→ R \ {0} is defined by

f(t, x) =


1, if x ≤ 0,

1 +
x

1 + x
, if x > 0.

Then the function f satisfies the hypotheses (H1)-(H2) with Mf = 2 and ϕf (r) =
r

1 + ξ2
, 0 ≤ ξ ≤ r. Here

g(t, x) = tanhx + 1 and satisfies the hypotheses (H3)-(H5) with Mg = 2. Now the HIVP (4.1) is equivalent to
the HIE

x(t) =
[
f(t, x(t))

](∫ t

0

(t− s)
[
tanhx(s) + 1

]
ds

)
, t ∈ [−1, 1],

It can be verified that the function u ∈ C(J,R) defined by u(t) = −t2 and v(t) = 4t2 are respectively the
lower and upper solutions of the HIVP (4.1) on [0, 1]. Hence, by an application of Theorem 3.1, the HIVP (4.1)
has a positive solution x∗ and the sequence {xn}∞n=0 of successive approximations defined by

x0(t) = −t2, t ∈ [0, 1],

xn+1(t) =
[
f(t, xn(t))

](∫ t

0

(t− s)
[
tanhxn(s) + 1

]
ds

)
, t ∈ [0, 1],

converges monotone nondecreasingly to x∗. Similarly, by Remark 3.2, the sequence {yn}∞n=0 of successive
approximations defined by

y0(t) = 4t2, t ∈ [0, 1],

yn+1(t) =
[
f(t, yn(t))

](∫ t

0

(t− s)
[
tanh yn(s) + 1

]
ds

)
, t ∈ [0, 1],

converges monotone non-increasingly to the positive solution y∗ of the HIVP (4.1) on [0, 1].
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1. Introduction

Any magnetic vector field is known divergence zero vector field in three dimensional spaces. A magnetic
trajectory of a magnetic flow created by magnetic vector field are curves called as magnetic curves. Although
the problem of investigating magnetic trajectories appears to be physical problem, recent studies show that the
characterization of magnetic flow in a magnetic field have brought variational perspective in more geometrical
manner [2, 8]. Let S be a surface in Euclidean 3−space R3 and F denote a complete differential 2−form in a
open subset U of S. Then we can write F = dω for some potential 1−form ω. If we define Γ as smooth curves
that connect two fixed point of U , the Lorentz force equation is known a minimizer of the functional L : Γ→ R
defined by

L (γ) :
1

2

∫
γ

< γ′, γ′ > dt+ ω (γ′) dt. (1.1)

The Euler-Lagrange equation of the functional L is derived as

φ (γ′) = ∇γ′γ′, (1.2)

where φ is the skew-symmetric operator. The critical point of the functional L corresponds to the Lorentz force
equation [2, 4].

∗Corresponding author. Email address: tunahanturhan@sdu.edu.tr (Tunahan TURHAN)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.



Spherical magnetic trajectories

Any function defined from a space curve to a suitable sphere in Euclidean 3−space is called the spherical
indicatrix (spherical image) of the curve. The spherical indicatrix of a curve in Euclidean 3−space emerges
in three types: the tangent indicatrix (tangential indicatrix or tangent spherical indicatrix), the principle normal
indicatrix and the binormal indicatrix of the curve. The spherical indicatrix is a nice way to envision the motion
of the curve on a sphere by using components of the Frenet Frame. Furthermore, the movement of a spherical
indicatrix describes the changes in the original direction of the curve [6, 7].

In this paper we consider the magnetic trajectories which are the tangent, principal and binormal indicatrices,
separately. We first investigate the tangent indicatrix magnetic trajectories and we derive the Killing magnetic
flow equations for tangent indicatrix magnetic vector field. Then we solve these equations by using elliptic
functions. Then we apply this method the other imagine types of curves by using same calculations. But we do
not dwell on variational and differential calculations of the problem of finding curves whose principle normal and
binormal indicatrix are magnetic since the same procedure would repeat.

2. Preliminaries

We consider a regular curve γ in Euclidean 3−space R3, parametrized by arc length s, 0 ≤ s ≤ `. Let T = γ′ (s)

denote the unit tangent vector field, N (s) the unit principle normal vector field and B = T ×N binormal vector
field at point γ (s) . Then we have the Frenet frame {T,N,B} along the curve γ and Frenet equations given by T ′

N ′

B′

 =

 0 κ 0

−κ 0 τ

0 −τ 0

 T

N

B

 , (2.1)

where κ > 0 and τ are respectively curvature and torsion of γ [6].
If the Frenet frame of the tangent indicatrix γt = T of a space curve γ is {Tt, Nt, Bt}, then we have the

following Frenet equations  T ′t (st)

N ′t (st)

B′t (st)

 =

 0 κt 0

−κt 0 τt
0 −τt 0

 Tt
Nt
Bt

 , (2.2)

where

Tt = N, Nt =
−T + fB√

1 + f2
, Bt =

fT +B√
1 + f2

(2.3)

and

st =

∫
κ (s) ds, κt =

√
1 + f2, τt = σ

√
1 + f2, (2.4)

where

f (s) =
τ (s)

κ (s)
and σ =

f ′ (s)

κ (s) (1 + f2)
3/2

=
τt
κt
. (2.5)

σ is the geodesic curvature of the principal image of the principal normal indicatrix of the curve γ, st is natural
representation of the tangent indicatrix of the curve γ and equal the total curvature of the curve γ and κt and τt
are the curvature and torsion of γt.

If the Frenet frame of the normal indicatrix γn = N of a space curve γ is {Tn, Nn, Bn}, then we have the
following Frenet equations  T ′n (sn)

N ′n (sn)

B′n (sn)

 =

 0 κn 0

−κn 0 τn
0 −τn 0

 Tn
Nn
Bn

 , (2.6)
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where

Tn =
−T + fB√

1 + f2
, Nt =

σ√
1 + σ2

[
−T + fB√

1 + f2
− N

σ

]
,

Bt =
1√

1 + σ2

[
fT +B√

1 + f2
+ σN

]
.

and
sn =

∫
κ (s)

(√
1 + f2 (s)

)
ds, κn =

√
1 + σ2, τt = Γ

√
1 + σ2,

where

Γ =
σ′ (s)

κ (s)
√

(1 + f2) (1 + σ2)
3/2

=
τn
κn
,

where sn is natural representation of the principal normal indicatrix of the curve γ and κn and τn are the curvature
and torsion of γn.

If the Frenet frame of the binormal indicatrix γb = N of a space curve γ is {Tb, Nb, Bb}, then we have Frenet
formula:  T ′b (sb)

N ′b (sb)

B′b (sb)

 =

 0 κb 0

−κb 0 τb
0 −τb 0

 Tb
Nb
Bb

 , (2.7)

where
Tb = −N, Nt =

T − fB√
1 + f2

, Bt =
fT +B√

1 + f2
.

and

sb =

∫
τ (s) ds, κb =

√
1 + f2

f
, τb = −σ

√
1 + f2

f
,

where
σ =

τb
κb
,

where sb is the natural representation of the binormal indicatrix of the curve γ and κb and τb are the curvature
and torsion of γb [1].

3. Spherical indicatrix magnetic fields

Let V be a divergence-free vector field in Euclidean 3-space R3. Then it defines a magnetic vector field. Given
a differential 2−form F is a magnetic field on R3. The Lorentz force of F is defined to be the skew-symmetric
operator φ given by

< φ (X) , Y >= F (X,Y ) (3.1)

for all vector field X,Y ∈ χ
(
R3
)
. The associated magnetic trajectories are curves γ on R3 that satisfies the

Lorentz force equation (1.2). On the other hand the Lorentz force φ can be write as follows

φ (X) = V ×X, (3.2)

that is, the Lorentz force φ of V is defined via cross product on R3. Combining (1.2) and (3.2), the Lorentz
equation can be written by

φ (γ′) = ∇γ′γ′ = V × γ′

for a curve γ on R3.
By means of these structures defined on R3, the Killing magnetic flow equations corresponding to spherical

indicatrix for a unit-speed curve γ on R3 will be found.
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Spherical magnetic trajectories

Let γ : I ⊂ R → R3 be a reparametrized curve in Euclidean 3−space and {Tt, Nt, Bt} is the Frenet frame
along γt. Then the Lorentz force in the frame {Tt, Nt, Bt} is written as

φ (Tt) = κtNt, (3.3)

φ (Nt) = −κtTt + ωtBt (3.4)

and
φ (Bt) = −ωtBt, (3.5)

where the function ωt (st) associated with each tangent indicatrix magnetic curve is quasislope measured with
respect to the magnetic field Vt.

Then we can give the following propositions.
Proposition 3.1. The tangential indicatrix γt is a magnetic trajectory of a magnetic field Vt if and only if Vt

can be written along γt as
Vt = ωtTt + κtBt. (3.6)

Proof. Assume that γt is a magnetic curve along a magnetic field Vt and the orthogonal frame along γt is
given by {Tt, Nt, Bt}. Then, Vt can be written as

Vt =< Vt, Tt > Tt+ < Vt, Nt > Nt+ < Vt, Bt > Bt.

To find coefficient of Vt, we use the Lorentz force in orthogonal frame equations (3.3), (3.4) and (3.5):

ωt =< φ (Nt) , Bt >=< Vt ×Nt, Bt >=< Vt, Tt >,

0 =< φ (Tt) , Bt >=< Vt × Tt, Bt >= − < Vt, Bt >

and
κt =< φ (Tt) , Nt >=< Vt × Tt, Nt >=< Vt, Bt > .

Proposition 3.2. The principle indicatrix γn is a magnetic trajectory of a magnetic field Vn if and only if Vn
can be written along γn as

Vn = ωnTn + κnBn.

Proposition 3.3. The binormal indicatrix γb is a magnetic trajectory of a magnetic field Vb if and only if Vb
can be written along γb as

Vb = ωbTb + κbBb.

4. Killing magnetic flow equations for spherical indicatrix magnetic curves

Let γt be a tangential indicatrix of γ in R3 and Vt be a vector field along that curve. One can take a variation of
γt in the direction of Vt, say a map

Γ : [0, 1]× (−ε, ε) → S2

(s, w) → Γ(s, w)

which satisfies

Γ (s, 0) = γt (s) ,

(
∂Γ(s, w)

∂w

)
w=0

= Vt (s) ,

and (
∂Γ(s, w)

∂s

)
w=0

= γ′t (s) .

One can write the speed function υt (s, w) =
∥∥∥∂Γ(s,w)

∂s

∥∥∥ , the curvature function κt (s, w) and the torsion function
τt (s, w) [2, 5].
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Lemma 4.1 (see [2, 3]). Let γ : I ⊂ R→ R3 be a curve in R3, γt denote the tangent indicatrices and Vt be a
vector field along the curve γt. Then we have the following equalities

Vt (υt) =

(
∂υt (s, w)

∂w

)
w=0

=< ∇Tt
Vt, Tt > υt, (4.1)

Vt (κt) =

(
∂κt (s, w)

∂w

)
w=0

=
1

κt
< ∇2

Tt
Vt,∇TtTt > −2κt < ∇TtVt, Tt > (4.2)

and

Vt (τt) =

(
∂τt (s, w)

∂w

)
w=0

=

(
1

κ2
t

< ∇2
Tt
Vt, Tt ×∇Tt

Tt >

)′
(4.3)

+τt < ∇TtVt, Tt > + < ∇TtVt, Tt ×∇TtTt > .

Proposition 4.1. Let Vt be the restriction to the tangent indicatrix γt of a Killing vector field, say Vt of R3; then

Vt (υt) = Vt (κt) = Vt (τt) = 0. (4.4)

Then we can give the Killing magnetic flow equations of the tangential indicatrix.
Theorem 4.1. Let γt be the tangential indicatrix of a regular curve γ. Suppose that Vt = ωtTt + κtBt is

a Killing vector field along γt. Then the tangential indicatrix magnetic trajectories are curves on S2 satisfying
following differential equations

κ2
t

(
1

2
ωt − τt

)
= A1. (4.5)

and
κ′′t + κtτt (ωt − τt) + Cκt +

1

2
κ3
t −A2κt = 0, (4.6)

where A1, A2 and C are undetermined constants.
Proof. Assume that Vt is a Killing vector field along γt on S2. Along any spherical magnetic trajectory γt,

we have Vt = ωtTt + κtBt. If Vt is Killing vector field, we calculate

ω′t = 0,

that is ωt is a constant, and
∇Tt

Vt = κt (ωt − τt)Nt + κ′tBt. (4.7)

By using the first derivative of (4.7), (4.2) and (4.4), we get(
κ2
t

(
1

2
ωt − τt

))′
= 0.

Similarly, from (4.2) and (4.4), we find to V (τ) as follows

Vt (τt) =

(
∂τt (s, w)

∂w

)
w=0

=

(
1

κ2
t

< ∇2
Tt
Vt, Tt ×∇Tt

Tt >

)′
+τt < ∇TtVt, Tt > + < ∇TtVt, Tt ×∇TtTt > .

