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Abstract

This paper deals with the study of global existence of solutions to initial value problem for second order nonlinear

mixed Volterra-Fredholm functional integrodifferential equations in Banach spaces. The technique used in our analysis

is based on an application of the topological transversality theorem known as Leray-Schauder alternative and rely on a

priori bounds of solution.

Keywords: Global solution; Volterra-Fredholm functional integrodifferential equation; Leray-Schauder alternative; Fixed point;

priori bounds.
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1 Introduction

Let X be a Banach space with the norm ‖ · ‖. Let C = C([−r, 0], X), 0 < r < ∞, be the Banach space of
all continuous functions ψ : [−r, 0] → X endowed with supremum norm

‖ψ‖C = sup{‖ψ(θ)‖ : −r ≤ θ ≤ 0}.

Let B = C([−r, T ], X), T > 0, be the Banach space of all continuous functions x : [−r, T ] → X with the
supremum norm ‖x‖B = sup{‖x(t)‖ : −r ≤ t ≤ T}. For any x ∈ B and t ∈ [0, T ] we denote xt the element of
C given by xt(θ) = x(t+ θ) for θ ∈ [−r, 0].

In this paper we prove the global existence for second order abstract nonlinear mixed Volterra-Fredholm
functional integrodifferential equation of the form

(%(t)x′(t))′ = f

(
t, xt,

∫ t

0

a(t, s)g(s, xs)ds,
∫ T

0

b(t, s)h(s, xs)ds

)
, t ∈ [0, T ], (1.1)

x(t) = φ(t), −r ≤ t ≤ 0, x′(0) = δ, (1.2)

where f : [0, T ]×C×X×X → X, a, b : [0, T ]× [0, T ] → R, g, h : [0, T ]×C → X are continuous functions, %(t)
is real valued positive sufficiently smooth function on [0, T ] , φ ∈ C and δ ∈ X are given.

Equation of the form (1.1)-(1.2) and their special forms serve as an abstract formulation of many partial
differential equations or partial integrodifferential equations which arising in heat flow in materials with memory,
viscoelasticity and many other physical phenomena see [6, 8, 12] and the references given therein.

The problem of existence, uniqueness and other properties of solutions of the special forms of (1.1)-(1.2)
have been studied by many authors by using different techniques, see [1–4, 7, 9–11, 14–17] and some of the
references given therein. In an interesting paper [13], Ntouyas have investigated the global existence for Volterra
functional integro-differential equations in Rn by using classical application of Leray-Schauder alternative. The
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2 M. B. Dhakne et al. / Existence results...

present paper generalizes the result of [13]. The aim of this paper is to study the existence of global solutions
of (1.1)-(1.2). The main tool used in our analysis is based on an application of the topological transversality
theorem known as Leray-Schauder alternative, rely on a priori bounds of solutions. The interesting and useful
aspect of the method employed here is that it yields simultaneously the global existence of solutions and the
maximal interval of existence.

2 Preliminaries and Main Results

Firstly, we shall set forth some preliminaries and hypotheses that will be used in our subsequent discussion.

Definition 2.1. A function x : [−r, T ] → X is called solution of initial value problem (1.1)-(1.2) if x ∈
C([−r, T ], X)

⋂
C2([0, T ], X) and satisfies (1.1)-(1.2) on [−r, T ].

Our results are based on the following lemma, which is a version of the topological transversality theorem
given by Granas [5, p. 61].

Lemma 2.1. Let S be a convex subset of a normed linear space E and assume 0 ∈ S. Let F : S → S be a
completely continuous operator, and let

ε(F ) = {x ∈ S : x = λFx for some 0 < λ < 1}.

Then either ε(F ) is unbounded or F has a fixed point.

We list the following hypotheses for our convenience.

(H1) There exists a continuous function p : [0, T ] → R+ = [0,∞) such that

‖f(t, ψ, x, y)‖ ≤ p(t)(‖ψ‖C + ‖x‖+ ‖y‖),

for every t ∈ [0, T ], ψ ∈ C and x, y ∈ X.

(H2) There exists a continuous function m : [0, T ] → R+ such that

‖g(t, ψ)‖ ≤ m(t)G(‖ψ‖C),

for every t ∈ [0, T ] and ψ ∈ C , where G : R+ → (0,∞) is continuous nondecreasing function.

(H3) There exists a continuous function n : [0, T ] → R+ such that

‖h(t, ψ)‖ ≤ n(t)H(‖ψ‖C),

for every t ∈ [0, T ] and ψ ∈ C, where H : R+ → (0,∞) is continuous nondecreasing function.

(H4) There exists a constants K and L such that

|a(t, s)| ≤ K, for t ≥ s ≥ 0, and |b(t, s)| ≤ L, for s, t ∈ [0, T ].

(H5) For each t ∈ [0, T ] the function f(t, ., ., .) : C×X×X → X is continuous and for each (ψ, x, y) ∈ C×X×X
the function f(., ψ, x, y) : [0, T ] → X is strongly measurable.

(H6) For each t ∈ [0, T ] the functions g(t, .), h(t, .) : C → X are continuous and for each ψ ∈ C the functions
g(., ψ), h(., ψ) : [0, T ] → X are strongly measurable.

With these preparations we state and prove our main results.

Theorem 2.1. Suppose that the hypothesis (H1)-(H6) holds. Then the initial-value problem (1.1)-(1.2) has a
solution x on [−r, T ] if T satisfies ∫ T

0

M(s)ds <
∫ ∞

α

ds

s+G(s)
, (2.1)

where

M(t) = max

{
1
R

∫ t

0

p(s)ds,Km(t), Ln(t)
}
, t ∈ [0, T ],
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α = β + ‖φ‖C + ‖δ‖%(0)
∫ T

0

ds

%(s)
,

R = min {%(t) : t ∈ [0, T ]} and β is constant such that
∫ T

0
M(s)H(J(s))ds ≤ β for any continuous function

J : [0, T ] → R+.

Proof. First we establish the priori bounds on the solutions of the initial value problem

(%(t)x′(t))′ = λf

(
t, xt,

∫ t

0

a(t, s)g(s, xs)ds,
∫ T

0

b(t, s)h(s, xs)ds

)
, t ∈ [0, T ], (2.2)

with the initial condition (1.2) for λ ∈ (0, 1). Let x(t) be a solution of the problem (2.2)-(1.2) then it satisfies
the equivalent integral equation

x(t) = φ(0) + δ%(0)
∫ t

0

ds

%(s)

+ λ

∫ t

0

1
%(s)

∫ s

0

f

(
τ, xτ ,

∫ τ

0

a(τ, η)g(η, xη)dη,
∫ T

0

b(τ, η)h(η, xη)dη

)
dτds, t ∈ [0, T ] (2.3)

x(t) = φ(t), −r ≤ t ≤ 0, x′(0) = δ. (2.4)

Using (2.3), hypotheses (H1)− (H4) and the fact that λ ∈ (0, 1), for t ∈ [0, T ] we have

‖x(t)‖ ≤ ‖φ‖C + ‖δ‖%(0)
∫ t

0

ds

%(s)

+ |λ|
∫ t

0

1
%(s)

∫ s

0

∥∥∥∥∥f
(
τ, xτ ,

∫ τ

0

a(τ, η)g(η, xη)dη,
∫ T

0

b(τ, η)h(η, xη)dη

)∥∥∥∥∥ dτds
≤ ‖φ‖C + ‖δ‖%(0)

∫ t

0

ds

%(s)

+
∫ t

0

1
%(s)

∫ s

0

p(τ)

[
‖xτ‖C +

∫ τ

0

Km(η)G(‖xη‖C)dη +
∫ T

0

Ln(η)H(‖xη‖C)dη

]
dτds. (2.5)

Consider the function Z given by Z(t) = sup{‖x(s)‖ : −r ≤ s ≤ t}, t ∈ [0, T ]. Let t∗ ∈ [−r, t] be such that
Z(t) = ‖x(t∗)‖. If t∗ ∈ [0, t] then from (2.5), we have

Z(t) ≤ ‖φ‖C + ‖δ‖%(0)
∫ t∗

0

ds

%(s)

+
∫ t∗

0

1
%(s)

∫ s

0

p(τ)

[
‖xτ‖C +

∫ τ

0

Km(η)G(‖xη‖C)dη +
∫ T

0

Ln(η)H(‖xη‖C)dη

]
dτds

≤ ‖φ‖C + ‖δ‖%(0)
∫ T

0

ds

%(s)

+
∫ t

0

1
%(s)

∫ s

0

p(τ)

[
Z(τ) +

∫ τ

0

M(η)G(Z(η))dη +
∫ T

0

M(η)H(Z(η))dη

]
dτds. (2.6)

If t∗ ∈ [−r, 0] then Z(t) = ‖φ‖C and the previous inequality (2.6) obviously holds. Denoting by u(t) the
right-hand side of the inequality (2.6), we have

u(0) = ‖φ‖C + ‖δ‖%(0)
∫ T

0

ds

%(s)
, Z(t) ≤ u(t), t ∈ [0, T ]

and

u′(t) =
1
%(t)

∫ t

0

p(s)

[
Z(s) +

∫ s

0

M(τ)G(Z(τ))dτ +
∫ T

0

M(τ)H(Z(τ))dτ

]
ds

≤ 1
R

∫ t

0

p(s)

[
u(s) +

∫ s

0

M(τ)G(u(τ))dτ +
∫ T

0

M(τ)H(u(τ))dτ

]
ds

≤ 1
R

∫ t

0

p(s)
[
u(s) +

∫ s

0

M(τ)G(u(τ))dτ + β

]
ds.
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Let w(t) = u(t) +
∫ t

0
M(τ)G(u(τ))dτ + β. Then we have u(t) ≤ w(t), t ∈ [0, T ]. Since u(t) is increasing, w(t)

is also increasing on [0,T] and w(0) = β + ‖φ‖C + ‖δ‖%(0)
∫ T

0
ds

%(s) = α. Now,

w′(t) = u′(t) +M(t)G(u(t))

≤ 1
R

∫ t

0

p(s)w(s)ds+M(t)G(u(t))

≤ w(t)
1
R

∫ t

0

p(s)ds+M(t)G(u(t))

≤M(t)[w(t) +G(w(t))].

Therefore

w′(t)
w(t) +G(w(t))

≤M(t), t ∈ [0, T ].

Integrating from 0 to t and using change of variables t→ s = w(t) and the condition (2.1), we obtain∫ w(t)

α

ds

s+G(s)
≤
∫ t

0

M(s)ds ≤
∫ T

0

M(s)ds <
∫ ∞

α

ds

s+G(s)
, t ∈ [0, T ]. (2.7)

From the inequality (2.7) there exists a constant γ, independent of λ ∈ (0, 1) such that w(t) ≤ γ for t ∈ [0, T ].
Hence Z(t) ≤ u(t) ≤ w(t) ≤ γ, t ∈ [0, T ]. Since for every t ∈ [0, T ], ‖xt‖C ≤ Z(t) , we have

‖x‖B = sup{‖x(t)‖ : t ∈ [−r, T ]} ≤ γ.

Now, we rewrite initial value problem (1.1)-(1.2) as follows: For φ ∈ C, define φ̂ ∈ B,B = C([−r, T ], X) by

φ̂(t) =

{
φ(t) if −r ≤ t ≤ 0

φ(0) + δ%(0)
∫ t

0
ds

%(s) if 0 ≤ t ≤ T .

If y ∈ B and x(t) = y(t) + φ̂(t), t ∈ [−r, T ] then it is easy to see that y(t) satisfies

y(t) = y0 = 0; −r ≤ t ≤ 0 and

y(t) =
∫ t

0

1
%(s)

∫ s

0

f

(
τ, yτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, yη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, yη + φ̂η)dη

)
dτds, t ∈ [0, T ],

if and only if x(t) satisfies

x(t) = φ(0) + δ%(0)
∫ t

0

ds

%(s)

+
∫ t

0

1
%(s)

∫ s

0

f

(
τ, xτ ,

∫ τ

0

a(τ, η)g(η, xη)dη,
∫ T

0

b(τ, η)h(η, xη)dη

)
dτds, t ∈ [0, T ], (2.8)

x(t) = φ(t), −r ≤ t ≤ 0, x′(0) = δ. (2.9)

We define the operator F : B0 → B0, B0 = {y ∈ B : y0 = 0} by

(Fy)(t) =

0 if −r ≤ t ≤ 0∫ t

0
1

%(s)

∫ s

0
f
(
τ, yτ + φ̂τ ,

∫ τ

0
a(τ, η)g(η, yη + φ̂η)dη,

∫ T

0
b(τ, η)h(η, yη + φ̂η)dη

)
dτds, if t ∈ [0, T ].

(2.10)
From the definition of operator F equations (2.8)-(2.9) can be written as y = Fy, and the equations (2.3)-(2.4)
can be written as y = λFy.

Now, we prove that F is completely continuous. First, we prove that F : B0 → B0 is continuous. Let {um}
be a sequence of elements of B0 converging to u in B0. Then by using hypothesis (H5) and (H6) we have

f

(
t, umt

+ φ̂t,

∫ t

0

a(t, s)g(s, ums
+ φ̂s)ds,

∫ T

0

b(t, s)h(s, ums
+ φ̂s)ds

)
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→ f

(
t, ut + φ̂t,

∫ t

0

a(t, s)g(s, us + φ̂s)ds,
∫ T

0

b(t, s)h(s, us + φ̂s)ds

)

for each t ∈ [0, T ]. Then by dominated convergence theorem, we have

‖(Fum)(t)− (Fu)(t)‖

≤
∫ t

0

1
%(s)

∫ s

0

∥∥∥∥∥f
(
τ, umτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, umη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, umη + φ̂η)dη

)

−f

(
τ, uτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, uη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, uη + φ̂η)dη

)∥∥∥∥∥ dτds
→ 0 as n→∞, ∀ t ∈ [0, T ].

Since, ‖Fum − Fu‖B = supt∈[−r,T ] ‖(Fum)(t)− (Fu)(t)‖, it follows that ‖Fum − Fu‖B → 0 as n→∞ which
implies Fum → Fu in B0 as um → u in B0. Therefore, F is continuous.

We prove that F maps a bounded set of B0 into a precompact set of B0. Let Bk = {y ∈ B0 : ‖y‖B ≤ k} for
k ≥ 1. We show that FBk is uniformly bounded. Let M∗ = sup{M(t) : t ∈ [0, T ]} and ‖φ‖C = c. Then from
the definition of F in (2.10) and using hypotheses (H1) − (H4) and the fact that ‖y‖B ≤ k, y ∈ Bk implies
‖yt‖C ≤ k, t ∈ [0, T ] we obtain

‖(Fy)(t)‖

≤
∫ t

0

1
%(s)

∫ s

0

p(τ)

[
‖yτ + φ̂τ‖C +

∫ τ

0

Km(η)G(‖yη + φ̂η‖C)dη +
∫ T

0

Ln(η)H(‖yη + φ̂η‖C)dη

]
dτds

≤
∫ t

0

1
%(s)

∫ s

0

p(τ)

[
‖k + c+

∫ τ

0

M(η)G(k + c)dη +
∫ T

0

M(η)H(k + c)dη

]
dτds

≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]
∫ t

0

1
R

∫ s

0

p(τ)dτds

≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]
∫ T

0

M(s)ds.

This implies that the set {(Fy)(t) : ‖y‖B ≤ k, −r ≤ t ≤ T} is uniformly bounded in X and hence FBk is
uniformly bounded.

Next we show that F maps Bk into an equicontinuous family of functions with values in X. Let y ∈ Bk

and t1, t2 ∈ [−r, T ]. Then from the equation (2.10) and using the hypotheses (H1)− (H4) we have three cases:

Case 1 : Suppose 0 ≤ t1 ≤ t2 ≤ T

‖(Fy)(t2)− (Fy)(t1)‖

≤
∫ t2

t1

1
%(s)

∫ s

0

∥∥∥∥∥f
(
τ, yτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, yη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, yη + φ̂η

)
dη

∥∥∥∥∥ dτds
≤
∫ t2

t1

1
%(s)

∫ s

0

p(τ)

[
‖yτ + φ̂τ‖C +

∫ τ

0

Km(η)G(‖yη + φ̂η‖C)dη +
∫ T

0

Ln(η)H(‖yη + φ̂η‖C)dη

]
dτds

≤
∫ t2

t1

1
%(s)

∫ s

0

p(τ)

[
k + c+

∫ τ

0

M(η)G(k + c)dη +
∫ T

0

M(η)H(k + c)dη

]
dτds

≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]
∫ t2

t1

1
R

∫ s

0

p(τ)dτds

≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]
∫ t2

t1

M(s)ds.
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Case 2 : Suppose −r ≤ t1 ≤ 0 ≤ t2 ≤ T . Proceeding as in Case 1, we get

‖(Fy)(t2)− (Fy)(t1)‖

≤
∫ t2

0

1
%(s)

∫ s

0

∥∥∥∥∥f
(
τ, yτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, yη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, yη + φ̂η

)
dη

∥∥∥∥∥ dτds
≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]

∫ t2

0

M(s)ds.