Definition 4.1. Any tangent indicatrix of a Euclidean curve is called the tangent indicatrix magnetic trajectory of
a magnetic field Vt if it satisfies the differential equation system (4.5) and (4.6).

We can combine Eqs. (4.5) and (4.6) as follows

κ′′t +
1

2
κ3
t +

(
C −A2 +

1

4
ω2
t

)
κt −

A2
1

κ3
t

= 0.
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This equation admits an obvious first integral. In fact, just multiply by 2κ′t and integrate to get

(κ′t)
2

+
1

4
κ4
t +

(
C −A2 +

1

4
ω2
t

)
κ2
t −

A2
1

κ2
t

= A3.

Since this equation is of the type (u′)2 = P (h) , where P is a polynomial of degree 3 in u, it can be solved using
elliptic functions as follows

κt (s) =
√
a3 (1− q2sn (rs, p)),

τt (s) =
1

2
ωt −

A1

κ2
t

,

when κt 6= const., where

(u′t)
2

+ (u− a1) (u− a2) (u− a3) = 0, u = κ2
t ,

p =
a3 − a2

a3 − a1
, q2 =

a3 − a2

a3
and r =

1

2

√
a3 − a1.

So, the curvature and the curvature of γ must satisfy the equations

τ

κ
=

√√
a3 (1− q2sn (rs, p))− 1,

and ( τ
κ

)′
= κt

(
1 +

τ2

κ2

)(
1 + ωt −

1√
a3 (1− q2sn (rs, p))

)
.

Making similar calculations we can give the Killing magnetic flow equations of the principle normal and
binormal indicatrix.

Theorem 4.2. Let γn be the normal indicatrix of a regular curve γ. Suppose that Vn = ωnTn + κnBn
is a Killing vector field along γn. Then the normal indicatrix magnetic trajectories are curves on S2 satisfying
following differential equations

κ2
n

(
1

2
ωn − τn

)
= A4. (4.8)

and
κ′′n + κnτn (ωn − τn) + C1κn +

1

2
κ3
n −A5κn = 0, (4.9)

where A4, A5 and C1 are undetermined constants.
Theorem 4.3. Let γb be the binormal indicatrix of a regular curve γ. Suppose that Vb = ωbTb + κbBb is

a Killing vector field along γb. Then the binormal indicatrix magnetic trajectories are curves on S2 satisfying
following differential equations

κ2
b

(
1

2
ωb − τb

)
= A6. (4.10)

and
κ′′b + κbτb (ωb − τb) + C2κb +

1

2
κ3
b −A7κb = 0, (4.11)

where A6, A7 and C2 are undetermined constants.
Definition 4.1. Any principle normal (binormal) indicatrix of a Euclidean curve is called the principle

(binormal) indicatrix magnetic trajectory of a magnetic field Vn (Vb) if it satisfies the differential equation system
(4.8) and (4.9) (resp., (4.10) and (4.11)).

Example 4.1. We consider a unit-speed circular helix β (s) =
(

cos s√
2
, sin s√

2
,− s√

2

)
[2]. The curve β (s)

can be seen on Fig. 1.
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Figure 1: The helix β (s)

Curvature and torsion of β (s) are found as κ = −τ = 1
2 . Then, tangent indicatrix of the circular helix is

βt ≈ β′ (s) =

(
− 1√

2
sin

s√
2
,

1√
2

cos
s√
2
,− 1√

2

)
.

βt is a circle cut from unit sphere by the plane z = − 1√
2
. The curvature and the torsion of the tangent indicatrix

of the circular helix are found as κt =
√

2, τt = 0. We can see from (4.5) and (4.6), the tangent indicatrix βt of
β is a tangent indicatrix magnetic trajectory with A2 = C + 1 of the Killing magnetic field Vt = A1Tt +

√
2Bt.

The principal normal indicatrix of the circular helix is

βn ≈ N (s) =

(
− cos

s√
2
,− sin

s√
2
, 0

)
,

that is, βn lies on the great circle lines on the sphere with κn = 1 and τn = 0. From (4.8) and (4.9), we show
that βn is a principle normal indicatrix magnetic trajectory with A5 = C1 + 1

2 of the Killing magnetic field
Vt = 2A4Tn +Bn. Finally, the binormal indicatrix of the circular helix is

βb ≈ B (s) =

(
− 1√

2
sin

s√
2
,

1√
2
,

1√
2

cos
s√
2

)
,

that is, βb is a circle cut from unit sphere by the plane y = 1√
2
. From (4.10) and (4.11), βb is a binormal indicatrix

magnetic trajectory with A7 = C2 + 1 of the Killing magnetic field Vb = A6Tb +
√

2Bb. The graphs of βt, βn
and βb are given as follows.
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1. Introduction and Background

For a few hundred years theoretical physics has been developed on the basis of real and, later, complex
numbers. This mathematical model of physical reality survived even in the process of the transition from classical
to quantum physics, complex numbers became more important than real, but not essentially more so than in the
Fourier analysis which was already being used, e.g., in classical electrodynamics and acoustics. However, in the
last 20 years the field of p-adic numbers Qp (as well as its algebraic extensions, including the field of complex
p-adic numbers Cp) has been intensively used in theoretical and mathematical physics. Thus, notwithstanding the
fact that p-adic numbers were only discovered by K. Hensel around the end of the nineteenth century, the theory
of p-adic numbers has already penetrated intensively into several areas of mathematics and its applications.

For each prime p, we will get a new field called the field of p-adic numbers denoted by Qp. These fields
will be constructed in a manner analogous to the way the real number system R is constructed from Q (see
[1, 4, 6, 7]). The p-adic numbers can be used to consider and study congruences modulo p and modulo pn and
have many applications in classical number theory.

The root-finding problem is one of the most important computational problems. It arises in a wide variety of
practical applications in physics, chemistry, biosciences, engineering, etc. As a matter of fact, determination of
any unknown appearing implicitly in scientific or engineering formulas gives rise to a root-finding problem. The

∗Corresponding author. Email address: m.kecies@centre-univ-mila.dz (Kecies Mohamed)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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Root-Finding Problem is the problem of finding a root of the equation f(x) = 0, where f is a function of a single
variable x. Specifically, the problem is stated as follows: Given a function f . Find a number x = α such that
f(α) = 0.

Except for some very special functions, it is not possible to find an analytical expression for the root, from
where the solution can be exactly determined. Thus, most computational methods for the root-finding problem
have to be iterative in nature. Two important aspects of an iterative method are convergence and stopping criterion.

The idea behind an iterative method is the following: Starting with an initial approximation x0, construct
a sequence of iterates (xn)n using an iteration formula with a hope that this sequence converges to a root of
f(x) = 0.

In this present paper we will see how we can use classical root-finding method (secant method) and explore
a very interesting application of tools from numerical analysis to number theory. We use this method to calculate
the zero noted α of a p-adic continuous function f defined on Qp. The number α represents the square root of a
p-adic number a ∈ Q∗p.

To calculate the square root of a p-adic number a ∈ Q∗p, one studies the following problem

f(x) = x2 − a = 0, a ∈ Q∗p. (1.1)

Our goal is to calculate the first numbers of the p-adic development of the solution of the previous equation, and
this solution is approached by a sequence of the p-adic numbers (xn)n ⊂ Qp constructed by the secant method.

In fact, several studies have been made with regards to finding square roots and cubic roots of p-adic numbers.
In 2010, for instance, Knapp and Xenophontos [12] showed how classical root-finding methods from numerical
analysis can be used to calculate inverses of units modulo prime powers. In the same year, Zerzaihi, Kecies and
Knapp [15] applied some classical root-finding methods, such as the fixed-point method, in finding square roots
of p-adic numbers through Hensel’s lemma. In 2011, Zerzaihi and Kecies [13] used secant method to find the
cubic roots of p-adic numbers. These authors [14] then applied the Newton method to find the cubic roots of p-
adic numbers in Qp. A similar problem also appeared in [8] wherein Ignacio et al. computed the square roots of
p-adic numbers via Newton-Raphson method.

The paper is organized as follows. The next section recalls several concepts about Qp which will be used
through the paper. Our main contribution is formally stated and proved in section 3. The paper ends with
conclusions and final remarks.

2. Preliminaries

Definition 2.1. Let p be a prime number. We define the p-adic valuation vp(·) of a rational number x ∈ Q by the
following definition:
(i) If x ∈ Z∗, then vp(x) is equal to the highest power of p which divides x.
(ii) If x = a

b ∈ Q∗, then vp(x) = vp(a)− vp(b). The p−adic valuation of x ∈ Q is also called the p-adic order
and denoted as ord(x).
(iii) We set vp(0) = +∞. The reason to set vp(0) = +∞ is that we can divide 0 by pn for each n ∈ N.

Definition 2.2. Let the function |·|p : Q −→ R be defined as

|x|p =


p−vp(x), if x 6= 0,

0, if x = 0.

(2.1)

|·|p is called the p-adic norm on Q.

Remark 2.3.
1) The p-adic norm satisfies the non-archimedean property

|x+ y|p ≤ max
{
|x|p , |y|p

}
for all x, y ∈ Q, (2.2)
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and we say that the p-adic norm is ultra-metric or non-archimedean.
2) An important property of the p-adic norm is the discreteness of its image. It is clear that the function |·|p takes
its values in a discrete subset of R+(namely {0} ∪ {pn, n ∈ Z}).

Since for any prime p the p-adic norm is a norm hence it defines a p-adic distance function on Q given by

Definition 2.4. The p-adic norm induces a metric dp : Q×Q −→ R+ given by

dp(x, y) = |x− y|p for all x, y ∈ Q, (2.3)

this metric is called the p-adic metric.

Further since the p-adic norm is non-archimedean it follows that the p-adic distance function is an ultrametric
and satisfies

dp(x, y) ≤ max {dp(x, z), dp(z, y)} for all x, y, z ∈ Q. (2.4)

Definition 2.5. For each prime p, the normed field Qp of p-adic numbers is the completion of the field of rational
numbers Q with respect to the p-adic norm |·|p which contains the rational numbers Q as a dense subset. The
norm on Qp induced by the p-adic norm on Q, will be considered an extension of the p-adic norm, and will
therefore also be denoted by |·|p. Further each of these fields is distinct from the real numbers R and for different
primes p1, p2 the fields are distinct.

Remark 2.6. The elements of Qp are equivalent classes of Cauchy sequences in Q with respect to the extension
of the p-adic norm. For some x ∈ Qp, let (xn)n be a Cauchy sequence of rational numbers representing a. Then
by definition

|x|p = lim
n−→+∞

|xn|p . (2.5)

Proposition 2.7. [2] Let p be a fixed prime and Qp the field of p-adic numbers. Given x ∈ Qp, there exists a
unique sequence of integers (βN )n≥N , with N = vp(x), such that 0 ≤ βn ≤ p− 1 for all n and

x = βNp
N + βN+1p

N+1 + ...+ βnp
n + ... =

∞∑
k=N

βkp
k. (2.6)

Remark 2.8.
1) The representation (2.6) is called the canonical p-adic expansion of p-adic number x.
2) There is a one-to-one correspondence between the power series expansion

βNp
N + βN+1p

N+1 + ...+ βnp
n + ... (2.7)

and the short representation βNβN+1βN+2..., where only the coefficients of the powers of p are shown. We can
use the p-adic point as a device for displaying the sign of N .

βNβN+1βN+2...β−2β−1 · β0β1β2... for N < 0,

·β0β1β2... for N = 0,

·000...0β0β1β2... for N > 0.

(2.8)

The most important fact has already been noted: Qp is a complete metric space, hence every Cauchy sequence
converges. Cauchy sequences are characterized as follows

Theorem 2.9. [10] A sequence (an) in Qp is a Cauchy sequence, and therefore convergent, if and only if it
satisfies

lim
n−→+∞

|an+1 − an|p = 0. (2.9)
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The following result is an important tool for determining whether a series of p-adic numbers converge in Qp
or not.

Proposition 2.10. [10] A series
∞∑
n=0

an with an ∈ Qp converges in Qp if and only if lim
n−→+∞

an = 0, in which

case ∣∣∣∣∣
∞∑
n=0

an

∣∣∣∣∣
p

≤ max
n
|an|p . (2.10)

Definition 2.11. A p-adic number x ∈ Qp is a p-adic integer if its p-adic norm is less than or equal to 1, |x|p ≤ 1.
We denote the set of p-adic integers by Zp and hence

Zp =
{
x ∈ Qp : |x|p ≤ 1

}
. (2.11)

Lemma 2.12. [6] A p-adic number x ∈ Qp is a p-adic integer if and only if its canonical expansion has only
positive powers of p. That is

Zp =

{
x ∈ Qp : x =

∞∑
n=0

βnp
n

}
. (2.12)

The p-adic integers form a subring of Qp which contains Z.

Recall that a unit in a ring R with identity is an element which has amultiplicative inverse. In the rational
integers Z the only units are {−1, 1}. The situation is quite different in Zp where there are many units and in fact
every rational integer m relatively prime to p is invertible.