Case 3 : Suppose−r ≤ t1 ≤ t2 ≤ 0. Then‖(Fy)(t2)− (Fy)(t1)‖ = 0.
From Cases 1-3, we see that ‖(Fy)(t2) − (Fy)(t1)‖ → 0 as (t2 − t1) → 0 and we conclude that FBk is an

equicontinuous family of functions with values in X.
We have already shown that FBk is an equicontinuous and uniformly bounded collection. To prove the set

FBk is precompact in B, it is sufficient, by Arzela-Ascoli’s argument, to show that the set {(Fy)(t) : y ∈ Bk}
is precompact in X for each t ∈ [−r, T ]. Since (Fy)(t) = 0 for t ∈ [−r, 0] and y ∈ Bk, it is sufficient to show
this for 0 < t ≤ T . Let 0 < t ≤ T be fixed and ε a real number satisfying 0 < ε < t. For y ∈ Bk, we define

(Fεy)(t) =
∫ t−ε

0

1
%(s)

∫ s

0

f

(
τ, yτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, yη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, yη + φ̂η)dη

)
dτds.

Since the set FBk is bounded in B, the set Yε(t) = {(Fεy)(t) : y ∈ Bk} is precompact inX for every ε, 0 < ε < t.
Moreover for every y ∈ Bk, we have

(Fy)(t)− (Fεy)(t) =
∫ t

t−ε

1
%(s)

∫ s

0

f

(
τ, yτ + φ̂τ ,

∫ τ

0

a(τ, η)g(η, yη + φ̂η)dη,
∫ T

0

b(τ, η)h(η, yη + φ̂η)dη

)
dτds.

By making use of hypotheses (H1)− (H4) and the fact that ‖y‖B ≤ k, y ∈ Bk implies ‖yt‖C ≤ k, t ∈ [0, T ],
we have

‖(Fy)(t)− (Fεy)(t))‖

≤
∫ t

t−ε

1
%(s)

∫ s

0

p(τ)

[
‖yτ + φ̂τ‖C +

∫ τ

0

Km(η)G(‖yη + φ̂η‖C)dη +
∫ T

0

Ln(η)H(‖yη + φ̂η‖C)dη

]
dτds

≤
∫ t

t−ε

1
%(s)

∫ s

0

p(τ)

[
k + c+

∫ τ

0

M(η)G(k + c)dη +
∫ T

0

M(η)H(k + c)dη

]
dτds

≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]
∫ t

t−ε

1
%(s)

∫ s

0

p(τ)dτds

≤ [k + c+M∗TG(k + c) +M∗TH(k + c)]
∫ t

t−ε

M(s)ds.

This shows that there exists precompact sets arbitrarily close to the set {(Fy)(t) : y ∈ Bk} hence the set
{(Fy)(t) : y ∈ Bk} is precompact in X. Thus we have shown that F is completely continuous operator.
Moreover, the set

ε(F ) = {y ∈ B0 : y = λFy, 0 < λ < 1},

is bounded in B, since for every y in ε(F ), the function x(t) = y(t) + φ̂(t) is a solution of initial value problem
(2.2)-(1.2) for which we have proved that ‖x‖B ≤ γ and hence ‖y‖B ≤ γ + c. Now, by virtue of Lemma 2.1,
the operator F has a fixed point ỹ in B0. Then x̃ = ỹ + φ̂ is a solution of the initial value problem (1.1)-(1.2)
. This completes the proof of the Theorem 2.1.

In concluding this paper, we remark that one can easily extend the ideas of this paper to study the global
existence of solutions to second order nonlinear mixed Volterra-Fredholm functional integrodifferential equation
of the form

(%(t)x′(t))′ = f

(
t, xt, x

′(t),
∫ t

0

a(t, s)g(s, xs, x
′(s))ds,

∫ T

0

b(t, s)h(s, xs, x
′(s))ds

)
, t ∈ [0, T ],



M. B. Dhakne et al. / Existence results... 7

x(t) = φ(t), −r ≤ t ≤ 0, x′(0) = δ.

with conditions given in (H1) − (H6) and suitable condition similar to that given in (2.1). The precise
formulation of this result is very close to that of the result given in our Theorem 2.1 with suitable modification
and hence we omit details.
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In this paper, we study the existence and uniqueness of the mild solutions for random impulsive differential equations

through fixed point technique. An example is provided to illustrate the theory.
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1 Introduction

Many evolution processes from fields as diverse as physics, population dynamics, aeronautics, economics,
telecommunications and engineering are characterized by the fact that they undergo abrupt change of state
at certain moments of time between intervals of continuous evolution. The duration of these changes are
often negligible compared to the total duration of process act instantaneously in the form of impulses. The
impulses may be deterministic or random. There are lot of papers which investigate the qualitative properties
of deterministic impulses see [1, 5, 7, 8] and the references therein.

When the impulses are exist at random points, the solutions of the differential systems are stochastic
processes. It is very different from deterministic impulsive differential systems and also it is different from
stochastic differential equations. Thus the random impulsive systems give more realistic than deterministic
impulsive systems. The study of random impulsive differential equations is a new research area. There are few
publications in this field, Iwankievicz and Nielsen [6], investigated dynamic response of non-linear systems to
poisson distributed random impulses. Sanz-Serna and Stuart [9] first brought dissipative differential equations
with random impulses and used Markov chains to simulate such systems. Tatsuyuki et al [10] presented a
mathematical model of random impulse to depict drift motion of granules in chara cells due to myosin-actin
interaction. Shujin Wu and Meng [2004] first brought forward random impulsive ordinary differential equations
and investigated boundedness of solutions to these models by Liapunov’s direct function in [13]. Shujin Wu
et al. [14, 15, 16, 17], studied some qualitative properties of random impulses. In [3], the author studied
the existence and uniqueness of random impulsive differential system by relaxing the linear growth conditions,
sufficient conditions for stability through continuous dependence on initial conditions and exponential stability
via fixed point theory. In [2, 4, 11, 12] the author has studied some properties of random type impulsive
differential systems.

Motivated by the above mentioned works, the main purpose of this paper is to study the random impulsive
differential equations. We utilize the technique developed by [7, 8, 15].

This paper is organized as follows: Some preliminaries are presented in Section 2. In Section 3, we investigate
the existence and uniqueness of solution of random impulsive differential equation by reducing the linear growth
condition. Moreover, Lipschitz condition has to be relaxed on the impulsive terms in the deriving results.
Finally in Section 4, we give an example to motivate our results.

∗Corresponding author.

E-mail address: vinod026@gmail.com (A. Vinodkumar)
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2 Preliminaries

Let X be a real separable Hilbert space and Ω a nonempty set. Assume that τk is a random variable defined
from Ω to Dk

def.
= (0, dk) for all k = 1, 2, · · · , where 0 < dk < +∞. Furthermore, assume that τi and τj are

independent with each other as i 6= j for i, j = 1, 2, · · · . Let τ ∈ < be a constant. For the sake of simplicity,
we denote <τ = [τ, T ]. We consider the differential equations with random impulses of the form

x′(t) = Ax(t) + f(t, x(t)), t 6= ξk, t ≥ τ, (2.1)

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, · · · , (2.2)

xt0 = x0, (2.3)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators T (t) in
X; f : <τ ×X → X, bk : Dk → < for each k = 1, 2, · · · ; ξ0 = t0 ∈ [τ, T ] and ξk = ξk−1 +τk for k = 1, 2, · · · , here
t0 ∈ <τ is arbitrary real number. Obviously, t0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · ; x(ξ−k ) = lim

t↑ξk

x(t) according to

their paths with the norm ‖x‖ = sup
τ≤s≤t

|x(s)| for each t satisfying τ ≤ t ≤ T .

Let us denote {Bt, t ≥ 0} be the simple counting process generated by {ξn}, that is, {Bt ≥ n} = {ξn ≤ t},
and denote Ft the σ-algebra generated by {Bt, t ≥ 0}. Then (Ω, P, {Ft}) is a probability space. Let L2 =
L2(Ω, {Ft}, X) denote the Hilbert space of all {Ft}- measurable square integrable random variables with values
in X.

Let B denote Banach space B([τ, T ], L2), the family of all {Ft}- measurable random variables ψ with the
norm

‖ψ‖2 = sup
t∈[τ,T ]

E‖ψ(t)‖2.

Definition 2.1. Consider the inhomogeneous initial value problem where f : [0, T ] → X.

x′(t) = Ax(t) + f(t)

x(0) = x0.

Let A be the infinitesimal generator of a C0 semigroup T (t). Let x0 ∈ X and f ∈ L1(0, T ;X). Then the
function x ∈ C([0, T ];X) is given by

x(t) = T (t)x0 +
∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T

is the mild solution of the above initial value problem for t ∈ [0, T ].

Definition 2.2. A semigroup {T (t), t ≥ 0} is said to be uniformly bounded if there exists a constant M ≥ 1
such that

‖T (t)‖ ≤M, for t ≥ 0.

Definition 2.3. For a given T ∈ (τ,+∞), a stochastic process {x(t) ∈ B, τ ≤ t ≤ T} is called a mild solution
to equation (2.1)-(2.3) in (Ω, P, {Ft}), if

(i) x(t) ∈ X is Ft- adapted;

(ii)

x(t) =
+∞∑
k=0

 k∏
i=1

bi(τi)T (t− t0)x0 +
k∑

i=1

k∏
j=i

bj(τj)
∫ ξi

ξi−1

T (t− s)f(s, x(s))ds

+
∫ t

ξk

T (t− s)f(s, x(s))ds
]
I[ξk,ξk+1)(t), t ∈ [τ, T ],

(2.4)

where
n∏

j=m

(·) = 1 as m > n,
k∏

j=i

bj(τj) = bk(τk)bk−1(τk−1) · · · bi(τi), and IA(·) is the index function, i.e.,

IA(t) =
{

1, if t ∈ A,
0, if t /∈ A.
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3 Existence and Uniqueness

In this section, we discuss the existence and uniqueness of the mild solution for the system (2.1)-(2.3).
Before proving the main results, we introduce the following hypotheses which are used in our results.

(H1) The function f satisfies the Lipschitz condition. That is., for ζ, ς ∈ X and τ ≤ t ≤ T there exits a
constant L > 0 such that

E ‖f(t, ζ)− f(t, ς)‖2 ≤ L E ‖ζ − ς‖2 ,
E ‖f(t, 0)‖2 ≤ κ, where κ ≥ 0 is a constant.

(H2) The condition max
i,k

{
k∏

j=i

‖bj(τj)‖

}
is uniformly bounded if, there is a constant C > 0 such that

max
i,k


k∏

j=i

‖bj(τj)‖

 ≤ C for all τj ∈ Dj , j = 1, 2, · · · .

Theorem 3.1. Let the hypotheses (H1)− (H2) be hold. If the following inequality

Λ = M2 max{1, C2}(T − τ)2L < 1, (3.1)

is satisfied, then the system (2.1)-(2.3) has a unique mild solution in B.

Proof. Let T be an arbitrary number τ < T < +∞. First we define the nonlinear operator S : B → B as
follows

(Sx)(t) =
+∞∑
k=0

 k∏
i=1

bi(τi)T (t− t0)x0 +
k∑

i=1

k∏
j=i

bj(τj)
∫ ξi

ξi−1

T (t− s)f(s, x(s))ds

+
∫ t

ξk

T (t− s)f(s, x(s))ds
]
I[ξk,ξk+1)(t), t ∈ [τ, T ].

It is easy to prove the continuity of S. Now, we have to show that S maps B into itself.

‖(Sx)(t)‖2 ≤
[ +∞∑

k=0

[
‖

k∏
i=1

bi(τi)‖‖T (t− t0)‖‖x0‖

+
k∑

i=1

‖
k∏

j=i

bj(τj)‖
{∫ ξi

ξi−1

‖T (t− s)f(s, x(s))‖ds
}

+
∫ t

ξk

‖T (t− s)f(s, x(s))‖ds
]
I[ξk,ξk+1)(t)

]2

≤ 2
[ +∞∑

k=0

[ k∏
i=1

‖bi(τi)‖2‖T (t− t0)‖2‖x0‖2I[ξk,ξk+1)(t)
]

+
[ +∞∑

k=0

[ k∑
i=1

‖
k∏

j=i

bj(τj)‖
{∫ ξi

ξi−1

‖T (t− s)‖‖f(s, x(s))‖ds
}

+
∫ t

ξk

‖T (t− s)‖‖f(s, x(s))‖ds
]
I[ξk,ξk+1)(t)

]2]
≤ 2M2 max

k

{ k∏
i=1

‖bi(τi)‖2
}
‖x0‖2

+2M2
[
max
i,k

{
1,

k∏
j=i

‖bj(τj)‖
}]2

×
( ∫ t

t0

‖f(s, x(s))‖ dsI[ξk,ξk+1)(t)
)2
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≤ 2M2C2‖x0‖2 + 2M2 max{1, C2}
( ∫ t

t0

‖f(s, x(s))‖ ds
)2

≤ 2M2C2‖x0‖2 + 2M2 max{1, C2}(t− t0)
∫ t

t0

‖f(s, x(s))‖2 ds

E‖(Sx)(t)‖2 ≤ 2M2C2‖x0‖2 + 2M2 max{1, C2}(T − τ)
∫ t

t0

E ‖f(s, x(s))‖2 ds

≤ 2M2C2‖x0‖2 + 4M2 max{1, C2}(T − τ)2κ

+4M2 max{1, C2}(T − τ)L
∫ t

t0

E ‖x(s)‖2 ds.

Thus,

sup
t∈[τ,T ]

E‖(Sx)(t)‖2 ≤ 2M2C2‖x0‖2 + 4M2 max{1, C2}(T − τ)2κ

+4M2 max{1, C2}(T − τ)L
∫ t

t0

sup
s∈[τ,t]

E ‖x(s)‖2 ds

≤ 2M2C2‖x0‖2 + 4M2 max{1, C2}(T − τ)2κ

+4M2 max{1, C2}(T − τ)2L sup
t∈[τ,T ]

E ‖x(t)‖2

for all t ∈ [τ, T ], therefore S maps B into itself.
Now, we have to show S is a contraction mapping

‖(Sx)(t)− (Sy)(t)‖2 ≤
[ +∞∑

k=0

[ k∑
i=1

k∏
j=i

‖bj(τj)‖

×
∫ ξi

ξi−1

‖T (t− s)‖‖f(s, x(s))− f(s, y(s))‖ds

+
∫ t

ξk

‖T (t− s)‖‖f(s, x(s))− f(s, y(s))‖ds
]
I[ξk,ξk+1)(t)

]2

≤ M2
[
max
i,k

{
1,

k∏
j=i

‖bj(τj)‖
}]2

×
( ∫ t

t0

‖f(s, x(s))− f(s, y(s))‖dsI[ξk,ξk+1)(t)
)2

≤ M2 max{1, C2}(t− t0)
∫ t

t0

‖f(s, x(s))− f(s, y(s))‖2ds

E‖(Sx)(t)− (Sy)(t)‖2 ≤ M2 max{1, C2}(t− t0)
∫ t

t0

E‖f(s, x(s))− f(s, y(s))‖2ds

≤ M2 max{1, C2}(T − τ)L
∫ t

t0

E‖x(s)− y(s)‖2ds.

Taking supremum over t, we get,

‖(Sx)− (Sy)‖2 ≤ M2 max{1, C2}(T − τ)2L ‖x− y‖2.
Thus,

‖(Sx)− (Sy)‖2 ≤ Λ ‖x− y‖2,

since 0 < Λ < 1. This shows that the operator S satisfies the contraction mapping principle and therefore, S
has a unique fixed point which is the mild solution of the system (2.1)-(2.3). This completes the proof.

4 Example

As an application for the problem (2.1)-(2.3), consider a one dimensional rod of length π whose ends are
maintained at 00 and whose sides are insulated. Suppose there is an exothermic reaction taking place inside
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the rod with heat being produced proportionally to the temperature at a previous time t − r (for the sake of
simplicity, we assume the delay r ≥ 0 is constant). Consequently, the temperature in the rod may be modeled
to satisfy 

∂u(t,x)
∂t = ∂2u(x,t)

∂x2 + ρu(x, t− r), 0 < x < π, t > 0,
u(0, t) = u(π, t) = 0,
u(x, t) = ϕ(x, t), − r ≤ t ≤ 0, 0 ≤ x ≤ π.

(4.1)

where ρ depends on the rate of reaction and ϕ : [−r, 0]× [0, π] → < is a given function. We observe that, when
there is no heat production (i.e., ρ = 0), the problem (4.1) has solution given by

u(x, t) =
∞∑

n=1

ane
−n2t sinnx,

where r = 0 and ϕ(x, 0) =
∞∑

n=1

an sinnx.