Definition 2.13. A p-adic integer x ∈ Zp is said to be a p-adic unit (or invertible) if the first digit β0 in the p-adic
p-adic expansion is different from zero. The set of p-adic units is denoted by Z×p or U(Zp). Hence we have

Z×p =

{
x =

∞∑
n=0

βnp
n : β0 6= 0

}
. (2.13)

It is also easy to see that
Z×p =

{
x ∈ Zp : |x|p = 1

}
. (2.14)

Z×p is also called the group of p-adic units.

The next result shows that any element of Qp is a product of an invertible p-adic integer and a power of p.

Proposition 2.14. [10] Let x be a p-adic number of norm p−n. Then x can be written as the product x = pnu,
where u ∈ Z×p .

The following result is very useful for our work.

Proposition 2.15. [10] We say that a and b ∈ Qp are congruent mod pn and write a ≡ b mod pn if and only if
|a− b|p ≤

1
pn .

Proposition 2.16. [1] Let (xn)n be a p-adic number sequence. If

lim
n−→+∞

xn = x, x ∈ Qp, |x|p 6= 0,

then the sequence of norms
{
|xn|p : n ∈ N

}
must stabilize for sufficiently large n, i.e., there exists N such that

|xn|p = |x|p ,∀n ≥ N. (2.15)
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The following proposition is modestly known as Hensel’s lemma.

Theorem 2.17. [3] (Hensel’s Lemma, first form). Let F (x) ∈ Zp [x] be a p-adic polynomial and assume there
exists α0 ∈ Zp such that F (α0) ≡ 0 mod p but F ′(α0) 6≡ 0 mod p. Then there exists a unique α ∈ Zp such
that F (α) = 0 and α ≡ α0 mod p.

Sometimes the stated Hensel’s lemma is not enough and one should use its generalization:

Theorem 2.18. [3] (Hensel’s Lemma, strong form). Let F (x) ∈ Zp [x] be a p-adic polynomial and assume
there exists α0 ∈ Zp such that F (α0) ≡ 0 mod p2k+1 but F ′(α0) 6≡ 0 mod pk+1. Then there exists a unique
α ∈ Zp such that F (α) = 0 and α ≡ α0 mod pk+1.

Actually Hensel’s lemma is valid for any complete nonarchimedian field.
As an application of the Hensel’s lemma, we investigate the squares in Qp.

Proposition 2.19. Let p be a prime number, then
1) If p 6= 2, then a p-adic number a ∈ Q∗p is a square if and only if a = p2nv2 for some n ∈ Z and v ∈ Z×p .
2) If p = 2, then a 2-adic number a ∈ Q∗2 is a square if and only if a = 22nv2 = 22nu for some n ∈ Z and u ≡ 1

mod 8.

Now, we are ready to give our main results.

3. Main Results

Solving non linear equations is one of the most important and challenging problems in science and engineering
applications. The root finding problem is one of the most relevant computational problems. It arises in a wide
variety of practical applications in Physics, Chemistry, Biosciences, Engineering, etc.

The Newton-Raphson method, or Newton Method, is a powerful technique for solving a nonlinear equations
f(x) = 0 numerically. We start with an initial approximation x0 and generate a sequence of approximations
(xn)n through the iterative formula

∀n ∈ N : xn+1 = xn −
f(xn)

f ′(xn)
. (3.1)

A major disadvantage of the Newton Method is the requirement of finding the value of the derivative of f ′(x)

at each approximation, which may not be practical for some choices of f . When the derivative of f(x) is either
hard or impossible to write down (and hence, to program), or when the computational effort required to evaluate
f ′(x) is very large compared to that for f(x), Newton method is impossible or costly to carry out. An alternative
is to approximate the derivative by a finite difference, that is, to write

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1
. (3.2)

The approximate Newton iteration can then be expressed in the following algorithm

∀n ∈ N∗ : xn+1 = xn −
f(xn)(xn − xn−1)

f(xn)− f(xn−1)
. (3.3)

This iteration is called the secant method because f(x) is approximated by a secant line through two points on
the graph of f , rather than a tangent line through one point on the graph. In the secant method, we always use xn
and xn−1 to generate xn+1.

We also study the performance of the secant method. The performance of the method is estimated by:
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a) The speed of convergence which is an important factor of the quality of the algorithms, if the speed of
convergence is high, the algorithm converges quickly and the computation time is less. To measure the speed of
convergence, we study the evolution of the sequence (en)n defined by

en = xn+n0+1 − xn+n0
. (3.4)

with n0 ∈ N. Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number
of correct significant digits in the approximation increases by a factor of approximately s.

b) The number of iterations necessary to obtain the desired precision M which represents the number of
p-adic digits in the development of

√
a. So, it’s all about finding n such that

|xn+n0+1 − xn+n0
|p ≤ p

−M , (3.5)

this is equivalent to
vp(en) ≥ pM . (3.6)

The general principle of calculation is as follows,
Let a ∈ Q∗p a p-adic number such that

|a|p = p−vp(a) = p−2m,m ∈ Z, (3.7)

If (xn)n is a sequence of p-adic numbers that converges to a p-adic number α 6= 0, then from a certain rank one
has

|xn|p = |α|p ,

We also know that if there exists a p-adic number α such that α2 = a, then vp(a) is even and

|xn|p = |α|p = p−m. (3.8)

We consider the following equation
f(x) = x2 − a. (3.9)

Then, the iteration of the secant method associated with the function f is written in the form

∀n ∈ N∗ : xn+1 =
xnxn−1 + a

xn + xn−1
. (3.10)

The performance of the Secant method is given by the following theorem.

Theorem 3.1. If xn0−1 is the square root of a of order α and xn0
is the square root of a of order β, then

1) If p 6= 2, then xn+n0−1 is the square root of a of order πn, where the sequence (πn)n is defined by, for all
n ∈ N

πn =
(

1√
5

(β − α(1− Φ)) Φn + 1√
5

(−β + αΦ) (1− Φ)n
)

−2
((

1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1
)
m.

(3.11)

Furthermore
∀n ∈ N : xn+n0 − xn+n0−1 ≡ 0 mod pηn , (3.12)

such as
∀n ∈ N : ηn = πn −m. (3.13)

Where Φ = 1+
√

5
2 is the golden ratio.

2) If p = 2, then xn+n0−1 is the square root of a of order π′n, where the sequence (π′n)n is defined by, for all
n ∈ N

π′n = πn − 2

((
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
. (3.14)
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Furthermore
∀n ∈ N : xn+n0

− xn+n0−1 ≡ 0 mod 2η
′
n , (3.15)

such as
∀n ∈ N : η′n = π′n − (m+ 1) . (3.16)

Proof. Let (xn)n be the sequence defined by (3.10). We have

∀n ∈ N∗ : x2
n+1 − a =

(x2
n − a)(x2

n−1 − a)

(xn + xn−1)2
. (3.17)

We assume that xn0−1 (resp: xn0 ) is the square root of a of order α (resp: β), i.e,
x2
n0−1 ≡ a mod pα, α ∈ N,

x2
n0
≡ a mod pβ , β ∈ N.

Then 
vp
(
x2
n0−1 − a

)
≥ α,

vp
(
x2
n0
− a
)
≥ β.

Hence we obtain 
∣∣x2
n0−1 − a

∣∣
p
≤ p−α,∣∣x2

n0
− a
∣∣
p
≤ p−β .

Therefore, using the proposition (2.16) , we get

∣∣x2
n0+1 − a

∣∣
p

=

∣∣(x2
n0
− a)(x2

n0−1 − a)
∣∣
p

|xn0
+ xn0−1|2p

=
1

|4|p

∣∣x2
n0
− a
∣∣
p

∣∣x2
n0−1 − a

∣∣
p

p−2m
.

Since

|4|p =


1, if p 6= 2,

1
4 , if p = 2.

(3.18)

We have 
∣∣x2
n0+1 − a

∣∣
p
≤ p2mp−αp−β , if p 6= 2,∣∣x2

n0+1 − a
∣∣
2
≤ 2222m2−α2−β , if p 6= 2.

Consequently 
∣∣x2
n0+1 − a

∣∣
p
≤ p−(α+β−2m), if p 6= 2,∣∣x2

n0+1 − a
∣∣
2
≤ 2−(α+β−2m−2), if p 6= 2.

This gives 
x2
n0+1 − a ≡ 0 mod p(α+β)−2m if p 6= 2,

x2
n0+1 − a ≡ 0 mod 2(α+β)−2(m+1) if p = 2.
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In this manner, we find that if p 6= 2, then

∀n ∈ N : x2
n+n0−1 − a ≡ 0 mod pπn . (3.19)

The sequence (πn)n is defined by
∀n ∈ N : πn = Jn −mAn, (3.20)

Such that (Jn)n and (An)n are two linear recurrence sequences defined by
J0 = α, J1 = β,

∀n ∈ N∗ : Jn+1 = Jn−1 + Jn,

, (3.21)

and 
A0 = A1 = 0,

∀n ∈ N∗ : An+1 = An−1 +An + 2.

(3.22)

The general terms of the sequences (Jn)n and (An)n are given respectively by

∀n ∈ N : Jn =
1√
5

(β − α(1− Φ)) Φn +
1√
5

(−β + αΦ) (1− Φ)n. (3.23)

and

∀n ∈ N : An = 2

((
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
. (3.24)

We obtain, for all n ∈ N

πn =
(

1√
5

(β − α(1− Φ)) Φn + 1√
5

(−β + αΦ) (1− Φ)n
)

−2
((

1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1
)
m.

(3.25)

Furthermore
vp(x

2
n+n0−1 − a) ≥ πn. (3.26)

On the other hand, if p = 2, then

∀n ∈ N : x2
n+n0−1 − a ≡ 0 mod 2π

′
n . (3.27)

The sequence (π′n)n is defined by
∀n ∈ N : π′n = Jn − (m+ 1)An, (3.28)

Then, for all n ∈ N
π′n =

(
1√
5

(β − α(1− Φ)) Φn + 1√
5

(−β + αΦ) (1− Φ)n
)

−2
((

1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1
)

(m+ 1).
(3.29)

Therefore

∀n ∈ N : π′n = πn − 2

((
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
. (3.30)

Furthermore
v2(x2

n+n0−1 − a) ≥ π′n. (3.31)

On the other hand, we have

∀n ∈ N∗ : xn+1 − xn =
a− x2

n

xn + xn−1
. (3.32)
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Since

|2|p =


1, if p 6= 2,

1
2 , if p = 2.

(3.33)

We have

|xn+n0
− xn+n0−1|p =

∣∣a− x2
n+n0−1

∣∣
p

|xn+n0−1 + xn+n0−2|p
, (3.34)

Hence we obtain 
|xn+n0 − xn+n0−1|p ≤ pmp−πn , if p 6= 2,

|xn+n0 − xn+n0−1|2 ≤ 22m2−π
′
n , if p = 2.

(3.35)

and so 
xn+n0

− xn+n0−1 ≡ 0 mod pπn−m, if p 6= 2,

xn+n0 − xn+n0−1 ≡ 0 mod 2π
′
n−(m+1), if p = 2.

(3.36)

Therefore, if p 6= 2, then
∀n ∈ N : xn+n0 − xn+n0−1 ≡ 0 mod pηn . (3.37)

Where
∀n ∈ N : ηn = πn −m. (3.38)

Which give
vp(xn+n0

− xn+n0−1) ≥ ηn. (3.39)

If p = 2, then
∀n ∈ N : xn+n0

− xn+n0−1 ≡ 0 mod 2η
′
n , (3.40)

Where
∀n ∈ N : η′n = π′n − (m+ 1). (3.41)

It’s clear that

∀n ∈ N : η′n = ηn −
(

2

(
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
, (3.42)

Which give
v2(xn+n0 − xn+n0−1) ≥ η′n. (3.43)

This completes the proof. �

The results obtained are presented here.

1. If p 6= 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order ηn.

(b) Since |1− Φ| < 1, then

ηn '
1√
5

(β − α(1− Φ)) Φn − 2√
5

(Φn+1 − 1)m, (3.44)

and if (β − α(1− Φ)− 2Φm) > 0, then the number of iterations n to obtain M correct digits is

n =

 ln
( √

5(M−m)
β−α(1−Φ)−2Φm

)
ln Φ

 . (3.45)
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2. If p 6= 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order η′n.

(b) If β − α(1− Φ)− 2Φ(m+ 1) > 0, then the number of iterations n to obtain M correct digits is

n =

 ln
( √

5(M−(m+1))
β−α(1−Φ)−2Φ(m+1)

)
ln Φ

 . (3.46)

According to the results obtained in this section, we conclude the following corollary.

Corollary 3.2. The order of convergence of the secant method is given by the positive number Φ = 1+
√

5
2

(superlinear order of convergence), this means the number of correct digits increases by a factor of approximately
Φ.