However, it often occurs that the exothermic reaction can be related with random impulses. In some cases,
the equation (4.1) may be written in the generalized form with r = 0,

∂u(t,x)
∂t = ∂2u(x,t)

∂x2 + ρu(x, t), 0 < x < π, t > 0, t 6= ξk,

u(x, ξk) = q(k) τk u(x, ξ−k ), t = ξk,

u(0, t) = u(π, t) = 0,
u(x, t) = ϕ(x, t), 0 ≤ x ≤ π,

(4.2)

and setting X = L2[0, π] and the operator A = ∂2

∂x2 with the domain

D(A) =
{
u ∈ X

∣∣∣∣u and
∂u

∂x
are absolutely continuous,

∂2u

∂x2 ∈ X, u(0) = u(π) = 0
}
.

It is well known that A generates a strongly continuous semigroup T (t) which is compact, analytic and self
adjoint and

‖T (t)‖ ≤M, for t ≥ 0, where M > 0.

Thus T (t) is bounded.
Furthermore, we may assume that the impulsive nature satisfy the following condition

E
[
max
i,k


k∏

j=i

‖q(j)(τj)‖2
 ]

<∞.

Under these condition, we can define the functions f and bk as

f(t, x(t)) = ρu(x, t) and bk(τk) = q(k)τk.

Then the problem (4.2) can be modeled as the abstract random impulsive differential equations of the form
(2.1)-(2.3) .

The next result is consequence of Theorem 3.1

Proposition 4.1. Let the hypotheses (H1) − (H2) be hold. Then there exist a unique mild solution u of the
system (4.2) provided,

M2 max{1, C2}(T − τ)2L < 1, (4.3)

is satisfied.
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Abstract

In this paper we are concerned with the definition and some properties of the discontinuous dynamical systems

generated by piecewise constant arguments. Then we study a discontinuous dynamical system of the Riccati type

equation as an example. The local stability at the fixed points is studied. The bifurcation analysis and chaos are

discussed. In addition, we compare our results with the discrete dynamical system of the Riccati type equation.
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1 Introduction

The discontinuous dynamical systems generated by the retarded functional equations has been defined in
[1]-[4]. The dynamical systems with piecewise constant arguments has been studied in [5]-[7] and references
therein. In this work we define the discontinuous dynamical systems generated by functional equations with
piecewise constant arguments. The dynamical properties of the discontinuous dynamical system of the Riccati
type equation will be discussed. Comparison with the corresponding discrete dynamical system of the Riccati
type equation

xn = 1− ρx2
n−1, n = 1, 2, 3, ...,

will be given.

2 Piecewise constant arguments

Consider the problem of functional equation with piecewise constant arguments

x(t) = f(x(r[
t

r
])), t > 0, r > 0. (2.1)

x(0) = x0, (2.2)

where [.] denotes the greatest integer function.
Let n = 1, 2, 3, ... and t ∈ [nr, (n + 1)r), then

x(t) = f(xn(nr)), t ∈ [nr, (n + 1)r).

Let r = 1 and take the limit as t → n + 1, we get

xn+1 = f(xn), n = 0, 1, 2, ...

∗Corresponding author.
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This shows that the discrete dynamical system

xn = f(n, xn−1), n = 1, 2, 3, ..., T.

x(0) = xo,

is a special case of the problem of functional equation with piecewise constant arguments (2.1)-(2.2).
Now let t ∈ [0, r), then t

r ∈ [0, 1), x(r[ t
r ]) = x(0) and the solution of (2.1)-(2.2) is given by

x(t) = x1(r) = f(x(0)), t ∈ [0, r),

with
x1(r) = lim

t→r−
x(t) = f(x(0)).

For t ∈ [r, 2r), then t
r ∈ [1, 2), x(r[ t

r ]) = x(r) and the solution of (2.1)-(2.2) is given by

x(t) = x2(t) = f(x1(r)), t ∈ [r, 2r).

Repeating the process we can easily deduce that the solution of (2.1)-(2.2) is given by

x(t) = x(n+1)(t) = f(xn(nr)), t ∈ [nr, (n + 1)r),

which is continuous on each subinterval (k, (k + 1)), k = 1, 2, 3, ..., n, but

lim
t→kr+

x(k+1)(t) = f(xk(kr)) 6= xk(kr).

Hence the problem (2.1)-(2.2) is a discontinuous and we have proved the following theorem.

Theorem 2.1. The solution of the problem of functional equation with piecewise constant arguments (2.1)-(2.2)
is discontinuous (sectionally continuous) even if the function f is continuous.

Now let f : [0, T ]× Rn → Rn and r ∈ R+. Then, the following definition can be given.

Definition 2.1. The discontinuous dynamical system generated by piecewise constant arguments is the problem

x(t) = f(t, x(r[
t

r
]), x(r[

t− 1
r

]), ..., x(r[
t− n

r
])), t ∈ [0, T ], (2.3)

x(t) = x0, t ≤ 0. (2.4)

Definition 2.2. The fixed points of the discontinuous dynamical system (2.3) and (2.4) are the solution of the
equation

x(t) = f(t, x, x, ..., x).

3 Main Problem

Consider the discontinuous dynamical system generated by piecewise constant arguments of Riccati type
equation

x(t) = 1− ρx2(r[
t

r
]), t, r > 0, and x(0) = x0. (3.1)

Here we study the stability at the fixed points. In order to study bifurcation and chaos we take firstly r = 1 and
we compare the results with the results of the discrete dynamical system of Riccati type difference equation

xn+1 = 1− ρx2
n, n = 1, 2, 3, ..., and x0 = xo. (3.2)

Secondly, we take some other values of r and T and study some examples.
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3.1 Fixed points and stability

As in the case of discrete dynamical systems, the fixed points of the dynamical system (3.1) are the solution
of the equation f(x) = x. Thus there are two fixed points which are

(xfixed)1 =
−1 +

√
1 + 4ρ

2ρ
,

(xfixed)2 =
−1−

√
1 + 4ρ

2ρ
.

To study the stability of these fixed points, we take into account the following theorem.

Theorem 3.1. [8] Let f be a smooth map on R, and assume that x0 is a fixed point of f.
1. If |f ′

(x0)| < 1, then x0 is stable.
2. If |f ′

(x0)| > 1, then x0 is unstable.

Now since in our case f(x) = 1− ρx2, the first fixed point (xfixed)1 = −1+
√

1+4ρ
2ρ is stable if

|1−
√

1 + 4ρ| < 1,

that is, −1
4 < ρ < 3

4 .
The second fixed point (xfixed)2 = −1−

√
1+4ρ

2ρ is stable if

|1 +
√

1 + 4ρ| < 1,

which can never happen since 1 +
√

1 + 4ρ is always > 1. So, the second fixed point is unstable.
Figure (1) shows the trajectories of (3.1) when r = 1, while Figure (2) shows the trajectories of (3.2).

Figure 1: Trajectories of (3.1), r=1. Figure 2: Trajectories of (3.2).

4 Bifurcation and Chaos

In this section, the numerical experiments show that the dynamical behaviors of the discontinuous dynamical
system (3.1) depends completely on both r and T as follows:

1. Take r = 1 and t ∈ [0, 30], in this case the dynamical behaviors of the two dynamical systems (3.1) and
(3.2) are identical (Figure 4).

2. Take r = 0.25 and t ∈ [0, 2] in the dynamical system (3.1) (Figure 5).

3. Take r = 0.5 and t ∈ [0, 2] in the dynamical system (3.1) (Figure 6).

4. Take r = 0.25 and T = N = 13 in the dynamical system (3.1) (Figure 7).

5. Take r = 0.5 and T = N = 35 in the dynamical system (3.1) (Figure 3).
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Figure 3: Bifurcation diagram of the dynamical systems (3.1) with r = 1 and (3.2) where N = T = 70.

Figure 4: Bifurcation diagram for (3.1), r =
0.5, t = [0, 3].

Figure 5: Bifurcation diagram for (3.1), r =
0.25, t = [0, 3].
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Figure 6: Bifurcation diagram for (3.1), r = 0.5, T =
N = 13.
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Figure 7: Bifurcation diagram for (3.1), r = 0.25,
T = N = 13.
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5 Conclusion

The discontinuous dynamical system models generated by piecewise constant arguments have the same
behavior as its discrete version when r = 1.

On the other hand, changing the parameter r together with the time t ∈ [0, T ] affects the chaos behavior of
the dynamical system generated by the piecewise constant arguments model as it is shown clearly in the above
figures.

�
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Abstract

For the nth order differential equation, y(n) = f(t, y, y′, . . . , y(n−1)), where f(t, r1, r2, . . . , rn) satisfies a Lipschitz

condition in terms of ri, 1 ≤ i ≤ n, we obtain optimal bounds on the length of intervals on which solutions are unique

for certain nonlocal three point boundary value problems. These bounds are obtained through an application of the

Pontryagin Maximum Principle.
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1 Introduction

In this paper, we shall be concerned with the nth order differential equation,

y(n) = f(t, y, y′, . . . , y(n−1)), a < t < b, (1.1)

where we assume throughout that

(A) f(t, r1, . . . , r3n) : (a, b)×Rn → R is continuous, and

(B) f satisfies the Lipschitz condition

|f(t, r1, . . . , rn)− f(t, s1, . . . , sn)| ≤
n∑

i=1

ki|ri − si|

for each (t, r1, . . . , rn), (t, s1, . . . , s3) ∈ (a, b)×R3
.

Let 0 ≤ p ≤ n− 2 be fixed throughout the paper.

We characterize optimal length for subintervals of (a, b), in terms of the Lipschitz coefficients ki, 1 ≤ i ≤ n,

on which solutions are unique for problems involving (1.1) and satisfying the nonlocal three point boundary
conditions,

y(i)(t1) = yi+1, i ∈ {0, . . . , n− 1} \ {p + 1}, y(p)(t2)− y(p)(t3) = yp+2, (1.2)

where a < t1 < t2 < t3 < b, and y1, . . . , yn ∈ R.

Namely, we characterize optimal length for subintervals of (a, b) on which solutions of (1.1), (1.2) are unique.
Such uniqueness results are of interest, because in many cases, uniqueness of solutions implies existence of

∗Corresponding author.

E-mail address: Johnny Henderson@baylor.edu (Johnny Henderson).
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solutions for boundary value problems; see, for example, the papers [5, 7, 9, 20, 21, 24, 26, 27, 35] and the
references therein.

There is a close connection between the boundary value problem (1.1), (1.2) and certain focal boundary value
problems for (1.1). From this relationship, we will eventually establish that it suffices for us to characterize
optimal length subintervals of (a, b) on which solutions are unique for (1.1) satisfying the focal boundary
conditions,

y(i)(t1) = yi+1, i ∈ {0, . . . , n− 1} \ {p + 1}, y(p+1)(t2) = yp+2, (1.3)

where a < t1 < t2 < b, and y1, . . . , yn ∈ R. The connection between this characterization and the characteri-
zation for our three point nonlocal problems is through a simple application of the Mean Value Theorem.

Theorem 1.1. If solutions for (1.1), (1.3) are unique, when they exist on (a, b), then solutions for (1.1), (1.2)
are unique, when they exist on (a, b).

In view of Theorem 1.1, conditions sufficient to provide uniqueness of solutions, when they exist on (a, b),
for two point focal boundary value problems (1.1), (1.3), are sufficient to provide uniqueness of solutions, when
they exist on (a, b) for three point nonlocal boundary value problems (1.1), (1.2).

Our process will involve development of a situation in which the Pontryagin Maximum Principle can be
applied. We follow a pattern that has an extensive history, with first motivation found in the papers by
Melentsova [39] and Melentsova and Mil’shtein [40, 41]. Those papers were subsequently adapted to the
context of several types of boundary value problems, with classical papers including Jackson [31, 32], Eloe and
Henderson [8], Hankerson and Henderson [19] and Henderson et al. [22, 23, 28], and more recent results have
appeared in [6, 10, 11, 25]

Interest in nonlocal boundary value problems also has a long history, both in application and theory, as
can be seen in this list of papers and the references therein: [1] -[4], [12, 13], [15] - [18], [25], [29, 30], [33, 34],
[37, 38], [42] - [50].

2 Optimal Intervals for Uniqueness of Solutions

In this section, we characterize in terms of the Lipschitz constants ki, 1 ≤ i ≤ n, optimal length for
subintervals of (a, b) on which solutions are unique, when they exist for the focal boundary value problem (1.1),
(1.3). This length, it will be argued later, is optimal for uniqueness of solutions for the three point nonlocal
boundary value problem (1.1), (1.2). Our characterization involves an application of the Pontryagin Maximum
Principle.

We begin by defining a set U of vector-valued control functions

U := {v(t) = (v1(t), . . . , vn(t))T ∈ Rn | vi(t) are Lebesgue

measurable and |vi(t)| ≤ ki on (a, b), i = 1, . . . , n}.

We will be concerned with boundary value problems associated with linear differential equations of the form

x(n) =
n∑

i=1

ui(t)x(i−1), (2.1)

where u(t) = (u1(t), . . . , un(t))T ∈ U . We immediately make a connection of these linear differential equations
in the context of solutions of (1.1), (1.3). Much of our analysis will be based upon our choosing, if they exist,
distinct solutions y(t) and z(t) of (1.1), (1.3).

If y(t) and z(t) are distinct solutions of (1.1), (1.3), then their difference x(t) := y(t)− z(t) satisfies

x(i)(t1) = x(p+1)(t2) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, (2.2)

for some a < t1 < t2 < b, and x(t) is a nontrivial solution of (2.1), for u(t) = (u1(t), . . . , un(t))T ∈ U , where
for 1 ≤ i ≤ n,

ui(t) :=


f(t,z(t),...,z(i−2)(t),y(i−1)(t),...,y(n−1)(t))−f(t,z(t),...,z(i−1)(t),y(i)(t),...,y(n−1)(t))

y(i−1)(t)−z(i−1)(t)
,

y(i−1)(t) 6= z(i−1)(t),

0, y(i−1)(t) = z(i−1)(t).
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From optimal control theory (cf. Gamkrelidze [14, p. 147] and Lee and Markus [36, p. 259]), there is a
boundary value problem in the class (2.1), (2.2), which has a nontrivial time optimal solution; that is, there
exists at least one nontrivial u∗ ∈ U and points t1 ≤ c < d ≤ t2 such that

x(n) =
n∑

i=1

u∗i (t)x
(i−1), (2.3)

x(i)(c) = x(p+1)(d) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, (2.4)

has a nontrivial solution, x0(t), and d− c is a minimum over all such solutions. For this time optimal solution,
x0(t), set x0(t) = (x0(t), . . . , x

(n−1)
0 (t))T . Then x0(t) is a solution of a first order system,

r′ = A[u∗(t)]r, a < t < b.

By the Pontryagin Maximum Principle, the adjoint system, whose form is given by

x′ = −AT [u∗(t)]x, a < t < b, (2.5)

has a nontrivial optimal solution, x∗(t) = (x∗1(t), . . . , x
∗
n(t))T such that, for a. e. t ∈ [c, d],

(i)
∑n

i=1 x
(i)
0 (t)x∗i (t) = 〈x′0(t),x∗(t)〉 = maxu∈U{〈A[u(t)]x0(t),x∗(t)〉},

(ii) 〈x′0(t),x∗(t)〉 is a nonnegative constant,

(iii) x∗p+2(c) = x∗1(d) = · · · = x∗p+1(d) = x∗p+3(d) = · · · = x∗n(d) = 0.

The maximum condition in (i) can be rewritten as

x∗n(t)
n∑

i=1

u∗i (t)x
(i−1)
0 (t) = max

u∈U

{
x∗n(t)

n∑
i=1

ui(t)x
(i−1)
0 (t)

}
, (2.6)

for a. e. t ∈ [c, d].
By its time optimality and repeated applications of Rolle’s Theorem, x0(t) 6= 0, t ∈ (c, d]. In fact, for each

0 ≤ i ≤ p+1, x
(i)
0 (t) 6= 0 on (c, d). We may assume without loss of generality that x0(t) > 0 on (c, d]. Moreover,

by its own time optimality, x∗n(t) has no zeros on (c, d). In view of that, we can use (2.6) to determine an
optimal control u∗(t), for a. e. t ∈ [c, d].

Now, x0(t) > 0 on (c, d], and so we have from (2.6) that, if x∗n(t) < 0 on (c, d), then the time optimal
solution x0(t) is a solution of

x(n) = −k1x−
n∑

i=2

ki|x(i−1)| (2.7)

on [c, d], while if x∗n(t) > 0 on (c, d), then the time optimal solution x0(t) is a solution of

x(n) = k1x +
n∑

i=2

ki|x(i−1)| (2.8)

on [c, d]. In particular, from either (2.7) or (2.8), x
(n)
0 (t) is of one sign. It follows from the assumed positivity of

x0(t) and the nature of the boundary conditions (2.4) that x
(n−1)
0 (t) is decreasing so that x∗n(t) < 0 and x0(t)

is a solution of (2.7). In addition, from the boundary conditions (2.4), x
(i)
0 (t) > 0 on (c, d), 0 ≤ i ≤ p + 1, and

x
(i)
0 (t) < 0 on (c, d), p + 2 ≤ i ≤ n− 1. As a consequence, not only is x0(t) is a solution of (2.7), but also where

(2.7) takes the form

x(n) = −
p+2∑
i=1

kix
(i−1) +

n∑
i=p+3

kix
(i−1). (2.9)

Our discussion to this point has been based on (1.1) having distinct solutions whose difference satisfies
(2.2). This led to optimal intervals being determined on which only trivial solutions exist for boundary value
problems (2.7), (2.2) or (2.8), (2.2). A more detailed sign analysis led to determination of optimal intervals on
which only trivial solutions exist for only the boundary value problem (2.9), (2.2). As a consequence, solutions
of the boundary value problem (1.1), (1.3) will be unique on such subintervals.
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Theorem 2.1. If there is a vector-valued u(t) ∈ U for all a < t < b, for which the boundary value problem
(2.1), (2.2) has a nontrivial solution for some a < t1 < t2 < b, and if x0(t) is a time optimal solution satisfing
(2.4), where d− c is a minimum, then x0(t) is a solution of (2.9) on [c, d].

Theorem 2.2. Let ` = `(k1, . . . , kn) > 0 be the smallest positive number such that there exists a solution x(t)
of the boundary value problem for (2.9) satisfying

x(i)(0) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, x(p+1)(`) = 0, (2.10)

with x(t) > 0 on (0, `], or ` = ∞ if no such solution exists. If y(t) and z(t) are solutions of the boundary value
problem (1.1), (1.3), for some a < t1 < t2 < b, and if t2 − t1 < `, it follows that y(t) ≡ z(t) on [t1, t2], and this
is best possible for the class of all differential equations satisfying the Lipschitz condition (B).

Proof. Since equation (2.9) is autonomous, translations of solutions are again solutions of (2.9). Hence, it
suffices to apply Theorem 2.1 with respect to the boundary conditions at 0 and `.

Now, if y(t) and z(t) are distinct solutions of (1.1) whose difference w(t) := y(t)− z(t) satisfies (2.2), where
t2 − t1 < `, then w(t) is a nontrivial solution of the boundary value problem (2.1), (2.2), for appropriately
defined u ∈ U . Then, from the discussion and Theorem 2.1, equation (2.9) has a nontrivial solution on a
subinterval of length less than `. But, by the minimality of `, such a boundary value problem can have only
the trivial solution; this is a contradiction. Therefore, solutions of the boundary value problem (1.1), (1.3) are
unique, whenever t2 − t1 < `.

That this is best possible from the fact that (2.9) satisfies the Lipschitz condition (B), and if ` 6= ∞,
then x(t) is a nontrivial solution of (2.9) and (2.2) on [0, `]. The boundary value problem also has the trivial
solution.

Remark 2.1. Since (2.9) is a linear equation, we observe that, if x(t) is the solution, of the initial value
problem for (2.9), satisfying,

x(i)(0) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, x(p+1)(0) = 1,

and if η > 0 is the first positive number such that x(p+1)(η) = 0, then η = `(k1, . . . , kn) of Theorem 2.2.

Because of the uniqueness relationships stated in Theorem 1.1, we can apply Theorem 2.2 to obtain optimal
intervals for uniqueness of solutions of the boundary value problem (1.1), (1.2).

Theorem 2.3. Let ` be as in Theorem 2.2. If y(t) and z(t) are solutions of the boundary value problem (1.1),
(1.2), for some a < t1 < t2 < t3 < b, and if t3 − t1 ≤ `, it follows that y(t) ≡ z(t) on [t1, t3], and this is best
possible for the class of all differential equations satisfying the Lipschitz condition (B).

Proof. In view of Theorem 1.1 and Theorem 2.2, solutions of the boundary value problem (1.1), (1.2) are
unique, when t3 − t1 ≤ `. To see again that this is best possible, consider the nontrivial solution x(t) of (2.9)
and (2.10) in Theorem 2.2.

Let ε > 0 be sufficiently small that x(t) is a solution of (2.9) on [0, ` + ε]. Now, x(p+2)(t) < 0 on [0, ` + ε].
From (2.10), x(p+1)(`) = 0, and since x(p+2)(`) < 0, we have that x(p)(t) has a positive maximum at `. So,
there exist 0 < τ1 < ` < τ2 < ` + ε such that x(t) is a nontrivial solution of (2.9) satisfying x(i)(0) = 0, i ∈
{0, . . . , n− 1} \ {p + 1}, and x(p)(τ1)− x(p)(τ2) = 0. This boundary value problem also has the trivial solution.
Since ε > 0 was arbitrary, the “best possible” statement follows for uniqueness of solutions of the boundary
value problem (1.1), (1.2).

3 Optimal Intervals of Existence for Linear Equations

In the case of boundary value problem (1.1), (1.2), we do not have a “uniqueness implies existence” theorem
to appeal to, since this is an open question for this type of boundary value problem. However, uniqueness does
imply existence for linear differential equations, and so the following corollary can be stated.

Corollary 3.1. Let ` be as in Theorem 2.2. Assume ri(t), 1 ≤ i ≤ n, and q(t) are continuous on (a, b) and
that |ri(t)| ≤ ki on (a, b), 1 ≤ i ≤ n. If a < t1 < t2 < t3 < b and t3 − t1 < `, then the boundary value problem,

y(n) =
n∑

i=1

ri(t)y(i−1) + q(t),
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y(i)(t1) = yi+1, i ∈ {0, . . . , n− 1} \ {p + 1}, y(p)(t2)− y(p)(t3) = yp+2,

has a solution for any assignment of values of yi ∈ R, 1 ≤ i ≤ n.
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Abstract

This paper is devoted to build the existence of mild solutions of impulsive neutral stochastic functional integrodiffer-

ential equations (INSFIDEs) with infinite delay at abstract phase space in Hilbert spaces. Under the uniform Lipschitz

condition, we obtain the solution for INSFIDEs. Sufficient conditions for the existence results are derived with the help

of Krasnoselski-Schaefer type fixed point theorem. An example is provided to illustrate the theory.
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1 Introduction

Stochastic differential equations are well known to model problems from many areas of science and engi-
neering, wherein, quite often the future state of such systems depends not only on the present state but also on
its past history (delay) leading to stochastic functional differential equations and it has played an important
role in many ways such as option pricing, forecast of the growth of population, etc., [32, 36, 37]. Random
differential and integral equations play an important role in characterizing numerous social, physical, biological
and engineering problems and for more details reader may refer [16, 25] and reference therein.

From time in memory, the theory of nonlinear functional differential or integrodifferential equations has
become an active area of investigation due to their application in many physical phenomena. Several authors
[3, 7, 8, 22] have investigated the integrodifferential equations with or without impulsive conditions in Banach
spaces. Recently impulsive neutral differential and integrodifferential equations have generated considerable
interest among the researchers [20].

Impulsive dynamical systems exhibit the various evolutionary process, including those in engineering, biol-
ogy and population dynamics, undergo abrupt changes in their state at certain moments between intervals of
continuous evolution. Since many evolution process, optimal control models in economics, stimulated neutral
networks, frequency- modulated systems and some motions of missiles or aircrafts are characterized by the
impulsive dynamical behavior. Nowadays, there has been increasing interest in the analysis and synthesis of
impulsive systems due to their significance both in theory and applications. Thus the theory of impulsive
differential equations has seen considerable development. For instance, see the monograph of Lakshmikantham
et al. [35], Bainov and Simeonov [6] and Somoilenko and Perestuk [44] for the ordinary impulsive differential
system and [26, 27, 28, 29, 41, 42] for the partial differential and partial functional differential equations with
impulses and for more details reader may refer [2, 3, 4, 10, 11, 18, 19, 39, 45] and reference therein. The
stochastic differential equations combined with impulsive conditions with unbounded delay have been studied
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by few authors, [1, 5, 12, 15, 24, 40] and the papers of [8, 13, 14, 31, 33, 43], where the numerous properties of
their solutions are studied.

In [9] Balachandran et al. studied the existence for impulsive neutral evolution integrodifferential equations
with infinite delay and Krasnoselski-Schaefer type fixed point theorem, whereas A. Lin et al. [34] proved
on neutral impulsive stochastic integrodifferential equations with infinite delay via fractional operators and
Sadovskii fixed point theorem, and Yong Ren et al. [40] established the controllability of impulsive neutral
stochastic functional differential inclusions with infinite delay and Dhage’s fixed point theorem. Recently, Jing
Cui et al. [23] derived nonlocal Cauchy problem for some stochastic integrodifferential equations in Hilbert
spaces and Leray-Schauder nonlinear alternative fixed point theorem.

Inspired by the above mentioned works [9, 23, 34, 40], in this paper, we are interested in studying the
existence of solutions of the following impulsive neutral stochastic differential equations with infinite delay;

d[x(t)− g(t, xt)] = A
[
x(t) + e

(
t, xt,

∫ t

0

h1(t, s, xs)ds
)]
dt+ f(t, xt)dt+ σ

(
t, xt,

∫ t

0

h2(t, s, xs)ds
)
dw(t),

t ∈ J := [0, b], t 6= tk, k = 1, 2, . . . ,m, (1.1)

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m, (1.2)

x0 = φ ∈ Bh, t ∈ J0 = (−∞, 0], (1.3)

where A is the infinitesimal generator of an analytic semigroup of bounded linear operator {T (t)}t≥0 in the
Hilbert space H. The history xt : (−∞, 0] → H,xt(s) = x(t+ s), s ≤ 0, belong to an abstract phase space Bh,
which will be described axiomatically in Section 2. Let K be the another separable Hilbert space with inner
product (·, ·)K and the norm ‖‖K . Suppose {w(t) : t ≥ 0} is a given K- valued Brownian motion or Wiener
process with a finite trace nuclear covariance operator Q ≥ 0 defined on a complete probability space (Ω,F , P )
equipped with a normal filtration {Ft}t≥0, which generated by the Wiener process w. We now employing the
same notation ‖·‖ for the norm L(K;H), where L(K;H) denotes the space of all bounded linear operator from
K into H. Here g, f : J×Bh → H, e : J×Bh×H → H, h1, h2 : J×J×Bh → H and σ : J×Bh×H → LQ(K,H)
are given functions, where LQ(K,H) denotes the space of all Q-Hilbert-Schmidt operator from K into H which
will be defined in Section 2. The initial data φ = {φ(t) : −∞ < t ≤ 0} is an F0-adapted, Bh- valued random
variable independent of the Wiener process w with finite second moment. Furthermore, the fixed times tk
satisfies 0 = t0 < t1 < t2 < · · · < tm < b, x(t+k ) and x(t−k ) denote the right and left limits of x(t) at t = tk.
And ∆x(tk) = x(t+k )− x(t−k ) represents the jump in the state x at time tk, where Ik determines the size of the
jump.

The outline of the paper is as follows. We review some basic facts about semigroups, the theory of SDEs, as
preliminaries in Section 2. Then, Section 3 is devoted to the development of our main existence results and our
basic tool include Krasnoselski-Schaefer fixed point theorem. Finally, the paper is conclude with an example
to illustrate the obtained results.

2 Preliminaries

Let (K, ‖ · ‖K) and (H, ‖ · ‖H) be the two separable Hilbert space with inner product 〈·, ·〉K and 〈·, ·〉H ,
respectively. We denote by L(K,H) be the set of all linear bounded operator from K into H, equipped with
the usual operator norm ‖ · ‖. In this article, we use the symbol ‖ · ‖ to denote norms of operator regardless of
the space involved when no confusion possibly arises.

Let (Ω,F , P,H) be the complete probability space furnished with a complete family of right continuous
increasing σ- algebra {Ft, t ∈ J} satisfying Ft ⊂ F . An H- valued random variable is an F- measurable
function x(t) : Ω → H and a collection of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called stochastic
process. Usually we write x(t) instead of x(t, ω) and x(t) : J → H in the space of S. Let {ei}∞i=1 be a complete
orthonormal basis of K. Suppose that {w(t) : t ≥ 0} is a cylindrical K-valued wiener process with a finite
trace nuclear covariance operator Q ≥ 0, denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei.

So, actually ω(t) =
∑∞

i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually independent one-dimensional standard

Wiener processes. We assume that Ft = σ{ω(s) : 0 ≤ s ≤ t} is the σ-algebra generated by ω and Ft = F . Let
Ψ ∈ L(K,H) and define

‖Ψ‖2Q = Tr(ΨQΨ∗) =
∞∑

n=1

‖
√
λnΨen‖2.
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If ‖Ψ‖Q <∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space of all Q-Hilbert-
Schmidt operators Ψ : K → H. The completion LQ(K,H) of L(K,H) with respect to the topology induced
by the norm ‖ · ‖Q where ‖Ψ‖2Q = 〈Ψ,Ψ〉 is a Hilbert space with the above norm topology.

The collections of all strongly measurable, square integrable, H-valued random variable, denoted by
L2(Ω,F , P,H) ≡ L2(Ω,H), is a Banach space equppied with norm ‖x(·)‖L2 = (E‖x(·, ω)‖2) 1

2 , where the
expectation, E is defined by Ex =

∫
Ω
x(ω)dP . Let C(J, L2(Ω,H)) be the Banach space of all continuous

map from J into L2(Ω,H) satisfying the condition supt∈J E‖x(t)‖2 < ∞. An important subspace is given by
L0

2(Ω,H) = {f ∈ L2(Ω,H) : f is F0 −measurable}.
Let A be the infinitesimal generator of an analytic semigroup T (t) in H. Suppose that 0 ∈ ρ(A) where ρ(A)

denotes the resolvent set of A and that semigroup T (·) is uniformly bounded that is to say, ‖T (t)‖ ≤ M1 for
some constant M1 ≥ 1 and for every t ≥ 0. Then for α ∈ (0, 1], it is possible to define the fractional power
operator ((−A)α) as a closed linear invertible operator on its domain D((−A)α). Furthermore, the subspace
D((−A)α) is dense in H and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D((−A)α),

defines the norm on Hα = D((−A)α).
It should be pointed out that, to study of abstract impulsive functional differential systems with infinite

delay, the abstract phase space Bh(which is similar to that used in [46]) is very appropriate. Now we present
we present the abstract phase space Bh as given in [21].

Assume that h : (−∞, 0] → (0,+∞) is a continuous function with l =
∫ 0

−∞ h(s)ds < +∞. For any a > 0,
we define,

B = {ψ : [−a, 0] → X such that ψ(t) is bounded and measurable},

and equip the space B with the norm,

‖ψ‖[−a,0] = sup
s∈[−a,0]

‖ψ(s)‖, ∀ψ ∈ B.

Let us define,

Bh =
{
ψ : (−∞, 0] → H : (E‖ψ(θ)‖2) 1

2 is a bounded and measurable function on [−a, 0]

and
∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖ψ(θ)‖2) 1

2 ds < +∞
}
.

If Bh is endowed with the norm,

‖ψ‖Bh
=
∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖ψ(θ)‖2) 1

2 ds, for all ψ ∈ Bh,

then, it is easy to see that (Bh, ‖ · ‖Bh
) is a Banach space [30].

Now, we consider the space,

B′h =
{
x : (−∞, b] → H such that xk ∈ C(Jk,H) and there exist x(t+k )

and x(t−k )with x(t+k ) = x(t−k ), x0 = φ ∈ Bh, k = 1, 2, · · · ,m
}
,

where, xk is the restrictions of x to Jk = (tk, tk+1], k = 1, 2, · · · ,m. Set ‖ · ‖b be a seminorm in B′h defined by,

‖x‖b = ‖φ‖Bh
+ sup{(E‖x(s)‖2) 1

2 : s ∈ [0, b]}, x ∈ B′h.

Next, we recall some basic definitions and lemmas which are used throughout this paper.

Lemma 2.1. ([21]) Assume that x ∈ B′h, then for t ∈ J , xt ∈ Bh. Moreover,

l
(
E‖x(t)‖2

) 1
2 ≤ ‖xt‖Bh

≤ ‖x0‖Bh
+ l sup

s∈[0,t]

(
E‖x(s)‖2

) 1
2
,

where l =
∫ 0

−∞ h(t)dt < +∞.



C. Parthasarathy et al. / Existence results for ... 29

Lemma 2.2. ([17]) Let H be a Hilbert space and Φ1, Φ2 be the two operator on H such that

(a) Φ1 is a contraction and

(b) Φ2 is completely continuous.

Then either

(i) the operator equation Φ1x+ Φ2x = x has a solution or

(ii) the set G = {x ∈ H : λΦ1(x
λ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1).