4. Conclusions

Let’s consider for p 6= 2 the sets defined by

S1 =
{
a ∈ Qp : |a|p = 1

}
if m = 0,

S2 =
{
a ∈ Qp : |a|p < 1

}
if m > 0,

S3 =
{
a ∈ Qp : |a|p > 1

}
if m < 0.

(4.1)

For p = 2, we consider the sets defined by

B1 = {a ∈ Q2 : |a|2 = 4} if m = −1,

B2 = {a ∈ Q2 : |a|2 < 4} if m > −1,

B3 = {a ∈ Q2 : |a|2 > 4} if m < −1.

(4.2)

Then we have the following conclusion.

1. If m < 0, then the convergence for any p-adic number (Resp: 2-adic) belongs to the set S3 (Resp: B3) is
faster than that of S1 (Resp: B1).

2. If m > 0, then the speed of convergence for any p-adic number (Resp: 2-adic) belongs to the set S2 (Resp:
B2) is slower than that of S1 (Resp: B1).
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Abstract. We introduce the concept of dual π-endo Baer modules. We evolve several structural properties such as direct
summands and direct sums. Moreover, we prove that the endomorphism ring of a dual π-endo Baer module is a π-Baer ring.
The examples are presented to exhibit the results.
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1. Introduction

All rings are associate with unity and modules are unital right R-modules. R and M stand by such a ring
and such a module, respectively. Throughout the paper, H denotes the endomorphism ring of M . A ring R is
called Baer (quasi-Baer) [10], [8], if the right annihilator of each nonempty subset (ideal) of R is generated by
an idempotent element of R. A kind of generalization of this condition is introduced in [4]. R is π-Baer [4], if
the right annihilator of each projection invariant left ideal is generated by an idempotent of R. Observe that R is
Baer implies that R is π-Baer implies that R is quasi-Baer.

A module M is e.Baer (quasi-e.Baer) [14], if for each AR ≤ MR (AR � MR), lH(A) = Hh for some
h = h2 ∈ H. Recently, the authors in [5] have defined a module M is π-endo Baer, if for each for each
AR �p MR, lH(A) = Hp for some p = p2 ∈ H. In [12] and [2], the authors dualized the concept of e.Baer
and quasi-e.Baer modules. M is called dual Baer (quasi-dual Baer), if for each (AR � MR) AR ≤ MR,
DH(A) = pH for some p = p2 ∈ H, where DH(A) = {ψ ∈ H |ψ(M) ⊆ A}. Following the ideas in [12]
and [2], we explore the dual concept of π-e.Baer modules. We call a module M is dual π-e.Baer, if for each
AR�pMR, DH(A) = hH for some h = h2 ∈ H. We indicate the fundamental results and connections between
related notions in Section 2. Moreover, we study on the direct summands and direct sums properties for the
former class of modules. In general, this class is neither closed under direct summands nor direct sums (see,
Example 2.13 and Example 3.8). However, Proposition 2.11 and Corollary 2.12 explain some conditions when
the dual π-e.Baer module property is inherited by direct summands. Further, we give a complete characterization
for the direct sums of dual π-e.Baer modules in Theorem 2.14.

∗Corresponding author. Email address: yelizkara@uludag.edu.tr (Yeliz Kara)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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In Section 3, we obtain the results related to the endomorphism rings. We prove that H is π-Baer if M is
dual π-e.Baer in Proposition 3.1. Theorem 3.3 and Corollaries 3.4-3.5 provide some conditions which ensure
the reverse of Proposition 3.1 fulfills. Finally, we represent the relations between e.Baer and dual-Baer modules
when the module has a countable regular endomorphism ring in Proposition 3.7.

The notations LR ≤ MR (LR ≤ RR), LR �pMR (LR �p RR), LR �MR (L� R) and LR ≤⊕ MR mean
that L is a right R-submodule of M (L is a right ideal of R), L is a projection invariant right R-submodule of M
(L is a projection invariant right ideal ofR), L is a fully invariant submodule ofM (L is an ideal ofR), and L is a
direct summand of M , respectively. rM (−) (lH(−)), I and Matn(R) show the right (left) annihilator in M (H),
the subring of H generated by the idempotent elements of H and the n-by-n matrix ring over R, respectively.
Recall that a right submodule A of M is called projection (fully) invariant in M , if p(A) ⊆ A for all p = p2 ∈ H
(p ∈ H). A ring R is Abelian if every idempotent of R is central. An idempotent e ∈ R is called left (right)
semicentral if re = ere (er = ere) for each r ∈ R. Sl(R) (Sr(R)) denotes the set of left (right) semicentral
idempotents of R. A module M has FI-SSSP, if the sum of any number of fully invariant direct summands is a
direct summand. For undefined notation or terminology, see [3, 6, 13].

2. Structural Properties

We evolve principal results and relations between the dual π-e.Baer modules and connected notions. Recall that
DH(A) = {ψ ∈ H |ψ(M) ⊆ A} for some AR ≤MR and EM (Y) =

∑
ψ∈Y

ψ(M) for some YH ≤ HH.

Lemma 2.1. Assume I is a right ideal ofH and A is a right submodule of M . Then
(i) EM (DH(EM (I))) = EM (I).
(ii) DH(EM (DH(A))) = DH(A).
(iii) DH(hM) = hH for some h = h2 ∈ H.
(iv) EM (hH) = hM for some h = h2 ∈ H.

Proof. (i) and (ii) These parts follow from [2, Lemma 1.3].
(iii) Let g ∈ hH. Then g = hg and g(M) = hg(M) ⊆ h(M). Thus g ∈ DH(hM), so hH ⊆ DH(hM).

Conversely, assume f ∈ DH(hM). Then f(M) ⊆ hM , so (1−h)f = 0 and hence f = hf +(1−h)f = hf ∈
hH. Therefore DH(hM) ⊆ hH. It follows that DH(hM) = hH.

(iv) Observe that hM ⊆ EM (hH). Let m ∈ EM (hH). Then m = α1(m1) + α2(m2) + · · · + αn(mn),
where αi ∈ hH and mi ∈M . Note that hαi = αi, so m ∈ hM . Thus EM (hH) ⊆ hM . �

Lemma 2.2. (i) DH(A) is a projection invariant right ideal ofH, for each AR �pMR.
(ii) EM (Y)R is a projection invariant submodule of MR, for each YH �p HH.

Proof. (i) Let AR �p MR. Then DH(A) is a right ideal of H. Consider e = e2 ∈ H and α ∈ DH(A). Then
eα(M) = e(α(M)) ⊆ e(A) ⊆ A, as AR �pMR. It follows that DH(A)H �p HH.

(ii) Note that EM (Y) is a submodule of M . Assume f = f2 ∈ H. Since YH �p HH, f(EM (Y)) =

f(
∑
ψ∈Y

ψ(M)) =
∑
ψ∈Y

(fψ)M ⊆
∑
β∈Y

β(M) for some β ∈ Y . Thence f(EM (Y)) ⊆ EM (Y), so EM (Y)R �p

MR. �

Definition 2.3. We call a moduleM dual endo π-Baer (denoted, dual π-e.Baer), provided that for allAR�pMR,
there exists h = h2 ∈ H such that DH(A) = hH.

Proposition 2.4. M is dual π-e.Baer if and only if there exists h = h2 ∈ H such that EM (Y) = hM for each
YH �p HH.

Proof. SupposeM is dual π-e.Baer and YH�pHH. ThenEM (Y)�pMR by Lemma 2.2. ThusDH(EM (Y)) =
hH for some h = h2 ∈ H. It follows from Lemma 2.1 that EM (Y) = EM (DH(EM (Y))) = EM (fH) = hM .
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Conversely, let AR �p MR. Observe that DH(A) �p HH by Lemma 2.2. Then there exists p = p2 ∈ H such
that EM (DH(A)) = pM . Therefore DH(A) = DH(pM) = pH by Lemma 2.1. Hence M is dual π-e.Baer. �

Since DH(A)�p HH and EM (Y)�pMR, h, p ∈ Sl(H) in Proposition 2.4 by [7, Proposition 4.12].

Lemma 2.5. Suppose M is a dual π-e.Baer module.
(i) If ψ(M)R �pMR for some ψ ∈ H, then ψ(M)R ≤⊕ MR.
(ii) If NR ∼= DR ≤⊕ MR for each NR �pMR, then NR ≤⊕ MR.

Proof. (i) Assume ψ(M)R �pMR for some ψ ∈ H. Then I(ψ(M)) = ψ(M), and IψH = ψH. It follows that
(IψH)H�pHH and ψ(M) = EM (IψH). Thus there exists h = h2 ∈ H such that ψ(M) = hM by Proposition
2.4.

(ii) Let NR �pMR and N ∼= hM for some h = h2 ∈ H. Then there exists an isomorphism α : hM → N .
Consider the map ψ = ιαπ, where π : M → hM is projection, and ι : N → M is inclusion. Observe that
ψ ∈ H and ψ(M) = ιαπ(M) = α(hM) = N . Since NR �pMR, part (i) yields that NR ≤⊕ MR. �

Theorem 2.6. M is dual Baer implies that M is dual π-e.Baer implies that M is quasi-dual Baer.

Proof. Suppose M is dual Baer and AR�pMR. Then there exists h = h2 ∈ H such that DH(A) = hH. Hence
M is dual π-e.Baer. Observe that fully invariant submodules are projection invariant. Therefore the second part
follows the similar arguments in the above. �

At the end of the paper, we provide examples which shows that the implications in Theorem 2.6 are
irreversible (see, Example 3.8).

Proposition 2.7. Assume that ψ(M)R �MR for each ψ ∈ H. Then M is dual π-e.Baer if and only if M has
FI-SSSP and ψ(M)R ≤⊕ MR for all ψ ∈ H.

Proof. Suppose that ψ(M)R �MR for all ψ ∈ H, and M is dual π-e.Baer. Then Lemma 2.5, Theorem 2.6,
and [2, Lemma 2.2] complete the result. Conversely, assume M has the stated property. Let YH �p HH and
EM (Y) =

∑
ψ∈Y

ψ(M). By hypothesis, ψ(M) �M and ψ(M) ≤⊕ M for all ψ ∈ H. Then EM (Y) ≤⊕ M by

the FI-SSSP condition. Therefore the proof is done. �

Proposition 2.8. (i) If ψ(M)R �MR for all ψ ∈ H, then M is dual Baer ⇔ M is dual π-e.Baer ⇔ M is
quasi-dual Baer.

(ii) If M is indecomposable, then M is dual Baer⇔M is dual π-e.Baer.
(iii) AssumeH is an Abelian ring. Then M is dual Baer⇔M is dual π-e.Baer.
(iv) AssumeH = I. Then M is dual π-e.Baer⇔M is quasi-dual Baer.

Proof. (i) [2, Theorem 2.3] and Theorem 2.6 complete the proof.
(ii) Observe that every submodule of an indecomposable module is projection invariant. Therefore Theorem

2.6 yields the result.
(iii) Suppose M is dual π-e.Baer and YH ≤ HH. Then YH�pHH by [4, Lemma 2.3]. Thus EM (Y) = hM

for some h = h2 ∈ H by Proposition 2.4. It follows from [12, Theorem 2.1] that M is dual Baer. Theorem 2.6
yields the converse.

(iv) SupposeH = I andM is quasi-dual Baer. LetAR�pMR. SinceH = I,AR�MR. ThusDH(A) = hH
for some h = h2 ∈ H, so M is dual π-e.Baer. Converse is clear from Theorem 2.6. �

Corollary 2.9. The free R-module F with a finite rank is dual π-e.Baer if and only if it is quasi-dual Baer.

Proof. Suppose FR =
n⊕
t=1

Rt where n > 1 and Rt ∼= R. Then H ∼= Matn(R) and I(Matn(R)) = Matn(R).

Therefore Proposition 2.8(iv) ensures the result. �
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Now, we study on the direct summands and directs sums properties for the former class of modules. A module
M is retractable, if HomR(M,A) 6= 0 for all 0 6= A ≤M .

Lemma 2.10. Assume M is a dual π-e.Baer and retractable module. Then every 0 6= AR �p MR includes a
nonzero direct summand of M .

Proof. Suppose M satisfies the stated property. Let 0 6= AR�pMR. Then DH(A) = hH for some h = h2 ∈ H
by Proposition 2.4. Note that h ∈ Sl(H). Since M is retractable, ψM ⊆ A for some 0 6= ψ ∈ H. Thus
ψ ∈ DH(A), so ψ = hψ. Observe that (ψh)2 = ψ(hψh) = ψh ∈ H, as h ∈ Sl(H). Moreover 0 6= ψhM ⊆
ψM ⊆ A, so ψhM ≤⊕ M . �

We mention in Example 3.8 that a direct summand of a dual π-e.Baer module need not to be dual π-e.Baer.
To this end, we investigate when the direct summands fulfill the property.

Proposition 2.11. Assume M is dual π-e.Baer and (hM)R � MR for all h = h2 ∈ H. Then (hM)R and
((1− h)M)R are dual π-e.Baer.