Lemma 2.3. ([27]) Let v(·), w(·) : [0, b] → [0,∞) be continuous function. If w(·) is nondecreasing and there
exist two constants θ ≥ 0 and 0 < α < 1 such that

v(t) ≤ w(t) + θ

∫ t

0

v(s)
(t− s)1−α

ds, t ∈ J,

then

v(t) ≤ eθn(Γ(α))ntnα/Γ(nα)
n−1∑
j=0

(θbα
α

)j

w(t),

for every t ∈ [0, b] and every n ∈ N such that nα > 1 and Γ(·) is the Gamma function.

Lemma 2.4. ([38]) Suppose the following properties are satisfied.

(i) Let 0 ≤ α ≤ 1. Then Hα is a banach space.

(ii) If 0 < β < α ≤ 1, then Hα ⊂ Hβ and the imbedding is compact whenever the resolvent operator of A is
compact.

(iii) For every 0 < α ≤ 1, there exists a positive constant Mα > 0 such that;

‖(−A)αT (t)‖ ≤ Mα

tα
, for all 0 < t ≤ b. (2.4)

Definition 2.1. A map F : J × Bh → H is said to be L2- Caratheodory if

(i) t→ F (t, v) is a measurable for each v ∈ Bh;

(ii) v → F (t, v) is continuous for almost all t ∈ J ;

(iii) for each q > 0, there exist hq ∈ L1(J,R+) such that

‖F (t, v)‖2 = sup
f∈F (t,v)

E‖f‖2 ≤ hq(t), forall ‖v‖2Bh
≤ q and for a.e. t ∈ J.

Definition 2.2. An Ft-adapted stochastic process x : (−∞, b] → H is called mild solution of the system (1.1)-

(1.3) if x0 = φ ∈ Bh satisfying x0 ∈ L0
2(Ω,H), for each s ∈ [0, b) the function AT (t−s)e

(
s, xs,

∫ s

0

h1(s, τ, xτ )dτ
)

is integrable and the following conditions hold:

(i) {xt : t ∈ J} is Bh valued and the restrictions of x(·) to the interval (tk, tk+1], k = 1, 2, . . . ,m is continuous;

(ii) ∆x(tk) = Ik(xtk
), k = 1, 2, . . . ,m;

(iii) for each t ∈ J, x(t) satisfies the following integral equation

x(t) = T (t)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

T (t− s)f(s, xs)ds+
∫ t

0

AT (t− s)g(s, xs)ds

+
∫ t

0

AT (t− s)e
(
s, xs,

∫ s

0

h1(s, τ, xτ )dτ
)
ds+

∫ t

0

T (t− s)σ
(
s, xs,

∫ s

0

h2(s, τ, xτ )dτ
)
dw(s) (2.5)

+
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J.
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3 Existence Results

In this section, we present and prove the existence results for the problem (1.1) − (1.3). In order to prove
the main theorem of this section, we list the following hypotheses:

(H1) The function f : J × Bh → X satisfies the following coditions:

(i) For x : (−∞, b] → H such that x0 ∈ Bh and x|J ∈ B′h, the function t → f(t, xt) is strongly
measurable. i.e., f(., xt) : J → H is a strongly measurable.

(ii) For each t ∈ J , the function f(t, .) : Bh → H is continuous.

(iii) There exists integrable function m(t) : J → [0,∞) and a continuous nondecreasing function Ω :
[0,∞) → (0,∞) such that,

E‖f(t, ψ)‖2 ≤ m(t)Ω1(E‖ψ‖2Bh
); (t, ψ) ∈ J × Bh.

(H2) A is the infinitesimal generator of a compact analytic semigroup and 0 ∈ ρ(A) such that

‖T (t)‖2 ≤M1, for all t ≥ 0 and ‖(−A)1−βT (t− s)‖2 ≤
M2

1−β

(t− s)2(1−β)
0 ≤ t ≤ b.

(H3) There exists a constant Mh1 ≥ 0, such that

∥∥∫ t

0

[h1(t, s, x)− h1(t, s, y)]
∥∥2 ≤Mh1‖x− y‖2Bh

.

(H4)) There exists constants 0 < β < 1, such that e is Hβ-valued, (−A)βe : J × Bh → H is completely
continuous,

(i) The function e : J × Bh × H → H for t ∈ J , x1, x2 ∈ Bh and y1, y2 ∈ H such that the function Me

satisfies the Lipschitz condition:

E‖(−A)βe(t, x1, y1)− (−A)βe(t, x2, y2)‖2 ≤Me[‖x1 − x2‖2Bh
+ ‖y1 − y2‖2].

Let c̃1 = b supt∈J ‖h1(t, s, 0)‖2, c̃2 = ‖(−A)β‖2 supt∈J ‖e(t, 0, 0)‖2, ‖(−A)−β‖2 = M0.

(ii) There exist constants 0 < β < 1, C0, c1, c2,Mg such that g is Hβ-valued, (−A)βg is continuous, and

E‖(−A)βg(t, x)‖2 ≤ c1‖x‖2Bh
+ c2, t ∈ J, x ∈ Bh,

E‖(−A)βg(t, x1)− (−A)βg(t, x2)‖2 ≤Mg‖x− y‖2Bh
, t ∈ J, x1, x2 ∈ Bh,with

C0 ≡ l2
{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}
< 1.

(H5) There exist constants dk such that ‖Ik(x)‖2 ≤ dk, k= 1, 2, . . . , m, for each x ∈ H.

(H6) Foe each (t, s) ∈ J × J , the function h2(t, s, ·) : Bh → H is continuous for each x ∈ Bh, the function
h2(·, ·, x) : J × J → H is strongly measurable. There exists an integrable function m : J → [0,∞) and a
constant γ ≥ 0, such that

‖h2(t, s, x)‖2 ≤ γm(s)Ω3(‖x‖2Bh
),

where Ω3 : [0,∞) → (0,∞) is a continuous nondecreasing functions. Let us assume that the finite bound
of
∫ t

0
γm(s)ds is L0.

(H7) The function σ : J × Bh ×H → H satisfies the following Caratheodory conditions:

(i) t→ σ(t, x, y) is measurable for each (x, y) ∈ Bh ×H,

(ii) (x, y) → σ(t, x, y) is continuous for almost all t ∈ J .
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(H8) E‖σ(t, x, y)‖2 ≤ p(t)Ω2(‖x‖2Bh
+ ‖y‖2) for almost all t ∈ J and all x ∈ Bh, y ∈ H, where p ∈ L2(J,R+)

and Ω2 : R+ → (0,∞) is continuous and increasing with

m̂(s) ≤
∫ ∞

B0K1

ds

Ω1(s) + Ω2(s) + Ω3(s)
, where

N0 = 2l2
{

64‖(−A)−β‖2c1
}
, (3.6)

N1 = 2‖φ‖2Bh
+ 2l2F , (3.7)

N2 = 128l2bM2
1−β(c1 +Me(1 +Mh1)),

m̂(t) = max[B0K3m(t), B0K4p(t), γm(t)],

B0 = eKn
2 (Γ(2β−1))nbn2β−1/Γ(n(2β−1)

n−1∑
j=0

(K2b
2β−1

2β − 1

)j

,

N3 = 128l2M1, N4 = 128l2M1Tr(Q), (3.8)

K1 =
N1

(1−N0)
, K2 =

N2

(1−N0)
, K3 =

N3

(1−N0)
, K4 =

N4

(1−N0)
, (3.9)

F = 64M1‖φ‖2Bh
+ 64‖(−A)−β‖2M1(c1‖φ‖2Bh

+ c2) + 64‖(−A)−β‖2Mgc2

+ 64
M2

1−βc2b
2β

2β − 1
+ 64(Mec̃1 + c̃2)

M2
1−βb

2β

2β − 1
+ 64M1

m∑
k=1

dk. (3.10)

We consider the operator Φ : B′h → B′h defined by

Φx(t) =



φ(t), t ∈ (−∞, 0],

T (t)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

T (t− s)f(s, xs)ds

+
∫ t

0

AT (t− s)g(s, xs)ds

+
∫ t

0

AT (t− s)e
(
s, xs,

∫ s

0

h1(s, τ, xτ )dτ
)
ds

+
∫ t

0

T (t− s)σ
(
s, xs,

∫ s

0

h2(s, τ, xτ )dτ
)
dw(s)

+
∑

0<tk<t T (t− tk)Ik(x(t−k )), t ∈ J.

(3.11)

From, hypothesis (H3)− (H4) and Lemma 2.4, the following inequality holds:

‖AT (t− s)e(s, xs,

∫ t

0

h1(s, τ, xτ )dτ)‖2 ≤ ‖(−A)1−βT (t− s)(−A)βe(s, xs,

∫ t

0

h1(s, τ, xτ )dτ)‖2

≤
M2

1−β

(t− s)2(1−β)

[
Me(1 +Mh1)‖xs‖2Bh

+Mec̃1 + c̃2].

Then, from the Bochner theorem, it follows that AT (t− s)e(s, xs,

∫ t

0

h1(s, τ, xτ )dτ) is integrable on [0, t). For

φ ∈ Bh, we defined φ̃ by

φ̃(t) =

{
φ(t), t ∈ (−∞, 0],

T (t)φ(0), t ∈ J,

and then, φ̃ ∈ B′h. Let x(t) = y(t) + φ̃(t), −∞ < t ≤ b. It is easy to see that x satisfies (2.5) if and only if y
satisfies y0 = 0 and

y(t) = −T (t)g(0, φ) + g(t, yt + φ̃t) +
∫ t

0

T (t− s)f(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)g(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)e
(
s, ys + φ̃t,

∫ s

0

h1(s, τ, yτ + φ̃τ )dτ
)
ds
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+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃)dτ
)
dw(s)

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )).

Let B′′h = {y ∈ B′h : y0 = 0 ∈ Bh}. For any y ∈ B′′h, we have

‖y‖b = ‖y0‖Bh
+ sup

0≤s≤b
(E‖y(s)‖2) 1

2 = sup
0≤s≤b

(E‖y(s)‖2) 1
2 .

Thus, (B′′h, ‖ · ‖b) is a Banach space. Set

Bq = {y ∈ B′′h : ‖y‖b ≤ q} for some q ≥ 0,

then Bq ⊆ B′′h is uniformly bounded. Moreover, for y ∈ Bq, from Lemma 2.1, we have

E(‖yt + φ̃t‖2Bh
) ≤ 2(‖yt‖2Bh

+ φ̃t‖2Bh
)

≤ 2l2 sup
0≤s≤t

E‖y(s)‖2 + 2‖y0‖2Bh
+ 2l2 sup

0≤s≤t
E‖φ̃(s)‖2 + 2‖φ̃0‖2Bh

≤ 2l2(q2 +M1E‖φ(0)‖2) + 2‖φ‖2Bh

= q′. (3.12)

Define the operator Φ̃ : B′′h → B′′h by

Φ̃y(t) =



0, t ∈ (−∞, 0],

−T (t)g(0, φ) + g(t, yt + φ̃t) +
∫ t

0

T (t− s)f(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)g(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)e
(
s, ys + φ̃t,

∫ s

0

h1(s, τ, yτ + φ̃τ )dτ
)
ds

+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃)dτ
)
dw(s)

+
∑

0<tk<t T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Now, we decompose Φ̃ as Φ̃1 + Φ̃2 where

Φ̃1y(t) = −T (t)g(0, φ) + g(t, yt + φ̃t) +
∫ t

0

AT (t− s)g(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)e
(
s, ys + φ̃s,

∫ s

0

h1(s, τ, yτ + φ̃τ )dτ
)
ds, t ∈ J,

Φ̃2y(t) =
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, xτ + φ̃)dτ
)
dw(s) +

∫ t

0

T (t− s)f(s, ys + φ̃s)ds

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Obviously, the operator Φ having a fixed point is equivalent to Φ̃ having one. Now, we shall show that the
operator Φ̃1, Φ̃2 satisfy all the conditions of Lemma 2.2.

Theorem 3.1. If assumption (H1)− (H8) hold, then Φ̃1 is a contraction and Φ̃2 is completely continuous.

Proof. Let u, v ∈ B′′h. Then, we have to show that Φ̃1 is a contraction on B′′h, we have

E‖Φ̃1u(t)− Φ̃1v(t)‖2

≤ E‖g(t, ut + φ̃t)− g(t, vt + φ̃t)‖2 + E‖
∫ t

0

AT (t− s)
[
g(s, us + φ̃s)− g(s, vs + φ̃s)

]
ds‖2

+ E‖
∫ t

0

AT (t− s)
[
e
(
s, us + φ̃s,

∫ s

0

h1(s, τ, uτ + φ̃τ )dτ
)
− e
(
s, vs + φ̃s,

∫ s

0

h1(s, τ, vτ + φ̃τ )dτ
)]
ds‖2
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≤ 16
{
E‖g(t, ut + φ̃t)− g(t, vt + φ̃t)‖2 + E‖

∫ t

0

AT (t− s)[g(s, us + φ̃s)− g(s, vs + φ̃s)]ds‖2

+ E‖
∫ t

0

AT (t− s)
[
e
(
s, us + φ̃s,

∫ s

0

h1(s, τ, uτ + φ̃τ )dτ
)
− e
(
s, vs + φ̃s,

∫ s

0

h1(s, τ, vτ + φ̃τ )dτ
)]
ds‖2

}
≤ 16

{
Mg‖(−A)−β‖2E‖ut − vt‖2Bh

+MgE‖ut − vt‖2Bh

(M1−βb
β)2

2β − 1

+
(M1−βb

β)2

2β − 1
Me[E‖ut − vt‖2Bh

+Mh1E‖ut − vt‖2Bh
]
}

≤ 16
{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}
E‖ut − vt‖2Bh

≤ 16
{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}[
2l2 sup

s∈[0,t]

E‖u(s)− v(s)‖2 + 2‖u0‖2Bh
+ 2‖v0‖2Bh

]
≤ 32l2

{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}
E‖u(s)− v(s)‖2

≤ sup
s∈[0,b]

C0E‖u(s)− v(s)‖2.

Since, ‖u0‖2Bh
= 0, ‖v0‖2Bh

= 0. Taking the supremum over t,

‖Φ̃1u− Φ̃1v‖2 ≤ C0‖u− v‖2,

and so, by assumption 0 ≤ C0 ≤ 1, we see that Φ̃1 is a contraction on B′′h.
Now, we show that the operator Φ̃2 is completely continuous. First, we show that Φ̃2 maps bounded sets

into bounded sets in B′′h. It is enough to show that there exists a positive constants r such that for each
y ∈ Bq = {y ∈ B′′h : ‖y‖2b ≤ q} one has E‖Φ̃2y‖2b ≤ r. Now for t ∈ J ,

Φ̃2y(t) =
∫ t

0

T (t− s)f(s, ys + φ̃s)ds+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Therefore, by the assumption, for each t ∈ J , we have

E‖Φ̃2y(t)‖2 ≤ 9M1

∫ b

0

m(s)Ω1(E‖ys + φ̃s‖2Bh
)ds+ 9M1Tr(Q)

∫ t

0

p(s)Ω2

(
E‖ys + φ̃s‖2Bh

+
∫ s

0

γm(τ)Ω3(E‖yτ + φ̃τ‖2Bh
)dτ
)
ds+ 9M1

m∑
k=1

dk

≤ 9M1Ω1(q′)
∫ b

0

m(s)ds+ 9M1Tr(Q)Ω2(q′ + L0Ω3(q′))
∫ b

0

p(s)ds+ 9M1

m∑
k=1

dk

= r.

Then, for each y ∈ Φ̃2y(Bq), we have ‖Φ̃2y‖2b ≤ r.
Next, we show that Φ̃2 maps bounded set into equicontinuous sets of B′′h.

Let 0 < τ1 < τ2 ≤ b. Then for each y ∈ Bq = {y ∈ B′′h : ‖y‖b ≤ q} and y ∈ Φ̃2y. Then for each t ∈ J , we have

Φ̃2y(t) =
∫ t

0

T (t− s)f(s, ys + φ̃s)ds+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Let τ1, τ1 ∈ J − {t1, t2, · · · , tm}. Then, we have

E‖Φ̃2y(τ2)− Φ̃2y(τ1)‖2

≤ 9E‖
∫ τ1−ε

0

[T (τ2 − s)− T (τ1 − s)]f(s, ys + φ̃s)ds‖2
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+ 9E‖
∫ τ1

τ1−ε

[T (τ2 − s)− T (τ1 − s)]f(s, ys + φ̃s)ds‖2

+ 9E‖
∫ τ2

τ1

[T (τ2 − s)]f(s, ys + φ̃s)ds‖2

+ 9E‖
∫ τ1−ε

0

[T (τ2 − s)− T (τ1 − s)]σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)‖2

+ 9E‖
∫ τ1

τ1−ε

[T (τ2 − s)− T (τ1 − s)]σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)‖2

+ 9E‖
∫ τ2

τ1

[T (τ2 − s)]σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)‖2

+ 9E‖
∑

0<tk<τ1

‖[T (τ2 − tk)− T (τ1 − tk)]Ik(y(t−k ) + φ̃(t−k ))‖2

+ 9E‖
∑

τ1≤tk<τ2

‖T (τ2 − tk)Ik(y(t−k ) + φ̃(t−k ))‖2

≤ 9
∫ τ1−ε

0

E‖T (τ2 − s)− T (τ1 − s)‖2hq′(s) + 9
∫ τ1

τ1−ε

E‖T (τ2 − s)− T (τ1 − s)‖2hq′(s)ds

+ 9
∫ τ2

τ1

E‖T (τ2 − s)‖2hq′(s)ds+ 9bTr(Q)
∫ τ1−ε

0

E‖T (τ2 − s)− T (τ1 − s)‖2p(s)Ω2(q′)ds

+ 9bTr(Q)
∫ τ1

τ1−ε

E‖T (τ2 − s)− T (τ1 − s)‖2p(s)Ω2(q′)ds

+ 9bTr(Q)
∫ τ2

τ1

E‖T (τ2 − s)‖2p(s)Ω2(q′)ds+ 9
∑

0<tk<τ1

E‖T (τ2 − tk)− T (τ1 − tk)‖2dk

+ 9M1

∑
τ1≤tk<τ2

dk.

The right-hand side of the above inequality is independent of y ∈ Bq tends to zero as τ2− τ1 → 0, and for ε
sufficiently small, since the compactness of {T (t)}t≥0 implies the continuity in the uniform operator topology.
Thus the set {Φ̃2y : y ∈ Bq} is equicontinuous. Here we consider only the case 0 < τ1 ≤ τ2 ≤ b, since the other
cases τ1 ≤ τ2 ≤ 0 0r τ1 ≤ 0 ≤ τ2 ≤ b are very simple.

Next, we show that Φ̃2 : B′′h → B′′h is continuous.
Let {y(n)(t)}∞n=0 ⊆ B′′h, with y(n) → y in B′′h. Then, there is a number q ≥ 0 such that |y(n)(t)| ≤ q for all

n and a.e. t ∈ J , so y(n) ∈ Bq and y ∈ Bq. Using (3.12), we have ‖y(n)
t + φ̃t‖2Bh

≤ q′, t ∈ J . By Definition 2.1,
(H8), Ik, k = 1, 2, · · · ,m, is continuous

f(t, y(n)
t + φ̃t) → f(t, yt + φ̃t),

σ
(
t, y

(n)
t + φ̃t,

∫ t

0

h2(s, τ, y(n)
τ + φ̃τ )dτ

)
→ σ

(
t, yt + φ̃t,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
,

for each t ∈ J , and since

E‖f(t, y(n)
t + φ̃t)− f(t, yt + φ̃t)‖2 ≤ 2αq′(t),

E‖σ
(
t, y

(n)
t + φ̃t,

∫ t

0

h2(s, τ, y(n)
τ + φ̃τ )dτ

)
− σ

(
t, yt + φ̃t,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
‖2 ≤ 2p(t)Ω2(q′).

By the dominated convergence theorem that,

E‖Φ̃2y
(n) − Φ̃2y‖2 = sup

t∈J
E
∥∥∥∫ t

0

T (t− s)
[
σ
(
t, y(n)

s + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)

− σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)]
dw(s)

+
∫ t

0

T (t− s)
[
f(t, y(n)

s + φ̃s)− f(t, ys + φ̃s)
]
ds

+
∑

0≤tk<t

T (t− tk)
[
Ik(yn(t−k ) + φ̃(t−k ))− Ik(y(t−k ) + φ̃(t−k ))

]∥∥∥2
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≤M1Tr(Q)
∫ t

0

E‖σ
(
t, y(n)

s + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)

− σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
‖2ds

+M1

∫ t

0

E‖f(t, y(n)
s + φ̃s)− f(t, ys + φ̃s)‖2ds

+
∑

0≤tk<t

‖T (t− tk)‖2E‖Ik(yn(t−k ) + φ̃(t−k ))− Ik(y(t−k ) + φ̃(t−k ))‖2

→ 0 as n→∞.

Thus, Φ̃2 is continuous.
Next, we show that Φ̃2 maps Bq into a precompact set in H. Let 0 < t ≤ b be fixed and ε be a real number

satisfying 0 < ε ≤ t. For y ∈ Bq, we define

(Φ̃ε
2y)(t) =

∫ t−ε

0

T (t− s)σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+
∫ t−ε

0

T (t− s)f(t, ys + φ̃s)ds+
∑

0≤tk<t−ε

T (t− tk)Ik(y(t−k ) + φ̃(t−k ))

= T (ε)
∫ t−ε

0

T (t− s− ε)σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+ T (ε)
∫ t−ε

0

T (t− s− ε)f(t, ys + φ̃s)ds

+ T (ε)
∑

0≤tk<t−ε

T (t− tk − ε)Ik(y(t−k ) + φ̃(t−k )).

Since T (t) is a compact operator, the set Vε(t) = {(Φ̃ε
2y)(t) : y ∈ Bq} is relatively compact in H for every ε,

for every 0 < ε < t. Moreover, for each y ∈ Bq, we have

E‖(Φ̃2y)(t)− (Φ̃ε
2y)(t)‖2

≤
∫ t

t−ε

‖T (t− s)‖2E‖σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
‖2dw(s)

+
∫ t

t−ε

‖T (t− s)‖2E‖f(t, ys + φ̃s)‖2ds+
∑

t−ε≤tk<t

‖T (t− tk)‖2E‖Ik(y(t−k ) + φ̃(t−k ))‖2

≤M1Tr(Q)
∫ t

t−ε

p(s)Ω2(q′)d(s) +M1

∫ t

t−ε

αq′(s)ds+M1

∑
t−ε≤tk<t

dk.

Therefore,

E‖(Φ̃2y)(t)− (Φ̃ε
2y)(t)‖2 → 0, as ε→ 0.

and there are precompact sets arbitrarily close to the set {(Φ̃2y)(t) : y ∈ Bq}. Thus, the set {(Φ̃ε
2y)(t) : y ∈ Bq}

is precompact in H. Therefore, from Arzela- Ascoli theorem, the operator Φ̃2 is completely continuous.
In order to study the existence results for the problem (1.1)-(1.3), we consider the following nonlinear

operator equation,

x(t) = λT (t)[φ(0)− g(0, φ)] + λg(t, xt) + λ

∫ t

0

AT (t− s)g(s, xs)ds

+ λ

∫ t

0

T (t− s)f(s, xs)ds+ λ

∫ t

0

AT (t− s)e(s, xs,

∫ s

0

h1(s, τ, xτ )dτ)ds

+ λ

∫ t

0

T (t− s)σ(s, xs,

∫ s

0

h2(s, τ, xτ )dτ)dw(s)

+ λ
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J, (3.13)

for some 0 < λ < 1. The following lemma proves that an a priori bound exists for the solution of the above
equation.
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Theorem 3.2. If hypothesis (H1) − (H8) are satisfied, then there exist an a priori bound K ≥ 0 such that
‖xt‖2Bh

≤ K, t ∈ J , where K depends only on b and on the function Ω1,Ω2, m̂ and Ω3.

Proof. From (3.13), we have

E‖x(t)‖2 ≤ 64M1‖φ‖2Bh
+ 64‖(−A)−β‖2M1(c1‖φ‖2Bh

+ c2)

+ 64‖(−A)‖−β‖2Mg(c1‖xt‖2Bh
+ c2) + 64

[∫ t

0

M2
1−βbc1

(t− s)2(1−β)
‖xs‖2Bh

ds+
M2

1−βc2b
2β

2β − 1

]

+ 64M1

∫ t

0

m(s)Ω1(‖xs‖2Bh
)ds+ 64(Mec̃1 + c̃2)

M2
1−βb

2β

2β − 1

+ 64bM2
1−βMe(1 +Mh1)

∫ t

0

‖xs‖2Bh

(t− s)2(1−β)
ds

+ 64M1Tr(Q)
∫ t

0

p(s)Ω2

(
‖xs‖2Bh

+
∫ s

0

γm(τ)Ω3(‖xτ‖2)dτ
)
ds+ 64 M1

m∑
k=1

dk.

Now, we consider the function µ defined by

µ(t) = sup
0≤s≤t

E‖x(s)‖2, 0 ≤ t ≤ b.

From, Lemma 2.1 and the above inequality, we have

E‖x(t)‖2 = 2‖φ‖2Bh
+ 2l2 sup

0≤s≤t
(E‖x(s)‖2).

Therefore, we get

µ(t) ≤ 2‖φ‖2Bh
+ 2l2

{
F + 64‖(−A)−β‖2c1µ(t) + 64bM2

1−βc1

∫ t

0

µ(s)
(t− s)2(1−β)

ds

+ 64 M1

∫ t

0

m(s)Ω1µ(s)ds+ 64‖(−A)−β‖2Me(1 +Mh1)µ(t)

+ 64bM2
1−βMe(1 +Mh1)

∫ t

0

µ(s)
(t− s)2(1−β)

ds

+ 64 M1Tr(Q)
∫ t

0

p(s)Ω2

(
µ(s) +

∫ s

0

γm(τ)Ω3(µ(τ))dτ
)
ds
}
,

where F is given in (3.10). Thus, we have

µ(t) ≤ K1 +K2

∫ t

0

µ(s)
(t− s)2(1−β)

ds+K3

∫ t

0

m(s)Ω1µ(s)ds

+K4

∫ t

0

p(s)Ω2

(
µ(s) +

∫ s

0

γm(τ)Ω3(µ(τ))dτ
)
ds,

where K1,K2,K3 are given in (3.9). By Lemma 2.3, we have

µ(t) ≤ B0

(
K1 +K3

∫ t

0

m(s)Ω1µ(s)ds

+K4

∫ t

0

p(s)Ω2

(
µ(s) +

∫ s

0

γm(τ)Ω3µ(τ)dτ
)
ds

)
,

where

B0 = eKn
2 (Γ(2β−1))nbn2β−1/Γ(n(2β−1)

n−1∑
j=0

(K2b
2β−1

2β − 1

)j

.

Let us take the right-hand side of the above inequality as v(t). Then v(0) = B0K1, µ(t) ≤ v(t), 0 ≤ t ≤ b, and

v′(t) ≤ B0

[
K3m(t)Ω1µ(t) +K4p(t)Ω2

(
µ(t) +

∫ t

0

γm(s)Ω3(µ(s))ds
)]
.
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Since, ψ is nondecreasing,

v′(t) ≤ B0

[
K3m(t)Ω1v(t) +K4p(t)Ω2

(
v(t) +

∫ t

0

γm(s)Ω3(v(s))ds
)]
.

Let w(t) = v(t) +
∫ t

0

γm(s)Ω3(v(s))ds. Then w(0) = v(0) and v(t) ≤ w(t).

w′(t) = v′(t) + γm(t)Ω3(v(t))

≤ B0K3m(t)Ω1(w(t)) +B0K4p(t)Ω2(w(t)) + γm(t)Ω3(w(t))

≤ m̂(t)[Ω1(w(t)) + Ω2(w(t)) + Ω3(w(t))].

This implies that, ∫ w(t)

w(0)

ds

Ω1(s) + Ω2(s) + Ω3(s)
≤
∫ b

0

m̂(s) ≤
∫ ∞

B0K1

ds

Ω1(s) + Ω2(s) + Ω3(s)
.

This implies that v(t) <∞. So the inequality shows that there is a constant K such that v(t) ≤ K, t ∈ J . So,
‖xt‖2Bh

≤ µ(t) ≤ v(t) ≤ K, t ∈ J , where K depends only on b and on the functions Ω1,Ω2,Ω3 and m̂.

Theorem 3.3. Assume that the hypotheses (H1)− (H8) hold. Then problem (1.1)-(1.3) has at least one mild
solution on J .

Proof. Let us take the set,

G(Φ̃) = {y ∈ B′′h : y = λΦ̃1(
y

x
) + λΦ̃2y, for some λ ∈ (0, 1)}. (3.14)

Then, for any y ∈ G(Φ̃), we have by Theorem 3.2 that ‖xt‖2Bh
≤ K, t ∈ J , and hence

‖y‖2b = ‖y0‖2Bh
+ sup{E‖y(t)‖2 : 0 ≤ t ≤ b}

= sup{E‖y(t)‖2 : 0 ≤ t ≤ b}

≤ sup{E‖x(t)‖2 : 0 ≤ t ≤ b}+ sup{‖φ̃(t)‖2 : 0 ≤ t ≤ b}
≤ sup{l−‖xt‖2Bh

: 0 ≤ t ≤ b}+ sup{‖T (t)φ(0)‖2 : 0 ≤ t ≤ b}
≤ l−K +M1‖φ(0)‖2.

This implies that G is bounded on J. Consequently, by the Krasnoselski-Schaefer type fixed point theorem the
operator Φ̃ has a fixed point y∗ ∈ B′′h. Since x(t) = y∗(t) + φ̃(t), t ∈ (−∞, b], x is a fixed point of the operator
Φ which is a mild solution of problem (1.1)-(1.3).

4 Example

In this, we present the application for the problem (1.1)-(1.3), we consider the following impulsive neutral
stochastic partial integrodifferential equation of the form

∂

∂t

[
v(t, y)−

∫ t

−∞

∫ π

0

a(s− t, η, y)dηds
]

=
∂2

∂y2

[
v(t, y) +

∫ t

0

a1(t, y, s− t)P1(v(s, y))ds

+
∫ t

0

∫ s

−∞
k(s− τ)P2(v(τ, y))dτ

]
ds+ k0(y)v(t, y) +

∫ t

0

a2(t, y, s− t)Q1(v(s, y))ds

+
∫ t

0

∫ s

−∞
k(s− τ)Q2(v(τ, y))dτdβ(s), y ∈ [0, π], t ∈ [0, b], t 6= tk. (4.1)

v(t, 0) = v(t, π) = 0, t ≥ 0, (4.2)

v(t, y) = φ(t, y), t ∈ (−∞, 0], y ∈ [0, π], (4.3)

∆v(ti)(y) =
∫ ti

−∞
qi(ti − s)v(s, y)ds, y ∈ [0, π], (4.4)
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where 0 < t1 < · · · < tn < b are prefixed numbers and ψ ∈ Bh and β(t) is a one-dimensional standard Wiener
process. Let us take H = L2[0, π] with the norm ‖ · ‖. Define A : H → H by A(t)z = −a(t, y)z′′ with domain,

D(A) = {z(·) ∈ H : z, z′, are absolutely continuous, z′′ ∈ H, z(0) = z(π) = 0},

Then

Az =
∞∑

n=1

n2 〈z, zn〉 zn, z ∈ D(A),

where zn(s) =
√

2
π sin(ns), n = 1, 2, · · · is the orthonormal set of eigenvector of A. It is well known that A is

the infinitesimal generator of an analytic semigroup T (t), t ≥ 0 in H and is given by

T (t)z =
∞∑

n=1

exp−n2t 〈z, zn〉 zn, z ∈ H.

For every z ∈ H, (−A)
1
2 z =

∑∞
n=1

1
n 〈z, zn〉 zn, and ‖(−A)

1
2 ‖2 = 1. The operator (−A)

1
2 is given by

(−A)
1
2 z =

∞∑
n=1

n 〈z, zn〉 zn,

on the space D((−A)
1
2 ) = {z ∈ H :

∑∞
n=1 n 〈z, zn〉 zn ∈ H}. Since, the analytic semigroup T (t) is compact

[38], there exists a constant M1 ≥ 0 such that ‖T (t‖2 ≤M1 and satisfies (H2).

Now, we give a special Bh- space. Let h(s) = e2s, s ≤ 0, then l =
∫ 0

−∞
h(s)ds =

1
2

and let

‖φ‖Bh
=
∫ 0

−∞
h(s) sup

s≤θ≤0
E
(
‖φ(θ)‖2

) 1
2
ds.

It follows from [30], that (Bh, ‖ · ‖Bh
) is a Banach space.

Hence, for (t, φ) ∈ [0, b]× Bh, where φ(θ)(y) = φ(θ, y), (θ, y) ∈ (−∞, 0]× [0, π]. Set

v(t)(y) = v(t, y), g(t, φ)y =
∫ 0

−∞

∫ φ

0

a(s− t, η, y)dηds,

f(t, φ)(y) = k0(y)φ(t, y),

b(t, φ,B1φ)(y) =
∫ 0

−∞
a1(t, y, θ)P1(φ(θ)(y))dθ +B1φ(y),

and

σ(t, φ,B2φ)(y)) =
∫ 0

−∞
a2(t, y, θ)Q1(φ(θ)(y))dθ +B2φ(y),

where

B1φ(y) =
∫ t

0

∫ 0

−∞
k(s− θ)P2(φ(θ)(y))dθds,

B2φ(y) =
∫ t

0

∫ 0

−∞
k(s− θ)Q2(φ(θ)(y))dθdβ(s).