Proof. Let M be dual π-e.Baer, (hM)R � MR and AR �p (hM)R. Then AR �p MR by [5, Lemma 3.1].
Hence DH(A) = pH for some p ∈ Sl(H). Notice that HhM ∼= hHh and h ∈ Sl(H). Moreover,
(hph)2 = hph ∈ hHh and (hph)M ⊆ hp(M) ⊆ h(A) ⊆ A. Hence hph ∈ DhHh(A). Thus
(hph)(hHh) ⊆ DhHh(A). Let ψ ∈ DhHh(A). Then ψ(M) ⊆ A and ψ ∈ hHh. It follows that
ψ ∈ DH(A) = fH, so ψ = fψ. Since ψ ∈ hHh and h ∈ Sl(H), we obtain that
ψ = fhψ = (hfh)ψ ∈ (hfh)(hHh). Therefore DhHh(A) ⊆ (hfh)(hHh). It follows that
DhHh(A) = (hfh)(hHh), where (hfh)2 = hfh ∈ hHh. Consequently, (hM)R is dual π-e.Baer.

Now, letB�p ((1−h)M)R. Then (hM⊕B)R�pMR by [7, Lemma 4.13]. Then J = DH(hM⊕B) = gH
for some g ∈ Sl(H). Note that H(1−h)M ∼= (1 − h)H(1 − h) and (1 − h)J(1 − h) = J ∩ (1 − h)H(1 − h).
Since 1 − h ∈ Sr(H), (1 − h)J(1 − h) = (1 − h)gH(1 − h) = (1 − h)g(1 − h)H(1 − h) = (1 − h)g(1 −
h)((1 − h)H(1 − h)). Further, (1 − h)g(1 − h) = ((1 − h)g(1 − h))2 ∈ (1 − h)H(1 − h). Our claim
is (1 − h)J(1 − h) = D(1−h)H(1−h)(B). Let α ∈ J . Then (1 − h)α(1 − h)(M) ⊆ (1 − h)α(M) ⊆
(1−h)(hM ⊕B) = (1−h)B ⊆ B, asBR�p (1−h)MR. It follows that (1−h)J(1−h) ⊆ D(1−h)H(1−h)(B).
Assume that (1−h)β(1−h) ∈ (1−h)H(1−h) such that (1−h)β(1−h)(M) ⊆ B. Hence (1−h)β(1−h) ∈ J .
But (1 − h)β(1 − h) ∈ (1 − h)H(1 − h), so (1 − h)β(1 − h) ∈ J ∩ (1 − h)H(1 − h) = (1 − h)J(1 − h). It
follows that D(1−h)H(1−h)(B) ⊆ (1− h)J(1− h), so ((1− h)M)R is dual π-e.Baer. �

Corollary 2.12. Suppose M is dual π-e.Baer and H is Abelian. Then (hM)R and ((1 − h)M)R are dual
π-e.Baer for all h = h2 ∈ H.

Proof. SinceH is Abelian, (hM)R�MR for all h = h2 ∈ H. Hence Proposition 2.11 completes the proof. �

The following example illustrates the direct sums of dual π-e.Baer modules.

Example 2.13. For any prime p, consider MZ = Z(p∞)⊕ Zp. Then Z(p∞) and Zp are dual π-e.Baer modules.
On the other hand, MZ is not dual π-e.Baer by [2, Example 2.3] and Theorem 2.6.

Theorem 2.14. Suppose M =
⊕
κ∈K

Mκ such that (Mκ)R �MR for all κ ∈ K. Then M is dual π-e.Baer if and

only if Mκ is dual π-e.Baer for all κ ∈ K.

Proof. Assume that for each κ ∈ K, Mκ is dual π-e.Baer. Since (Mκ)R �MR, HomR(Mκ,Mχ) = 0 for all
κ 6= χ ∈ K. Observe thatH =

∏
κ∈K
Hκ, whereHκ = HMκ . Let YH�pHH. Then Y =

∏
κ∈K

(Y∩Hκ) =
∏
κ∈K
Yκ,

where Yκ = Y ∩Hκ for κ ∈ K. Notice that (Yκ)Hκ�p (Hκ)Hκ . SinceMκ is dual π-e.Baer, EMκ(Yκ) = hκMκ

for some hκ = h2κ ∈ Hκ. Note thatEM (Y) =
∑
ψ∈Y

ψ(M) =
∑
κ∈K

EMκ(Yκ) =
⊕
κ=1

hκMκ, as hκMκ∩hχMχ = 0

for all κ 6= χ ∈ K. It gives thatEM (Y) ≤⊕ M , soM is dual π-e.Baer. Converse is a consequence of Proposition
2.11. �
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3. Endomorphism Rings of Dual π-e.Baer Modules

Our goal is to analyze the properties of the endomorphism ring of a dual π-endo Baer module.

Proposition 3.1. The endomorphism ring of a dual π-e.Baer module is a π-Baer ring.

Proof. Suppose M is dual π-e.Baer and YH �p HH. Then EM (Y) =
∑
ψ∈Y

ψ(M) = hM for some h = h2 ∈ H

by Proposition 2.4. Observe that ψ(M) ⊆ hM , so (1 − h)ψ(M) = 0. Thus (1 − h)ψ = 0 which gives that
1 − h ∈ lH(Y). Hence H(1 − h) ⊆ lH(Y). Let α ∈ lH(Y). Then αY = 0, so αψ(M) = 0 for all ψ ∈ Y .
Thence α(EM (Y)) = 0, hence (αh)M = 0, so αh = 0. Therefore α = αh+α(1−h) = α(1−h) ∈ H(1−h),
so lH(Y) ⊆ H(1− h). ThusH is π-Baer. �

The next example validates the reverse of Proposition 3.1 may not be true, in general.

Example 3.2. (i) Assume MZ = ZZ. ThenH ∼= Z is a π-Baer ring, but MZ is not dual π-e.Baer.

(ii) Let R =
∞∏
ι=1
Fι, where F is a field and Fι = F for ι = 1, 2, · · · . Then MR = RR is not dual Baer

by [12, Corollary 2.9]. Since R is a commutative ring, MR is not dual π-e.Baer. However, H ∼= R and R is a
π-Baer ring by [4, Proposition 2.10].

A module MR is called coretractable (quasi-coretractable) [1], [11], provided that HomR(M/A,M) 6= 0

(HomR(M/
∑
ψ∈I

ψ(M),M) 6= 0) for all proper A ≤ M (IH ≤ HH with
∑
ψ∈I

ψ(M) 6= M ). Notice that

every coretractable module is quasi-coretractable. In the following result, we characterize a dual π-e.Baer (resp.,
quasi-dual Baer) module and its endomorphism ring being π-Baer (resp., quasi-Baer).

Theorem 3.3. Assume M is quasi-coretractable. Then M is dual π-e.Baer (resp., quasi-dual Baer) if and only
ifH is π-Baer (resp., quasi-Baer).

Proof. Assume M is dual π-e.Baer. By Proposition 3.1, H is π-Baer. Let H is π-Baer and YH �p HH. We
claim that EM (Y) =

∑
ψ∈Y

ψ(M) ≤⊕ MR. Since H is π-Baer, there is h = h2 ∈ H such that lH(Y) = Hh.

Observe Y ⊆ rH(lH(Y)) = (1 − h)H. Consider the right ideal A = Y + hH. Notice that lH(A) = lH(Y) ∩
lH(hH) = Hh ∩ H(1 − h) = 0. Thus, lH(A) = 0. By [11, Lemma 3.3],

∑
ψ∈A

ψ(M) = M . Furthermore,

M =
∑
ψ∈A

ψ(M) =
∑
ψ∈I

ψ(M)⊕
∑

ψ∈hH
ψ(M) which gives that M = EM (Y)⊕

∑
ψ∈hH

ψ(M). Hence M is dual

π-e.Baer. The quasi-dual Baer case follows from the similar arguments and [2, Proposition 3.1]. �

Corollary 3.4. M is dual π-e.Baer if and only if EM (Y) = rM (lH(Y)) is a direct summand of MR for all
YH �p HH andH is π-Baer.

Proof. Suppose M is dual π-e.Baer. By Proposition 3.1, H is π-Baer. Let YH �p HH. Then EM (Y) = pM

for some p ∈ Sl(H). Thus (1 − p)ψ(M) = 0 for all ψ ∈ Y by Proposition 2.4. Then 1 − p ∈ lH(Y), so
H(1−p) ⊆ lH(Y). It follows that rM (lH(Y)) ⊆ rM (H(1−p)) = pM = EM (Y). We claim that lH(Y)pM = 0.
Observe that gY = 0 for all g ∈ lH(Y). Then 0 = g(

∑
ψ∈Y

ψ(M)) = g(EM (Y)) = g(pM). Therefore

lH(Y)pM = 0, so pM ⊆ rM (lH(Y)). It follows that EM (Y) = rM (lH(Y) = pM . Conversely, let EM (Y) =
rM (lH(Y)) ≤⊕ MR for all YH �p HH and H be π-Baer. Thus lH(Y) = Hq for some q ∈ Sr(H) by [4,
Proposition 2.1] Hence qν = 0 for all ν ∈ Y . Thus ν = qν+(1−q)ν = (1−q)ν and ν(M) ⊆ (1−q)M . Thence
EM (Y) ⊆ (1− q)M . However, (1− q)M = rM (Hq) = rM (lH(Y)). By hypothesis, (1− q)M = EM (Y), so
M is dual π-e.Baer. �
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A ring R is called right Kasch [13], if every simple right R-module can be embedded in RR.

Corollary 3.5. (i) SupposeH is right Kasch. Then M is dual π-e.Baer if and only ifH is π-Baer.
(ii) If M is an indecomposable dual π-e.Baer module with finite uniform dimension, thenH is semilocal.

Proof. (i) Since H is a right Kasch ring, HH is coretractable by [1, Theorem 2.14]. Then HH is quasi-
coretractable. Therefore Theorem 3.3 yields the result.

(ii) Proposition 2.8(ii) and [12, Proposition 2.17] complete the proof. �

Proposition 3.6. The followings are equivalent.
(i)M is an indecomposable dual π-e.Baer module.
(ii)M is a quasi-coretractable module andH is a domain.
(iii) Every 0 6= τ ∈ H is an epimorphism.
(iv) EM (Y) =M for all 0 6= YH ≤ HH.
(v) DH(A) = H for all 0 6= AR ≤MR.

Proof. (i)⇔ (ii)⇔ (iii) Proposition 2.8(ii), [11, Corollary 2.7] and [12, Corollary 2.2] yield the implications.
(i) ⇒ (iv) Let 0 6= YH ≤ HH. Since M is indecomposable, YH �p HH. Hence EM (Y) = pM for

some p = p2 ∈ H. Thence EM (Y) = 0 or EM (Y) = M . If EM (Y) = 0, then Y ⊆ DH(EM (Y)) = 0, a
contradiction. Therefore EM (Y) =M .

(iv)⇒ (i) SupposeXH�pHH. IfX = 0, then we are done. Let 0 6= X . By part (iv),EM (X ) =M soMR is
dual π-e.Baer. Moreover, EM (hH) =M for some 0 6= h = h2 ∈ H by part (iv). HenceM = EM (hH) = hM ,
so h = 1. Therefore M is indecomposable.

(i)⇔ (v) This part follows from the similar steps in part (i)⇒ (iv) and part (iv)⇒ (i). �

Assume T is the Z2-subalgebra of
∞∏
$=1

F$ generated by
∞⊕
$=1

F$ and 1, where F$ = Z2. Then T is a

countable von Neumann regular ring [6]. In the following result, we make connections between the related
notions when the module has a countable regular endomorphism ring.

Proposition 3.7. AssumeH is countable regular. Then the following statements are equivalent.
(i)H is a Baer ring.
(ii)MR is a dual Baer module.
(iii)HH is a dual Baer module.
(iv)MR is an e.Baer module.

Proof. (i) ⇒ (2) H is a semisimple Artinian ring by [6, Corollary 3.1.13]. Then DH(X) ≤⊕ HH for any
∅ 6= X ⊆M , so M is dual Baer.

(ii) ⇒ (iii) By [11, Theorem 3.6], H is Baer. Thence HH is a dual Baer module by [6, Corollary 3.1.13]
and [12, Corollary 2.9].

(iii) ⇒ (iv) Observe that HH is semisimple by [12, Corollary 2.9]. Hence H(lH(B)) ≤⊕ HH for all
∅ 6= B ⊆M . Thus M is e.Baer.

(iv)⇒ (i) This part follows from [14, Theorem 4.1]. �

The following example explains dual Baer, dual π-e.Baer and quasi-dual Baer modules are strictly different
from each other. Furthermore, it gives an answer to the question: is the dual π-e.Baer module property inherited
by direct summands?