Then, the above equation can be written in the abstract form as system (1.1)-(1.3). The function a1, k and P1, P2

are assumed to satisfy the conditions of [27] and qi : R→ R are continuous and di =
∫ 0

−∞
h(s)q2i (s)ds <∞ for

i = 1, 2, · · · , n. Moreover, e([0, b]×Bh×L2) ⊆ D((−A)
1
2 ) and ‖(−A)

1
2 e(t, φ1, u1)(y)−(−A)

1
2 e(t, φ2, u2)(y)‖2 ≤

Me[‖φ1 − φ2‖2Bh
+ |u1 − u2|2] for some constants Me > 0 depending on a1, k, P1, P2 and |u1 − u2|2 = ‖B1φ1 −

B1φ2‖2 ≤Mh1‖φ1 − φ2‖2Bh
for Mh1 > 0 such that 1

2Me(1 +Mh1)(1 + 2C 1
2

√
e) < 1.

Suppose further that :
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(i) The function a2(t, y, θ) is continuous in [0, b] × [0, π] × (−∞, 0] and a2(t, y, θ) ≥ 0,
∫ 0

−∞
a2(t, y, θ)dθ =

p1(t, y) <∞.

(ii) The function k(t− s) is continuous in [0, b] and k(t− s) ≥ 0,
∫ t

0

∫ 0

−∞
k(s− θ)dθds = p2(t) <∞.

(iii) The function Qi(·), i = 1, 2 are continuous and for each (θ, y) ∈ (−∞, 0] × [0, π], 0 ≤ Qi(v(θ)(y)) ≤

Φ(
∫ 0

−∞
e2s‖v(s, ·)‖L2ds), where Φ : [0,+∞) → (0,+∞) is a continuous and nondecreasing function.

Now, we can see that,

E|σ(t, φ,B2φ)|L2

=
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)Q1(φ(θ)(y))dθ +B2φ(θ)(y)

)2

dy
] 1

2

≤
√

2
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)Φ

(∫ 0

−∞
e2s‖φ(s), (·)‖L2ds

)
dθ
)2

dy
] 1

2

+
√

2
[ ∫ π

0

(∫ t

0

∫ 0

−∞
k(τ − θ)Φ

(∫ 0

−∞
e2s‖φ(s), (·)‖L2ds

)
dθdβ(τ)

)2

dy
] 1

2

≤
√

2
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)Φ

(∫ 0

−∞
e2s sup

s∈[θ,0]

‖φ(s)‖L2ds
)
dθ
)2

dy
] 1

2

+
√

2 Tr(Q)
[ ∫ π

0

(∫ t

0

∫ 0

−∞
k(τ − θ)Φ

(∫ 0

−∞
e2s sup

s∈[θ,0]

‖φ(s)‖L2ds
)
dθdτ

)2

dy
] 1

2

=
√

2
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)dθ

)2

dy
] 1

2
Φ(‖φ‖2h)

+
√

2 Tr(Q)
[ ∫ π

0

(∫ t

0

∫ 0

−∞
k(s− θ)dθds

)2

dy
] 1

2
Φ(‖φ‖2h)

=
√

2

([∫ π

0

(p1(t, y))2dy
] 1

2
+ Tr(Q)

[ ∫ π

0

(p2(t, y))2dy
] 1

2

)
Φ(‖φ‖2h)

=
√

2[p̄1(t) +
√
πTr(Q)p̄2(t)]Φ(‖φ‖2h).

Since, Φ : [0,+∞) → [0,+∞) is continuous and nondecreasing functions, we can take p(t) =
√

2[p̄1(t) +√
πTr(Q)p̄2(t)] and Ω2(r) = Ω3(r) = Φ(r) in (H8). If (H5), (H7) and the bounds in (H8) are satisfied then

equations (4.1)-(4.4) have a mild solution on [0, b].
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Abstract

In this paper, we present some results concerning the existence of solutions for a system of integral equations of

Riemann-Liouville fractional order with multiple time delay in Fréchet spaces, we use an extension of the Burton-Kirk

fixed point theorem. Also we investigate the stability of solutions of this system.
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1 Introduction

Integral equations occur in mechanics and many related fields of engineering and mathematical physics and
others. They also form one of useful mathematical tools in many branches of pure analysis such as functional
analysis [21, 27, 29]. There has been a significant development in ordinary and partial fractional differential
and integral equations in recent years; see the monographs of Abbas et al. [7], Baleanu et al. [12], Kilbas et
al. [22], Lakshmikantham et al. [23], Podlubny [26]. Recently some interesting results on the attractivity of
the solutions of some classes of integral equations have been obtained by Abbas et al. [1, 2, 3, 5, 6, 8], Banaś
et al. [13, 14, 15], Darwish et al. [16], Dhage [17, 18, 19], Pachpatte [24, 25] and the references therein.

In [10], Avramescu and Vladimirescu presented an existence result of asymptotically stable solutions for
the integral equation

x(t) = q(t) +
∫ t

0

K(t, s, x(s))ds +
∫ ∞

0

G(t, s, x(s))ds; if t ∈ R+. (1.1)

They used two fixed point theorems in Fréchet spaces, the Banach’s contraction principle and the fixed point
theorem of Burton-Kirk. In [11], the same authors studied the existence and the stability of solutions of the
integral equation

x(t) = f(t, x(t)) +
∫ ν(t)

0

u(t, s, x(µ(s)))ds; if t ∈ R+, (1.2)

by using the Schauder-Tychonoff fixed point theorem (see, e.g., [29]) in some Fréchet spaces. Recently, in [4],
Abbas and Benchohra investigated the existence and uniqueness of solutions for the following fractional order
integral equations for the system

u(x, y) =
m∑

i=1

gi(x, y)u(x− ξi, y − µi) + Ir
θf(x, y, u(x, y)); if (x, y) ∈ J1, (1.3)

∗Corresponding author.
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u(x, y) = Φ(x, y); if (x, y) ∈ J̃1 := [−ξ, a]× [−µ, b]\(0, a]× (0, b], (1.4)

where J1 = [0, a] × [0, b], a, b > 0, θ = (0, 0), ξi, µi ≥ 0; i = 1 . . . , m, ξ = max
i=1...,m

{ξi}, µ = max
i=1...,m

{µi}, Ir
θ is

the left-sided mixed Riemann-Liouville integral of order r = (r1, r2) ∈ (0,∞)× (0,∞), f : J1 ×Rn → Rn, gi :
J1 → R; i = 1 . . .m are given continuous functions, and Φ : J̃1 → Rn is a given continuous function such that

Φ(x, 0) =
m∑

i=1

gi(x, 0)Φ(x− ξi,−µi) and Φ(0, y) =
m∑

i=1

gi(0, y)Φ(−ξi, y − µi).

Motivated by those papers, this work deals with the existence and the stability of solutions of a class of
functional integral equations of Riemann-Liouville fractional order with multiple time delay. We establish some
sufficient conditions for the existence and the stability of solutions of the following fractional order integral
equations for the system

u(t, x) =
m∑

i=1

gi(t, x)u(t− τi, x− ξi) + f(t, x, Ir
θu(t, x), u(t, x)); (t, x) ∈ J, (1.5)

u(t, x) = Φ(t, x); if (t, x) ∈ J̃ := [−τ,∞)× [−ξ, b]\(0,∞)× (0, b], (1.6)

where J := R+×[0, b], b > 0, R+ = [0,∞), θ = (0, 0), r = (r1, r2), r1, r2 ∈ (0,∞), τi, ξi ≥ 0; i = 1 . . . , m, τ =
max

i=1...,m
{τi}, ξ = max

i=1...,m
{ξi}, f : J × R × R → R, gi : J → R+; i = 1 . . .m, Φ : J̃ → R are given continuous

functions such that

Φ(t, 0) =
m∑

i=1

gi(t, 0)Φ(t− τi,−ξi) + f(t, 0, 0,Φ(t, 0)); t ∈ [0,∞),

and

Φ(0, x) =
m∑

i=1

gi(0, x)Φ(−τi, x− ξi) + f(0, x, 0,Φ(0, x)); x ∈ [0, b].

Our investigations are conducted in Fréchet spaces with an application of the fixed point theorem of Burton-
Kirk for the existence of solutions of our problem, and we prove that all solutions are globally asymptotically
stable. Also, we present an example illustrating the applicability of the imposed conditions.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this
paper. By L1([0, a]× [0, b]), for a, b > 0, we denote the space of Lebesgue-integrable functions u : [0, a]× [0, b] →
R with the norm

‖u‖1 =
∫ a

0

∫ b

0

|u(t, x)|dxdt.

As usual, C := C([−τ,∞)× [−ξ, b]) is the space of all continuous functions from [−τ,∞)× [−ξ, b] into R.

Definition 2.1. ([28]) Let r = (r1, r2) ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈ L1([0, a] × [0, b]); a, b > 0. The
left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Ir
θu)(t, x) =

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− y)r2−1u(s, y)dyds,

where Γ(·) is the (Euler’s) Gamma function defined by Γ(ζ) =
∫∞
0

tζ−1e−tdt; ζ > 0.

In particular, for almost all (t, x) ∈ [0, a]× [0, b],

(Iθ
θ u)(t, x) = u(t, x), and (Iσ

θ u)(t, x) =
∫ t

0

∫ x

0

u(s, y)dyds,

where σ = (1, 1).
For instance, Ir

θu exists almost everywhere for all r1, r2 > 0, when u ∈ L1([0, a]× [0, b]). Moreover

(Ir
θu)(t, 0) = 0; for a.a. t ∈ [0, a],
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and
(Ir

θu)(0, x) = 0, for a.a. x ∈ [0, b].

Example 2.1. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞). Then

Ir
θ tλxω =

Γ(1 + λ)Γ(1 + ω)
Γ(1 + λ + r1)Γ(1 + ω + r2)

tλ+r1xω+r2 , for a.a. (t, x) ∈ [0, a]× [0, b].

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N∗:={1,2,...}. We assume that the family of
semi-norms {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ... for every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N∗, there exists Mn > 0 such that

‖y‖n ≤ Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: For every n ∈ N∗, we consider the
equivalence relation∼n defined by: x ∼n y if and only if ‖x−y‖n = 0 for x, y ∈ X. We denote Xn = (X|∼n , ‖·‖n)
the quotient space, the completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence {Y n}
of subsets Y n ⊂ Xn as follows: For every x ∈ X, we denote [x]n the equivalence class of x of subset Xn and
we defined Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n) and ∂nY n, respectively, the closure, the interior and
the boundary of Y n with respect to ‖ · ‖n in Xn. For more information about this subject see [20].

For each p ∈ N∗ we consider following set, Cp = C([−τ, p]× [−ξ, b]), and we define in C the semi-norms by

‖u‖p = sup
(t,x)∈[−τ,p]×[−ξ,b]

‖u(t, x)‖.

Then C is a Fréchet space with the family of semi-norms {‖u‖p}.

Definition 2.2. Let X be a Fréchet space. A function N : X −→ X is said to be a contraction if for each
n ∈ N∗ there exists kn ∈ [0, 1) such that

‖N(u)−N(v)‖n ≤ kn‖u− v‖n for all u, v ∈ X.

We need the following extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.

Theorem 2.1. [9] Let (X, ‖.‖n) be a Fréchet space and let A,B : X → X be two operators such that

(a) A is a compact operator;

(b) B is a contraction operator with respect to a family of seminorms {‖.‖n};

(c) the set
{
x ∈ X : x = λA(x) + λB

(
x
λ

)
, λ ∈ (0, 1)

}
is bounded.

Then the operator equation A(u) + B(u) = u has a solution in X.

Let ∅ 6= Ω ⊂ C, and let G : Ω → Ω, and consider the solutions of equation

(Gu)(t, x) = u(t, x). (2.1)

Now we introduce the concept of attractivity of solutions for our equations.

Definition 2.3. ([6, 7]) Solutions of equation (2.1) are locally attractive if there exists a ball B(u0, η) in the
space C such that, for arbitrary solutions v = v(t, x) and w = w(t, x) of equation (2.1) belonging to B(u0, η)∩Ω,

we have that, for each x ∈ [0, b],
lim

t→∞

(
v(t, x)− w(t, x)

)
= 0. (2.2)

When the limit (2.2) is uniform with respect to B(u0, η)∩Ω, solutions of equation (2.1) are said to be uniformly
locally attractive (or equivalently that solutions of (2.1) are locally asymptotically stable).

Definition 2.4. ([6, 7]) The solution v = v(t, x) of equation (2.1) is said to be globally attractive if (2.2)
holds for each solution w = w(t, x) of (2.1). If condition (2.2) is satisfied uniformly with respect to the set Ω,

solutions of equation (2.1) are said to be globally asymptotically stable (or uniformly globally attractive).
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3 Existence and Stability Results

Let us start by defining what we mean by a solution of the problem (1.5)-(1.6).

Definition 3.1. A function u ∈ C is said to be a solution of (1.5)-(1.6) if u satisfies equation (1.5) on J and
condition (1.6) on J̃ .

Now, we are concerned with the existence and the stability of solutions for the problem (1.5)-(1.6). Set

Bp = max
i=1...m

{
sup

(t,x)∈[0,p]×[0,b]

gi(t, x)

}
; p ∈ N∗,

and

B∗ = max
i=1...m

{
sup

(t,x)∈J

gi(t, x)

}
.

Theorem 3.1. Assume that the following hypothesis holds:

(H) The function f is continuous and there exist functions P,Q : J → R+ such that

|f(t, x, u, v)| ≤ P (t, x)|u|+ Q(t, x)|v|
1 + |u|+ |v|

, for (t, x) ∈ J and u, v ∈ R.

Moreover, assume that
lim

t→∞
P (t, x) = lim

t→∞
Q(t, x) = 0; for x ∈ [0, b].

If mBp < 1; p ∈ N∗, then the problem (1.5)-(1.6) has at least one solution in the space C. Moreover, if the
functions gi; i = 1 . . .m are bounded on J, and mB∗ < 1, then solutions of (1.5)-(1.6) are globally asymptotically
stable.

Proof. Let us define the operators A,B : C → C by

(Au)(t, x) =

{
0; (t, x) ∈ J̃ ,

f(t, x, Ir
θu(t, x), u(t, x)); (t, x) ∈ J,

(3.1)

(Bu)(t, x) =


Φ(t, x); (t, x) ∈ J̃ ,
m∑

i=1

gi(t, x)u(t− τi, x− ξi); (t, x) ∈ J.
(3.2)

The problem of finding the solutions of (1.5)-(1.6) is reduced to finding the solutions of the operator equation
A(u) + B(u) = u. We shall show that the operators A and B satisfied all the conditions of Theorem 2.1. The
proof will be given in several steps.
Step 1: A is compact.

To this aim, we must prove that A is continuous and it transforms every bounded set into a relatively
compact set. Recall that M ⊂ C is bounded if and only if

∀p ∈ N∗, ∃`p > 0 : ∀u ∈ M, ‖u‖p ≤ `p,

and M = {u(t, x); (t, x)) ∈ [−τ,∞) × [−ξ, b]} ⊂ C is relatively compact if and only if for any p ∈ N∗, the
family {u(t, x)|(t,x)]∈[−τ,p]×[−ξ,b]} is equicontinuous and uniformly bounded on [−τ, p]× [−ξ, b]. The proof will
be given in several claims.
Claim 1: A is continuous.

Let {un}n∈N be a sequence such that un → u in C. Then, for each (t, x) ∈ [−τ,∞)× [−ξ, b], we have

|(Aun)(t, x)− (Au)(t, x)| ≤ |f(t, x, Ir
θun(t, x), un(t, x))− f(t, x, Ir

θu(t, x), u(t, x))|. (3.3)

If (t, x) ∈ [−τ, p]× [−ξ, b]; p ∈ N∗, then, since un → u as n →∞, then (3.3) gives

‖A(un)−A(u)‖p → 0 as n →∞.
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Claim 2: A maps bounded sets into bonded sets in C.
Let M be a bounded set in C, then, for each p ∈ N∗, there exists `p > 0, such that for all u ∈ C we have

‖u‖p ≤ `p. Then, for arbitrarily fixed (t, x) ∈ [−τ, p]× [−ξ, b] we have

|(Au)(t, x)| ≤ |f(t, x, Ir
θu(t, x), u(t, x))|

≤ (P (t, x)|Ir
θu(t, x)|+ Q(t, x)|u(t, x))|)

× (1 + |Ir
θu(t, x)|+ |u(t, x))|)−1

≤ P (t, x) + Q(t, x)

≤ Pp + Qp,

where
Pp = sup

(t,x)∈[0,p]×[0,b]

P (t, x) and Qp = sup
(t,x)∈[0,p]×[0,b]

Q(t, x).