Example 3.8. Assume that R be a simple Noetherian ring with {0, 1} as its only idempotents and not Morita
equivalent to a domain [9]. Observe from [4, Theorem 2.1], R is quasi-Baer but not π-Baer. Then consider the
following examples:

(1) Let MR = RR. Observe that R is a quasi-Baer ring, and RR is coretractable. Hence RR is quasi-dual
Baer by Theorem 3.3. Since R is not a π-Baer ring by [4, Theorem 2.1], RR is not dual π-e.Baer.
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(2) Let TR =
n⊕
κ=1

Rκ where Rκ ∼= R. Hence TR is dual π-e.Baer, but not dual Baer. To see this, observe that

TR is a coretractable module by [1, Proposition 2.6]. Notice that TR is quasi-e.Baer by [14, Proposition 3.19],
and hence H ∼= Matn(R) is also a quasi-Baer ring by [14, Theorem 4.1]. It follows from Theorem 3.3 that TR
is quasi-dual Baer. Moreover, TR is dual π-e.Baer by Corollary 2.9(i). However, TR is not dual Baer. Because
H ∼=Matn(R) is not a Baer ring by [10, Exercise 3].

(3) Note that TR =
n⊕
κ=1

Rκ in part (2) includes a direct summand, RR, which is not dual π-e.Baer.
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1. Introduction

Fractional differential equations are a generalization of the classical ordinary differential equations, they
play a very important role in modeling of various fields of science and engineering, chemistry, physics,
economics, biology, control, etc..., see [2, 3, 11, 12, 17] and the references cited therein. The existence and
uniqueness solution of fractional differential equations are studies by many authors, with different approaches,
such as Riemann-Liouville, Caputo, Hadamard, Caputo-Hadamard, with various boundary conditions as
nonlocal, integral, multipoint and hybrid, see for example [1, 6]. In recent years, many researchers focused on
developing the theoretical aspects and methods of solution of the hybrid fractional differential equations by
using different kinds of fixed point, we refer the reader to the works [5, 9, 16].
In [8] Almeida presented a new fractional differentiation operator named ψ-Caputo fractional operator. This
type of differentiation depends on a kernel, and for particular choices of ψ, we obtain some well known
fractional derivatives like Caputo, Caputo-Hadamard or Caputo, Erdélyi-Kober fractional derivatives. One can
find some recent works on ψ-Caputo derivative in the following published papers and the references cited
therein [5, 8, 10, 18].

∗Corresponding author. Email address: naasadjimi@gmail.com (Naas Adjimi), mbenbachir2001@gmail.com (Maamar Benbachir),
series guerbati k@yahoo.com (Kaddour Guerbati)
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However, this domain reported on the existence solution for hybrid differential equations with ψ-Caputo
fractional derivative still new.
Motivated by this fact, in this paper, we study the existence of solutions for ψ-Caputo hybrid fractional
integro-differential equations of the form

cDν;ψ
a+

[
z(τ)−

∑m
k=1 Iσk;ψ

a+
Fk(τ,z(τ))

G(τ,z(τ))

]
= H(τ, z(τ)), τ ∈ J := [a, b],

z(a) = 0,

(1.1)

where cDν;ψ
a+ is the ψ-Caputo fractional derivative of order ν ∈ (0, 1], Iθ;ψa+ is the ψ-Riemann-Liouville fractional

integral of order θ > 0, θ ∈ {σ1, σ2, . . . , σm}, σk > 0, k = 1, 2, . . . ,m. G ∈ C(J × R,R \ {0}) and Fk,H ∈
C(J× R,R),(k = 1, 2, . . . ,m).

The paper is organized as follows. In section 2, we present some definitions of fractional calculus and lemmas.
In section 3, we prove the existence of solutions for problem (1.1) via hybrid fixed point theorems in Banach
algebra due to Dhage. In section 4, an example is provided to check the applicability of the theoretical findings.

2. Background material

First, we introduce the essential functional spaces that we will adopt in this paper. We denote by C([a, b],R) the
Banach space of all continuous functions z from [a, b] into R with the supremum norm

‖z‖C = sup
τ∈[a,b]

|z(τ)|,

and the multiplication in C by
(zy)(τ) = z(τ)y(τ).

Clearly, C is a Banach algebra with respect to the supremum norm and multiplication in it.
Now, we present some facts from the theory of fractional calculus.

Definition 2.1 ([7, 12]). For ν > 0, the left-sided ψ–Riemann-Liouville fractional integral of order ν for an
integrable function z : [a, b] −→ R with respect to another function ψ : [a, b] −→ R that is an increasing
differentiable function such that ψ′(τ) 6= 0, for all τ ∈ J is defined as follows

Iν;ψ
a+ z(τ) =

1

Γ(ν)

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1z(s)ds, (2.1)

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ν) =

∫ +∞

0

τν−1e−τdτ , ν > 0.

Definition 2.2 ([7]). Let n ∈ N and let ψ, z ∈ Cn([a, b],R) be two functions such that ψ is increasing and
ψ′(τ) 6= 0, for all τ ∈ J. The left-sided ψ–Riemann–Liouville fractional derivative of a function z of order ν is
defined by

Dν;ψ
a+ z(τ) =

(
1

ψ′(τ)

d

dt

)n
In−ν;ψ
a+ z(τ)

=
1

Γ(n− ν)

(
1

ψ′(τ)

d

dt

)n ∫ τ

a

Ξ(s)ds,

where n = [ν] + 1 and Ξ(s) = ψ′(s)(ψ(τ)− ψ(s))n−ν−1z(s).
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Definition 2.3 ([7]). Let n ∈ N and let ψ, z ∈ Cn([a, b],R) be two functions such that ψ is increasing and
ψ′(τ) 6= 0, for all τ ∈ J. The left-sided ψ-Caputo fractional derivative of z of order ν is defined by

cDν;ψ
a+ z(τ) = In−ν;ψ

a+

(
1

ψ′(τ)

d

dt

)n
z(τ),

where n = [ν] + 1 for ν /∈ N, n = ν for ν ∈ N.

Lemma 2.4 ([7]). Let ν, β > 0, and z ∈ C([a, b],R). Then for each τ ∈ J we have
(1) cDν;ψ

a+ Iν;ψ
a+ z(τ) = z(τ),

(2) Iν;ψ
a+

cDν;ψ
a+ z(τ) = z(τ)− z(a), 0 < ν ≤ 1,

(3) Iν;ψ
a+ (ψ(τ)− ψ(a))β−1 = Γ(β)

Γ(β+ν) (ψ(τ)− ψ(a))β+ν−1,

(4) cDν;ψ
a+ (ψ(τ)− ψ(a))β−1 = Γ(β)

Γ(β−ν) (ψ(τ)− ψ(a))β−ν−1,

(5) cDν;ψ
a+ (ψ(τ)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Theorem 2.5. Let S be a closed convex , bounded and nonempty subset of a Banach algebra X , and let A, C :

X −→ X and B : S −→ X be three operators such that
(a) A and C are Lipschitzian with Lipschitz constants δ and ξ, respectively,
(b) B is compact and continuous,
(c) x = AxBy + Cx⇒ x ∈ S for all y ∈ S,
(d) δM + ξ < 1 where M =

∥∥B(S)
∥∥.

Then the operator equation AxBx+ Cx = x has a solution in S.

3. Main Results

Before proceeding to the main results, we start by the following lemma.

Lemma 3.1. Let ν ∈ (0, 1] be fixed and functions Fi, (i = 1, · · · , n),G,H satisfy problem (1.1). Then the
function z ∈ C([a, b],R) is a solution of the hybrid fractional integro-differential problem (1.1) if and only if it
satisfies the integral equation

z(τ) = G(τ, z(τ))
[
Mψ + Iν;ψ

a+ H(τ, z(τ))
]

+

m∑
k=1

Iσk;ψ
a+ Fk(τ, z(τ)), τ ∈ [a, b], (3.1)

where

Mψ =
−
∑m
k=1 I

σk;ψ
a+ Fk(a, 0)

G(a, 0)
(3.2)

For the proof of Lemma 3.1, it is useful to refer to [13, 14].

Theorem 3.2. Assume that:

(H1) Let the functions G : J× R→ R \ {0} and, Fk,H : J× R→ R, k = 0, 1, 2, ...,m are continuous

(H2) There exists two positive functions LFk ,LG, k = 0, 1, ...,m with bounds ‖LFk‖ and ‖LG‖,
k = 0, 1, 2, ...,m, respectively, such that
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|Fk(τ, z(τ))− Fk(τ, z(τ))| ≤ LFk(τ)|z − z| (3.3)

k = 0, 1...,m

and

|G(τ, z(τ))−G(τ, z(τ))| ≤ LG(τ)|z − z|, (3.4)

for all (τ, z, z) ∈ J× R× R.

(H3) There exist a function p ∈ C(J,R+) and a continuous nondecreasing function Ω : [0,∞) → (0,∞) such
that

|H(τ, z(τ))| ≤ p(τ)Ω(|z|), (3.5)

for all τ ∈ J and z ∈ R.

(H4) There exists a number r > 0 such that

r ≥
G∗Λ + `σkψ F∗k

1− ‖LG‖Λ− `σkψ ‖LFk‖
, (3.6)

and

‖LG‖Λ + lσkψ F∗k < 1, (3.7)

where F∗k = supτ∈J|Fk(τ, 0)|, and G∗ = supτ∈J|G(τ, 0)|, k = 0, 1, 2, ...,m, and

Λ = |Mψ|+ Ω(r)‖p‖lνψ, (3.8)

Then hybrid fractional integro-differential problem (1.1) has a least one solution defined on J.

Proof. In order to use Dhage’s fixed-point theorem to prove our main result, we define a subset Sr of C by

Sr = {z ∈ C : ‖z‖C ≤ r} ,

with r is a constant defined by hypothesis H4.
Notice that Sr is closed, convex and bounded subset of C. Define three operators A,C : C −→ C and B : Sr −→ C

by {
Az(τ) = G(τ, z(τ)),

Bz(τ) = Mψ + Iν;ψ
a+ H(τ, z(τ)),

τ ∈ J,

and

Cz(τ) =

m∑
k=1

Iσk;ψ
a+ Fk(τ, z(τ)), τ ∈ J.

Then (3.1) in operator form becomes

z(τ) = Az(τ)Bz(τ) + Cz(τ), τ ∈ J.
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We shall prove that the operators A,B and C satisfy the conditions of Theorem 2.5. For the sake of clarity, we
split the proof into a sequence of steps.
Step 1: First, we show that A and C are Lipschitzian on C. Let z, z̄ ∈ C. then by (H2), for τ ∈ [a, b], we have

|Az(τ)− Az̄(τ)| = |G(τ, z(τ))−G(τ, z̄(τ))|
≤ LG(τ)‖z(τ)− z̄(τ)‖C.

Taking supremum over τ ∈ [a, b], we obtain

‖Az − Az̄‖C ≤ ‖LG‖‖z(τ)− z̄(τ)‖C,

for all z, z̄ ∈ C. Therefore, A is a Lipschitzian on C with Lipschitz constant LG. Also, for any z, z̄ ∈ C., we have

|Cz(τ)− Cz̄(τ)| ≤
m∑
k=1

Iσk;ψ
a+ |Fk(τ, z(τ))− Fk(τ, z̄(τ))|

≤
m∑
k=1

Iσk;ψ
a+ LFk(τ)‖z(τ)− z̄(τ)‖C

≤
m∑
k=1

(ψ(b)− ψ(a))σk

Γ(σk + 1)
‖LFk‖‖z(τ)− z̄(τ)‖C.

Hence, we have
‖Cz − Cz̄‖C ≤ `σkψ ‖LFk‖‖z(τ)− z̄(τ)‖C.

Which means that C is a Lipschitzian on C with Lipschitz constant `σkψ ‖LFk‖.
Step 2: We show that B is completely continuous on Sr. The continuity of B follows by the continuity of H.
Now, it is sufficient to show that B is uniformly bounded and equicontinuous on Sr. On the other hand, Keeping
in mind the definition of the operator B on [a, b] together with assumption (H3). For any z ∈ Sr we can get

|Bz(τ)| ≤|Mψ|+
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
|H(s, z(s)|ds

≤|Mψ|
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
Ω(r)p(s)ds

≤|Mψ|+ Ω(r)‖p‖
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
ds

≤|Mψ|+
(ψ(b)− ψ(a))ν

Γ(ν + 1)
Ω(r)‖p‖

=|Mψ|+ Ω(r)‖p‖`νψ.

Hence

‖Bz‖C ≤ |Mψ|+ Ω(r)‖p‖`νψ.

Thus ‖Bz‖ ≤ Λ with Λ given in (3.8), for all z ∈ Sr. This shows that B is uniformly bounded on Sr.
Now, we will show that B(Sr) is an equicontinuous set in C.
Let τ1, τ2 ∈ J with τ1 < τ2 . Then for any z ∈ Sr, by (3.5) we get

|Bz(τ2)− Bz(τ1)| ≤
∣∣∣∣∫ τ2

a

Θτ2(s)ds−
∫ τ1

a

Θτ1(s)ds

∣∣∣∣
≤ Ω(r)‖p‖

Γ(ν)

∫ τ1

a

∆1(s)ds +
Ω(r)‖p‖

Γ(ν)

∫ τ2

τ1

∆2(s)ds, (3.9)
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where Θτ2(s) = ψ(s)(ψ(τ2)−ψ(s))ν−1

Γ(ν) H(τ, z(τ)), Θτ1(s) = ψ(s)(ψ(τ1)−ψ(s))ν−1

Γ(ν) H(τ, z(τ)),

∆1(s) = ψ′(s)
[
(ψ(τ1)− ψ(s))ν−1 − (ψ(τ2)− ψ(s))ν−1

]
and ∆2(s) = ψ′(s) (ψ(τ2)− ψ(s))

ν−1.
It is clear that the right-hand side of (3.9) is independent of z. Therefore, as τ2 → τ1, inéquality (3.9) tends zeros.
As consequence of the Arzela-Ascoli theorem, B is a completely continuous operator on Sr.
Step 3: The hypothesis (c) of Theorem 2.5 is satisfied.
Let z ∈ C and y ∈ Sr be arbitrary elements such that z = AzBy + Cz. Then we have

|z(τ)| ≤ |Az(τ)| |By(τ)|+ |Cz(τ)|

≤ |G(τ, z(τ))|
{
Mψ + Iν;ψ

a+ |H(τ, y(τ))|
}

+

m∑
k=1

Iσk;ψ
a+ |Fk(τ, z(τ))|

≤
(
|G(τ, z(τ))−G(τ, 0)|

+ |G(τ, 0)|
){

Mψ + Iν;ψ
a+ |H(τ, y(τ))|

}
+

m∑
k=1

Iσk;ψ
a+ |

(
|Fk(τ, z(τ))− Fk(τ, 0)|+ |Fk(τ, 0)|

)
≤
(
‖LG‖‖z‖C + G∗

)[
|Mψ|+ Ω(r)‖p‖`νψ

]
+ `σkψ

(
‖LFk‖‖z‖C + F∗k

)
.

Thus,
|z(τ)| ≤

(
‖LG‖‖z‖C + G∗

)
Λ + `σkψ

(
‖LFk‖‖z‖C + F∗k

)
.

Taking the supremum over τ ,

‖z‖ ≤
G∗Λ + `σkψ F∗k

1− ‖LG‖Λ− `σkψ ‖LFk‖
≤ r.

Step 4: Finally we show that δM + ξ < 1, that is, (d) of Theorem 2.5 holds.
Since

M = ‖B(S)‖ = sup
z∈S

{
sup
τ∈J
|Bz(t)|

}
≤ Λ,

and so
‖LG‖M + `σkψ ‖LFk‖ ≤ ‖LG‖Λ + `σkψ ‖LFk‖ < 1,

with δ = ‖LG‖, ξ = `σkψ ‖LFk‖. Thus all the conditions of Theorem 2.5 are satisfied and hence the operator
equation z = AzBz + Cz has a solution in Sr. As a result, problem (1.1) has a solution on J. �

4. Application

In this section, we present an example to show the applicability of the main result.

Example 4.1. Consider the following hybrid fractional integro-differential equation:
cD

1
2 ;ψ

a+

[
z(τ)−

∑m
k=1 Iσk;ψ

a+
Fk(τ,z(τ))

G(τ,z(τ))

]
= 1√

25+t2

(
|z|

(4|z|+1) + z2

|z|+1 + 1
4

)
,

τ ∈ J := [0, 1],

z(a) = 0.

(4.1)

We take

ν =
1

2
, m = 3, σ1 =

1

2
, σ2 =

3

2
, σ3 =

5

2
,
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3∑
k=1

Iσk;ψ
a+ Fk(τ, z(τ)) = I

1
2 ;ψ

a+
τ

10

(
z(τ) + e−τ

)
+ I

3
2 ;ψ

a+
τ cos τ

12(1 + eτ )

(
|z(τ)|

1 + |z(τ)|
+

τ

τ + 1

)
+ I

5
2 ;ψ

a+
3 sinπτ

4 + τ

(
|z(τ)|

5 + |z(τ)|
+ cos τ

)
,

ψ(τ, z(τ)) =
τ

2
(τ + 1), τ ∈ [0, 1],

G(τ, z(τ)) =
6
√
π sin2(πτ)

(τ + 5)

z(τ)

1 + z(τ)
+

1

2
,

H(τ, z(τ))) =
1√

36 + t2

(
|z|

(4|z|+ 1)
+

z2

|z|+ 1
+

1

4

)
.

We can show that

|F1(τ, z(τ))− F1(τ, z(τ))| ≤ τ

10
|z − z|,

|F2(τ, z(τ))− F2(τ, z(τ))| ≤ τ

12(1 + eτ )
|z − z|,

|F3(τ, z(τ))− F3(τ, z(τ))| ≤ 3

20 + 5τ
|z − z|,

|G(τ, z(τ))G(τ, z(τ))−| ≤ 6
√
π

(τ + 5)
|z − z|,

|H(τ, z(τ)))−H(τ, z(τ)))| = 1√
36 + t2

(|z|+ 1

2
),

where
Ω(|z|) = |z|+ 1, p(τ) =

1√
36 + t2

.

Hence we have

LG(τ) =
6
√
π

(τ + 5)
, F1 =

τ

10
, F2 =

τ

12(1 + eτ )
, F3 =

3

20 + τ
.

Then

‖LG‖ =
6
√
π

5
, ‖LF1

‖ =
1

10
, ‖LF2

‖ =
1

12(1 + e)
,

‖LF3
‖ =

3

20
, ‖p‖ =

1

6
, lνψ =

2√
π
,

lσkψ ‖LFk‖ =
81(1 + e) + 25

450
√
π(1 + e)

, lσkψ F∗k =
58

75
√
πe2

Mψ =
234(1 + e) + 100

225
√
π(1 + e)

,

and
F∗k = sup

z∈J
|Fk(τ, 0)| = 1

5e2
, G∗ = sup

z∈J
|G(τ, 0)| = 1

2
, k = 1, 2, 3.

By using Matlab program, it follows by (3.6) and (3.7) that the constant r satisfies the inequality 0.7411 < r <

0.9970. As all the assumptions of Theorem (3.2) are satisfied then the problem (4.1) has at least one solution on
J.
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1. Introduction

Let (Mn, g) be an n-dimensional Riemannian manifold with the matric g. A tensor field T of type (0, q) is
said to recurrent [1] if the relation

(DXT )(Y1, Y2, ..., Yq)T (Z1, Z2, ..., Zq)− T (Y1, Y2, ..., Yq)(DXT )(Z1, Z2, ..., Zq) = 0

holds on (Mn, g). From definition it follows that if at a point x ∈ M ; T (X) 6= 0, then on some neighbourhood
of x, there exits a unique 1-form A satisfying

(DXT )(Y1, Y2, ..., Yq) = A(X)T (Y1, Y2, ..., Yq)

∗Corresponding author. Email address: bhagwatprasad2010@rediffmail.com (B. Prasad) and rana 2181@rediffmail.com (R.P.S.
Yadav)
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In 1952, Patterson [2] introduced a Ricci recurrent manifolds. According to him, a manifold (Mn, g) of
dimension n, was called Ricci recurrent if

(DXS)(Y, Z) = A(X)S(Y,Z)

for some 1-form A. He denoted such a manifold by Rn. Ricci recurrent manifolds have been studied by several
authors ( [3], [4], [1], [5] ) and many others. In a recent paper De, Guha and Kamilya [6] introduced the notion
of generalized Ricci recurrent manifold as follows:

A non-flat Riemannian manifold (Mn, g)(n > 2) is called generalized Ricci recurrent if the Ricci tensor S is
non-zero and satisfies the condition:

(DXS)(Y,Z) = A(X)S(Y,Z) +B(X)g(Y,Z),

where A and B non-zero 1-forms. Such a manifold where denoted by them as GRn. If the associated 1-form
B becomes zero, then the manifold GRn reduces to a Ricci recurrent manifold Rn. This justifies the name
generalized Ricci recurrent manifold and the symbols GRn for it. Also in a paper De, and Guha [7] introduced
a non flat Riemannian (Mn, g)(n > 2) called a generalized recurrent manifold if its curvature tensor R(X,Y )Z

of type (1,3) satisfies the condition:

(DUR)(X,Y )Z = A(U)R(X,Y )Z +B(U)[g(Y,Z)X − g(X,Z)Y ],

where A and B are two non-zero 1-forms and D denotes the operator of covariant differentiation with respect
to metric tensor g. Such a manifold has been denoted by GKn. If the associated 1-form B becomes zero, then
the manifold GKn reduces to recurrent manifold introduced by Ruse [8] and Waker [9] which was denoted by
Kn. In recent papers Arslan etal [10], Shaikh and Patra [11], Mallick, De and De [12], Khairnar [Kh], Shaikh,
Prakasha and Ahmad [14], Kumar, Singh and Chowdhary [15], Hui [16], Singh and Mayanglambam [17], Singh
and Kishor [18] etc. explored various geometrical propertis by using generlaized recurrent and generlaized Ricci
recurrent manifold on Riemannian manifolds , Lorentzian Trans-Sasakian manifolds, LP-Sasakian manifolds,
(k − µ) contact metric manifolds.

Further the authors Prasad and Yadav [19] considered a non-flat Riemannian manifold (Mn, g)(n > 3) whose
curvature tensor R satisfies the following condition:

(DUR)(X,Y )Z = [A(U) +B(U)]R(X,Y )Z +B(U)[g(Y, Z)X − g(X,Z)Y ],

where A and B are two non-zero 1-forms and D has the meaning already mentioned. Such a manifold where
called by them as nearly recurrent Riemannian manifold and denoted by (NR)n.

The motivation of the above studies, we define a new type of non flat Riemannian manifold is called nearly
Ricci recurrent manifolds if the Ricci tensor S is non zero and satisfies the condition:

(DXS)(Y,Z) = [A(X) +B(X)]S(Y,Z) +B(X)g(Y,Z) (1.1)

where A and B non-zero 1-forms, P and Q be two vector fields such that

A(X) = g(P,X), B(X) = g(Q,X) (1.2)

Such a manifold shall be called as a nearly Ricci recurrent manifold and 1-forms A and B shall be called its
associated 1-form and n dimensional nearly Ricci recurrent manifold of this kind shall be denoted byN {R(Rn)}.
The name nearly Ricci recurrent Riemannian manifold was chosen because if B = 0 in (1.1) then the manifold
reduces to a Ricci recurrent manifold which is very close to Ricci recurrent space. This justifies the name
Nearly Ricci recurrent manifold for the manifold defined by (1.1) and the use of the symbol N {R(Rn)} for
it.
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In this paper, after preliminaries, the existence of a N {R(Rn)} is first established and then it proved that the
scalar curvature of N {R(Rn)} cannot be zero. In section 4, the necessary and sufficient condition for constant
scalar curvature of N {R(Rn)} is obtained. Here it is established if A is closed then B is also closed and
conversely in section 5. In section 6, it is shown that if the scalar curvature is constant in N {R(Rn)} then the
eigen value of the Ricci tensor S corresponding to the given eigen vector not exist. In section 7, it is proved that in
Conformally flat N {R(Rn)} with constant scalar curvature if the 1-form A is closed then R(X,Y ).S = 0 if and
only if {A(X) +B(X)}A(LZ) = {A(Z) +B(Z)}A(LX). In section 8, a necessary and sufficient condition
for N {R(Rn)} to be a (NR)n is obtained. Finally the existence of nearly Ricci recurrent manifold N {R(Rn)}
is ensured by a non trivial example.

2. Preliminaries

Let L denotes the symmetric endomorphism of the tangent space at each point of the manifold corresponding to
the Ricci tensor S that is g(LX, Y ) = S(X,Y ) for every vector field X,Y . Therefore,

g((DXL)Y, Z) = (DXS)(Y, Z). (2.1)

From (1.1), we have
dr(X) = [A(X) +B(X)]r + nB(X). (2.2)

3. Existence of a N {R(Rn)} (n ≥ 2)

In this section, it show that there exist a Riemannian manifold (Mn, g)(n ≥ 2) whose Ricci tensor S of type
(0,2) satisfies the condition

(DXS)(Y, Z) = [A(X) +B(X)]S(Y,Z) +B(X)g(Y,Z)

and for which (DXS)(Y,Z) 6= A(X)S(Y,Z). For this we consider a Riemannian manifold (Mn, g) which
admits a linear connection D defined by

DXY = DXY +
1

2
B(X)LY +

1

2
B(X)Y (3.1)

where B is non zero 1-form L is a symmetric endomorphism of the tangent space at each point (Mn, g)

corresponding to the Ricci tensor S defined by g(LX, Y ) = S(X,Y ) and L2X = X and which satisfies the
condition

(DXS)(Y,Z) = A(X)S(Y,Z) (3.2)

If (3.2) holds, then

XS(Y,Z)− S(DXY,Z)− S(Y,DXZ) = A(X)S(Y,Z)

⇒XS(Y,Z)− S
(
DXY +

1

2
B(X)LY +

1

2
B(X)Y,Z

)
−

S

(
Y,DXZ +

1

2
B(X)LZ +

1

2
B(X)Z

)
= A(X)S(Y, Z)

From this, we get
(DXS)(Y, Z) = [A(X) +B(X)]S(Y,Z) +B(X)g(Y,Z)

The connection D is not identical with D. Hence (DXS)(Y, Z) 6= A(X)S(Y, Z). Thus a Riemannian manifold
(Mn, g)(n ≥ 2) admits a linear connection D which satisfies (3.1) and (3.2) then the manifold is a N {R(Rn)}.
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4. Nature of scalar curvature of a N {R(Rn)}

From (2.2), we get if r = 0, then B = 0. Since the 1-form B cannot be zero.
Hence we can state the following theorem:

Theorem 4.1. The scalar curvature of a N {R(Rn)} (n ≥ 2) cannot be zero.

Now suppose that N {R(Rn)} is of constant scalar curvature. Then from (2.2) it follows that

[A(X) +B(X)]r + nB(X) = 0

Hence we have
A(X) = −

(
1 +

n

r

)
B(X) (4.1)

Again if (4.1) holds, then from (2.2) we get r = constant.
Hence we have the following theorem:

Theorem 4.2. A N {R(Rn)} (n ≥ 2) is of constant scalar curvature if and only if the condition (4.1) holds.

5. Nature of the 1-forms A and B

We have
d2r(X,Y ) =

1

2
[Xdr(Y )− Y dr(X)− dr([X,Y ])] (5.1)

Now in virtue of (2.2), we get from (5.1)

1

2
[X {(A(Y ) +B(Y ))r + nB(Y )} − Y {(A(X) +B(X))r + nB(X)} − nB ([X,Y ])]

or rdA(X,Y ) + (n+ r)dB(X,Y ) = 0

Since B is closed then rdA(X,Y ) = 0. But r 6= 0, A is closed.
Conversely if A is closed then B is closed.
Hence we have the following theorem:

Theorem 5.1. In a N {R(Rn)} if B is closed then A is closed. Conversely if A is closed then B is closed,
provided r 6= 0.

6. N {R(Rn)} with constant scalar curvature

Let us suppose that the scalar curvature r of a N {R(Rn)} be constant. Now from (1.1), we have

(DXS)(Y,Z)− (DZS)(Y,X) =[A(X) +B(X)]S(Y,Z)− [A(Z) +B(Z)]S(Y,X)

+B(X)g(Y,Z)−B(Z)g(Y,X)
(6.1)

In view of (2.1), we have from (6.1)

g((DXL)Z, Y )− g((DZL)X,Y ) = [A(X) +B(X)]g(LZ, Y )− [A(Z) +B(Z)]g(LX, Y )

+B(X)g(Z, Y )−B(Z)g(X,Y )

or (DXL)Z − (DZL)X = [A(X) +B(X)]LZ − [A(Z) +B(Z)]LX +B(X)Z −B(Z)X

which on contraction gives

dr(X) = 2[A(X) +B(X)]r − 2[A(LX) +B(LX)] + 2(n− 1)B(X). (6.2)
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From (2.2) and (6.2), we have

2[A(LX) +B(LX)] = [A(X) +B(X)]r + (n− 2)B(X)

or B(X) =
2

r + n− 2
[A(LX) +B(LX)]− r

r + n− 2
A(X) (6.3)

In view of (2.2) and (6.3), we get

dr(X) = − 2r

r + n− 2
A(X) +

2(r + n)

r + n− 2
[A(LX) +B(LX)].

Now if r is constant then
S(X,P ) + S(X,Q) =

1

1 + n
r

g(X,P ) (6.4)

Hence we can state the following theorem:

Theorem 6.1. In a N {R(Rn)}, none of P and Q can be an eigen vector corresponding to any eigen values.

7. Conformally flat N {R(Rn)} with constant scalar curvature

In Conformally flat (Mn, g) it known [20]

(DXS)(Y,Z)− (DZS)(Y,X) =
1

2(n− 1)
[dr(X)g(Y,Z)− dr(Z)g(X,Y )], (7.1)

From (2.2) and (7.1), we get

(DXS)(Y, Z)− (DZS)(Y,X) =
1

2(n− 1)
[{A(X) +B(X)} rg(Y,Z) + nB(X)g(Y,Z)

− {A(Z) +B(Z)} rg(Y,X)− nB(Z)g(Y,X)].

(7.2)

Putting Y = P in (7.2), we get

[(A(X) +B(X)]A(LZ)− [(A(Z) +B(Z)]A(LX) + [B(X)A(Z)−B(Z)A(X)] =

1

2(n− 1)
[{A(X) +B(X)} rA(Z) + nB(X)A(Z)− {A(Z) +B(Z)} rA(X)− nB(Z)A(X)],

or A(X)B(Z)−A(Z)B(X) =
2(n− 1)

r − n+ 2
[{A(X) +B(X)}A(LZ)

− {(A(Z) +B(Z)}A(LX)]

(7.3)

Now from (1.1),we get

(DUDV S)(Y, Z) =[(DUA)(V ) +A(DUV ) + (DUB)(V ) +B(DUV )]S(Y, Z)

+ [A(U) +B(U)][A(V ) +B(V )]S(Y,Z)+

[A(V )B(U) +B(U)B(V ) + (DUB)(V ) +B(DUV )]g(Y,Z)

From above, we have

(DUDV S)(Y,Z)− (DVDUS)(Y,Z)− (D[U,V ]S)(Y,Z) =

[(DUA)(V )− (DVA)(U) + (DUB)(V )− (DVB)(U)]S(Y,Z)

[(DUB)(V )− (DVB)(U) +A(V )B(U −A(U)B(V ))]g(Y,Z)
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which gives

(R(U, V ).S)(Y,Z) =[(dA(U, V ) + dB(U, V )]S(Y,Z) + dB(U, V )g(Y, Z)

[A(V )B(U)−A(U)B(V )]g(Y,Z).
(7.4)

Suppose the 1-form A is closed. Then in virtue of theorem (5.1) and (7.3) we get from (7.4)

(R(U, V ).S)(Y,Z) =
2(n− 1)

r − n+ 2
[{A(X) +B(X)}A(LZ)− {A(Z) +B(Z)}A(LX)]

Hence we have the following theorem:

Theorem 7.1. In a Conformally flat N {R(Rn)}with constant scalar curvature, R(X,Y).S = 0 if and only if
{A(X) +B(X)}A(LZ) = {A(Z) +B(Z)}A(LX).

8. Necessary and sufficient condition for a N {R(Rn)} to be a (NR)n

It is known that the Conformal curvature tensor ′C of type (0, 4) of a Riemannian manifold (Mn, g)(n > 3) is
given by

′C(X,Y, Z,W ) = ′R(X,Y, Z,W )− 1

n− 2
[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ S(X,W )g(Y, Z)− S(Y,W )g(X,Z)]−
r

(n− 1)(n− 2)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )],

(8.1)

where ′C(X,Y, Z,W ) = g(C(X,Y )Z,W ) , ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ) and C is the Conformal
curvature tensor of type (1,3). Now let Mn be a nearly Ricci recurrent manifold N {R(Rn)} specified by a
non-zero1-form B.

Then in view of (1.1), (2.2) and (8.1), we get

(DU
′C)(X,Y, Z,W )− [A(U) +B(U)] ′C(X,Y, Z,W ) =

(DU
′R)(X,Y, Z,W )− [A(U) +B(U)] ′R(X,Y, Z,W )−

B(U)

(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )],

(8.2)

Conversely if (8.2) holds, then putting Y = Z = ej in (8.2) where {ej} , j = 1, 2, 3, ..., n is orthonormal basis
of the tangent space at each point of the manifold and l is summed for l ≤ j ≤ n, we get

(DUC)(X,W )− [A(U) +B(U)]C(X,W ) =

(DUS)(X,W )− [A(U) +B(U)]S(X,W )−B(U)g(X,W )
(8.3)

But in view of C(X,W ) = 0, we get from (8.3) that

(DUS)(X,W )− [A(U) +B(U)]S(X,W )−B(U)g(X,W ).

From (8.2) and (8.3), we can state the following theorem:

Theorem 8.1. A necessary and sufficient condition that Riemannian manifold Mn be a N {R(Rn)} is that (8.2)
holds.

In particular, if the Mn Conformal to a flat space or if n = 3 then C = 0. In the first case it follows (8.2) that
the N {R(Rn)} is a (NR)n. In the second case it follows that N {R(R3)} is a (NR)3.
Thus we can state the following theorem:

Theorem 8.2. Every N {R(Rn)} (n > 3) is a (NR)n if it is Conformal to a flat space and every N {R(R3)} is
a (NR)3.
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9. Example

Let us consider the 3-dimensional manifold M =
{
(x, y, z) ∈ R3, z 6= 0

}
, where (x, y, z) are standard co-

ordinate of R3.
We choose the vector fields

e1 = eiy
∂

∂x
, e2 =

∂

∂y
, e3 = e−iy

∂

∂z
(9.1)

which is linearly independently at each point of M.

Let g be the Riemannian metric denoted by

g(ei, ej) =

{
1, i = j

0, i 6= j
(9.2)

Let D be the Levi-Civita connection with respect to metric g. Then from equation (9.1), we have

[e1, e2] = −ie1, [e1, e3] = 0, [e2, e3] = −ie3. (9.3)

The Riemannian connection D of the metric g is given by

2g (DXY, Z) =Xg (Y,Z) + Y g (X,Z)− Zg (X,Y )− g (X, [Y,Z])
− g (Y, [X,Z]) + g (Z, [X,Y ]) ,

(9.4)

which is known as Koszul’s formula. Using (9.2) and (9.3) in (9.4), we get

De1e1 = ie2, De1e2 = −ie1, De1e3 = 0,

De2e1 = 0, De2e2 = 0, De2e1 = 0,

De3e1 = 0, De3e2 = ie3, De3e3 = −ie2.
(9.5)

The curvature tensor is given by

R(X,Y )Z =DXDY Z −DYDXZ −D[X,Y ]Z (9.6)

Using (9.3) and (9.5) in (9.6) , we get

R (e1, e2) e1 = −e2, R (e1, e2) e2 = e1, R (e1, e2) e3 = 0

R (e2, e3) e1 = 0, R (e2, e3) e2 = −e3, R (e2, e3) e3 = e2

R (e1, e3) e1 = e3, R (e1, e3) e2 = 0 R (e1, e3) e3 = −e1
R (e1, e1) e1 = R (e1, e1) e2 = R (e1, e1) e3 = 0

R (e2, e2) e1 = R (e2, e2) e2 = R (e2, e2) e3 = 0

R (e3, e3) e1 = R (e3, e3) e2 = R (e3, e3) e3 = 0.

(9.7)

The Ricci tensor is given by

S(ei, ei) =

3∑
i=1

g(R(ei, X)Y, ei) (9.8)

From (9.7) and (9.8), we get

S(e1, e1) = 0, S(e2, e2) = 2, S(e3, e3) = 0 (9.9)

and the scalar curvature is r = 2.
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Since {e1, e2, e3} forms a basis of Riemannian manifold any vector field X,Y, Z ∈ χ(M) can be written as

X = a1e1 + b1e2 + c1e3, Y = a2e1 + b2e2 + c2e3,

where aj , bj , cj ∈ R+ ( the set of all positive real numbers), j = 1, 2, 3.

Hence
S(X,Y ) = b1b2 (9.10)

g(X,Y ) = a1a2 + b1b2 + c1c2 (9.11)

By view of (9.10), we get

(DejS)(X,Y ) = DejS(X,Y )− S(DejX,Y )− S(X,DejY )

(De1S)(X,Y ) = −i(a1b2 + a2b1)

(De2S)(X,Y ) = 0

(De3S)(X,Y ) = −i(b1c2 + b2c1)

Consequently, the manifold under consideration is neither Ricci symmetric nor Ricci recurrent. Let us now
consider 1-form non vanishes

A (e1) =
5i(a1b2 + a2b1)

3a1a2 − b1b2 + 3c1c2
, B (e1) =

−3i(a1b2 + a2b1)

3a1a2 − b1b2 + 3c1c2

A (e2) = 0, B (e2) = 0

A (e3) =
5i(b1c2 + b2c1)

3a1a2 − b1b2 + 3c1c2
, B (e3) =

−3i(b1c2 + b2c1)

3a1a2 − b1b2 + 3c1c2

(9.12)

at any point x ∈M . From (1.1), we have(
DejS

)
(X,Y ) = [A(ej) +B(ej)]S(X,Y ) +B(ej)g(X,Y ), j = 1, 2, 3. (9.13)

It can be easily seen that the Riemannian manifold with 1-forms satisfies relation (9.13). Hence the manifold
under consideration is a nearly Ricci recurrent manifold (M3, g), which is neither Ricci recurrent nor Ricci
symmetric. Thus we have the following theorem:

Theorem 9.1. There exist a nearly Ricci recurrent manifold (M3, g), which is neither Ricci recurrent nor Ricci
symmetric.
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