Thus
‖A(u)‖p ≤ P ∗

p + Q∗
p := `′p. (3.4)

Claim 3: A maps bounded sets into equicontinuous sets in C.
Let (t1, x1), (t2, x2) ∈ [0, p]× [0, b], t1 < t2, x1 < x2 and let u ∈ M, thus we have

|(Au)(t2, x2)− (Au)(t1, x1)| ≤

|f(t2, x2, I
r
θu(t2, x2), u(t2, x2))− f(t1, x1, I

r
θu(t1, x1), u(t1, x1))|.

From continuity of f, Ir
θ , u and as t1 → t2, x1 → x2, the right-hand side of the above inequality tends to zero.

The equicontinuity for the cases t1 < t2 < 0, x1 < x2 < 0 and t1 ≤ 0 ≤ t2, x1 ≤ 0 ≤ x2 is obvious. As a
consequence of claims 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude that A is continuous
and compact.
Step 2: B is a contraction.

Consider v, w ∈ C. Then, for any p ∈ N and each (t, x) ∈ [−τ, p]× [−ξ, b], we have

|(Bv)(t, x)− (Bw)(t, x)| ≤
m∑

i=1

gi(t, x)|v(t− τi, x− ξi)− w(t− τi, x− ξi)|

≤ mBp‖v − w‖p,

then
‖(B(v)−B(w)‖p ≤ mBp‖v − w‖p.

Since mBp < 1; p ∈ N∗, then; the operator B is a contraction.
Step 3: the set E :=

{
u ∈ C : u = λA(u) + λB

(
u
λ

)
, λ ∈ (0, 1)

}
is bounded.

Let u ∈ C, such that u = λA(u) + λB
(

u
λ

)
for some λ ∈ (0, 1). Then, for any p ∈ N∗ and each (t, x) ∈

[0, p]× [0, b], we have

|u(t, x)| ≤ λ|(Au)(t, x)|+ λ

∣∣∣∣B (
u(t, x)

λ

)∣∣∣∣
≤ mBp|u(t, x)|+ Q(t, x) + P (t, x)

≤ mBp‖u‖p + Pp + Qp,

then,

‖u‖p ≤
Pp + Qp

1−mBp
.

On the other hand, for each (t, x) ∈ [−τ, p]× [−ξ, b]\(0, p]× (0, b], we get

|u(t, x)| ≤ |Φ(t, x)| ≤ sup
(t,x)∈[−τ,p]×[−ξ,b]\(0,p]×(0,b]

|Φ(t, x)| := Φp.

Thus

‖u‖p ≤ max
{

Pp + Qp

1−mBp
,Φp

}
=: `∗p.
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Hence, the set E is bounded. As a consequence of steps 1 and 3 together with Theorem 2.1, we deduce that
A + B has a fixed point u in C which is a solution to problem (1.5)-(1.6).

Now, we show the stability of solutions of the problem (1.5)-(1.6). Let u and v be any two solutions of
(1.5)-(1.6), then for each (t, x) ∈ [−τ,∞)× [−ξ, b], we have

|u(t, x)− v(t, x)| = |(Au)(t, x)− (Av)(t, x) + (Bu)(t, x)− (Bv)(t, x)|

≤
m∑

i=1

gi(t, x)|u(t− τi, x− ξi)− v(t− τi, x− ξi)|

+ |f(t, x, Ir
θu(t, x), u(t, x))− f(t, x, Ir

θv(t, x), v(t, x)))|
≤ mB∗|u(t, x)− v(t, x)|+ 2P (t, x) + 2Q(t, x).

Thus

|u(t, x)− v(t, x)| ≤ 2(P (t, x) + Q(t, x))
1−mB∗ . (3.5)

By using (3.5), we deduce that

lim
t→∞

(u(t, x)− v(t, x)) = 0.

Consequently, the problem (1.5)-(1.6) has a least one solution and all solutions are globally asymptotically
stable.

4 Example

Consider the following system of fractional order integral equation of the form

u(t, x) =
t3x

1 + 8t3
u

(
t− 3

4
, x− 3

)
+

t4x2

1 + 12t4
u

(
t− 2, x− 1

2

)
+

1
4
u

(
t− 1, x− 3

2

)

+
1

1+t+x |I
r
θu(t, x)|+ e2−t+x|u(t, x)|

1 + 1
1+t+x |I

r
θu(t, x)|+ e2−t+x|u(t, x)|

; (t, x) ∈ R+ × [0, 1], (4.6)

u(t, x) = 0; if (t, x) ∈ J̃ := [−2,∞)× [−3, 1]\(0,∞)× (0, 1], (4.7)

where r =
(

1
2 , 33

5

)
. Set

(τ1, ξ1) =
(

3
4
, 3

)
, (τ2, ξ2) =

(
2,

1
2

)
, (τ3, ξ3) =

(
1,

3
2

)
,

g1(t, x) =
t3x

1 + 8t3
, g2(t, x) =

t4x2

1 + 12t4
, g3(t, x) =

1
4
,

and

f(t, x, u, v) =
|u|

1+t+x + |v|e2−t+x

1 + |u|
1+t+x + |v|e2−t+x

; (t, x) ∈ R+ × [0, 1].

We have m = 3, (τ, ξ) = (2, 3) and Bp ≤ B∗ = 1
4 ; p ∈ N.

The function f is continuous and satisfies assumption (H), with

P (t, x) =
1

1 + t + x
and Q(t, x) = e2−t+x.

Hence by Theorem 3.1, the problem (4.6)-(4.7) has a solution defined on [−2,∞)× [−3, 1] and all solutions are
globally asymptotically stable.
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Abstract

In this paper, we provide sufficient conditions for the existence of mild solutions for a class of fractional differential

equations with state-dependent delay. The results are obtained by using the nonlinear alternative of Leray-Schauder
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1 Introduction

In the last two decades, the theory of fractional calculus has gained importance and popularity, due to its
wide range of applications in varied fields of sciences and engineering. In [1, 3, 6, 7, 13, 19, 25, 27, 31, 32, 33]
applications are mentioned to fluid flow, rheology, dynamical processes in self-similar and porous structures,
electrical networks, control theory of dynamical systems and so on.

In this work, we establish the existence of mild solutions for a class of fractional abstract differential
equations with state-dependent delay described by

cDqx(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ J = [0, a], 0 < q < 1, (1.1)

x(t) = ϕ(t) ∈ B, t ∈ (−∞, 0], (1.2)

where the unknown x(·) takes values in Banach space X with norm ‖·‖, cDq is the Caputo fractional derivative
of order 0 < q < 1, A is the infinitesimal generator of a compact analytic semigroup of uniformly bounded
linear operators {T (t), t ≥ 0} in X, f : J × B → X and ρ : J × B → (−∞, a] are appropriate given functions,
ϕ ∈ B, ϕ(0) = 0 and B is called a phase space that will be defined in preliminaries.

An important point to note here it that when the delay is infinite the right notion is phase space. This
concept was introduced by Hale and Kato [15] ( see also Kappel and Schappacher [26] and Schumacher [34])
which enables to deduce important information about qualitative properties of differential equations with
unbounded delay. For a detailed discussion on this topic, we refer the reader to the book by Hino et al. [24].

On the other hand, functional differential equations with state-dependent delay appears frequently in ap-
plications as models of equations. Investigations of these classes of delay equations essentially differ from
once of equations with constant or time-dependent delay. For these reasons the theory of differential equa-
tions with state-dependent delay has drawn the attention of researchers in the recent years, see for instance
[4, 5, 16, 17, 18, 20, 21, 22, 23, 28, 29] and the references therein. The investigation of the exitnece of mild
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solutions of fractional functional differential equations with state-dependent delay is very recent and limited,
see for instance [2, 8, 9, 10].

The results in the present work are, on one side, an extension of results in [10] and [35] and, one the
otherside, an interesting contribution to the study of qualitative properties for fractional differential equations
with state-dependent delay. The topological method that we have choosen to study existence of mild solutions
of the fractiona differential equations (1.1)-(1.2) is the theory of fixed points, which has been a very powerful
and important tool to study the nonlilnear phenomena.

Our approach and techniques here are based on the nonlinear alternative of Leray-Schauder type [14] and
probability density function given by EI-Borai [11] and was then developed by Zhou et al. [35, 36].

2 Preliminaries

In this section, we introduce notation, definitions and preliminary facts which are used throughtout this
paper.

By C(J,X) we denote the Banach space of continuous functions from J into X with the norm

‖x‖∞ := sup{|x(t)| : t ∈ J}.

Definition 2.1. The fractional integral of order α with the lower limit 0 for the function f : (0, a] → X is
defined by

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds, t > 0, α > 0,

provided the right hand side exists pointwise on (0, a], where Γ is the gamma function.

For instance, Iαf exists for all α > 0, where f ∈ C((0, a], X) ∪ L1((0, a], X); note also that when f ∈
C((0, a], X) then Iαf ∈ C((0, a], X) and moreover Iαf(0) = 0.

Definition 2.2. The Caputo derivative of order α with the lower limit zero for a function f : (0, a] → X can
be written as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n

ds = In−αf (n)(t), t > 0, n− 1 < α < n.

If f is an abstract function with values in X, then integrals which appear in Definition 2.1 and 2.2 are taken
in Bochner’s sence.

In this paper, we will employ an axiomatic definition, for the phase space B which is similar to those
introduced in [24]. More precisely, B will be a linear space of all functions from (−∞, 0] to X endowed with a
seminorm ‖ · ‖B satisfying the following axioms:

(A1) If x : (−∞, a] → X, a > 0 is continuous on J and x0 ∈ B, then for every t ∈ J the following conditions
hold:

(i) xt is in B,

(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t) sup{‖ x(s) ‖: 0 ≤ s ≤ t}+M(t) ‖ x0 ‖B, where H > 0 is a constant, K : [0,∞) → [1,∞)
is continuous, M : [0,∞) → [1,∞) is locally bounded and H, K, M are independent of x(·).

(A2) For the function x(·) in (A1), xt is a B-valued continuous function on J .

(A3) The space B is complete.

The next lemma is a consequence of the phase space axioms and is proved in [20].

Lemma 2.1. Let ϕ ∈ B and I = (γ, 0] be such that ϕt ∈ B for every t ∈ I. Assume that there exists a locally
bounded function Jϕ : I → [0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ I. If x : (∞, a] → R is continuous
on J and x0 = ϕ, then

‖xt‖B ≤ (Ma + Jϕ(max{γ,−|s|})‖ϕ‖B +Ka sup{|x(θ)| : θ ∈ [0,max{0, s}]},

for s ∈ (γ, a], where we denoted Ka = sup
t∈J

K(t) and Ma = sup
t∈J

M(t).
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3 Existence results for functional fractional differential equations with state-

dependent delay

In this section, we discuss the existence of mild solutions for the fractional differential equations with state-
dependent delay of the form (1.1)-(1.2). Following [11, 12, 35], we will introduce now the definition of mild
solution to (1.1)-(1.2).

Definition 3.1. A function x : (−∞, a] → X is said to be a mild solution of (1.1)-(1.2) if x0 = ϕ, xρ(s,xs) ∈ B
for each s ∈ J and

x(t) = Sq(t)ϕ(0) +
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J,

where

Sq(t) =
∫ ∞

0

ξq(θ)T (tqθ)dθ,

Tq(t) = q

∫ ∞

0

θξq(θ)T (tqθ)dθ,

ξq(θ) =
1
q
θ−1− 1

qwq(θ−
1
q ) ≥ 0,

wq(θ) =
1
π

∞∑
k=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞),

ξq is a probability density function on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0

ξq(θ)dθ = 1.

Remark 3.1. It is not difficult to verify that for v ∈ [0, 1]∫ ∞

0

θvξq(θ)dθ =
∫ ∞

0

θ−qvwq(θ)dθ =
Γ(1 + v)
Γ(1 + qv)

.

Lemma 3.1. [35] For any t ≥ 0, The operators Sq(t) and Tq(t) have the following properties:

(a) For any fixed t ≥ 0, Sq and Tq are linear and bounded operators, ie., for any x ∈ X,

‖Sq(t)x‖ ≤M‖x‖, ‖Tq(t)x‖ ≤
qM

Γ(1 + q)
‖x‖.

(b) {Sq(t), t ≥ 0} and {Tq(t), t ≥ 0} are strongly continuous.

(c) For every t > 0, Sq(t) and Tq(t) are also compact operators.

To prove our results, we always assume that ρ : J × B → (−∞, a] is continuous. In addition, we introduce
the following conditions.

(H1) The semigroup T (t) is compact for t > 0.

(H2) For each t ∈ J , the function f(t, ·) : B → X is continuous and for each ψ ∈ B, the function f(·, ψ) : J → X

is strongly measurable.

(H3) There exist p : J → [0,∞] and a continuous non-decreasing function Ω : [0,∞) → (0,∞) such that

‖f(t, ψ)‖ ≤ p(t)Ω(‖ψ‖B) for t ∈ J, and each ψ ∈ B.

(H4) The function t→ ϕt is well defined and continuous from the set

R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ J × B, ρ(s, ψ) ≤ 0}

into B and there exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖ϕt‖B ≤
Jϕ(t)‖ϕ‖B for every t ∈ R(ρ−).
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Remark 3.2. We point out here that the condition (H4) is usually satisfied by functions that are continuous
and bounded. For complementary details related this matter the reader can see [20].

Theorem 3.1. Let conditions (H1)− (H4) hold with ρ(t, x) ≤ t for every (t, x) ∈ J × B and

‖ξ‖∞
(Ma + J

ϕ
)‖ϕ‖B +MKaΩ(‖ξ‖∞)‖Iqp‖∞

> 1

then there exists a mild solution of (1.1)-(1.2) on (−∞, a].

Proof. Let Y = {u ∈ C(J,X) : u(0) = ϕ(0) = 0} endowed with the uniform operator topology and Φ : Y → Y

be the operator defined by

Φ(x)(t) =
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,x(s)))ds, t ∈ J,

where x : (−∞, a] → X is such that x0 = ϕ and x = x on J . From axiom (A1) and our assumption on ϕ, we
infer that Φ(x)(·) is well defined and continuous.

Let ϕ : (−∞, a] → X be the extension of ϕ to (−∞, a] such that ϕ(θ) = φ(0) = 0 on J and J
ϕ

= sup{Jϕ :
s ∈ R(ρ−)}.

We will prove that Φ(·) is completely continuous from Br(ϕ|J , Y ) to Br(ϕ|J , Y ).
We break the proof into several steps.

Step 1: Φ is continuous on Br(ϕ|J , Y ).
Let {xn} ⊂ Br(ϕ|J , Y ) and x ∈ Br(ϕ|J , Y ) with xn → x (n → ∞). From axiom A1, it is easy to see that

(xn)s → xs uniformly for s ∈ (−∞, a] as n→∞. By (H3), we have

‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(x)s

)‖

≤ ‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(xn)s

)‖+ ‖f(s, xρ(s,(xn)s))− f(s, xρ(s,(x)s
)‖

which implies that f(s, xn
ρ(s,(xn)s)) → f(s, xρ(s,(x)s

) as n → ∞ for each s ∈ J . By axiom A1(ii), Lemma(2.1)
and the dominated convergence theorem, we obtain

‖Φ(xn)− Φ(x)‖ ≤
∥∥∥∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds
∥∥∥

→ 0 as n→∞

Therefore, Φ is continuous.
Step 2: Φ maps bounded sets into bounded sets. If x ∈ Br(φ|J , Y ), from Lemma(2.1), it follows that

‖xρ(t,xt)‖B ≤ r∗ := (Ma + J
φ
)‖φ‖B +Kar

and so

|Φ(x)(t)| ≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1f(s, xρ(s,xs))ds

≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(‖xρ(s,xs)‖B)ds

≤ qM

Γ(1 + q)
‖p‖∞Ω(r∗)

∫ t

0

(t− s)q−1ds

≤ Maq

Γ(1 + q)
‖p‖∞Ω(r∗).

Thus,

‖Φ(x)‖∞ ≤ Maq

Γ(1 + q)
‖p‖∞Ω(r∗) := l.

Step 3: Φ maps bounded sets into equicontinuous sets.
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Let τ1, τ2 ∈ J with τ2 > τ1 and Br be a bounded set as in step 2. Let ε > 0 be given. For each t ∈ J , we
have

‖Φ(x)(τ2)− Φ(x)(τ1)‖

≤
∫ τ1−ε

0

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ1

τ1−ε

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ2

τ1

∥∥∥(τ2 − s)q−1Tq(τ2 − s)f(s, xρ(s,xs))
∥∥∥ds

≤ ‖p‖∞Ω(r∗)
[ ∫ τ1−ε

0

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
ds

+
∫ τ1

τ1−ε

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
ds+

M

Γ(1 + q)
(τ2 − τ1)q

]
.

The right hand side tends to zero as τ2 − τ1 → 0, since Tq(t), t ≥ 0 is a strongly continuous semigroup
and Tq(t) is compact for t > 0 (so Tq(t) is continuous in the uniform operator topology for t > 0). The
equicontinuous for the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ a are very simple.
Step 4: Φ is precompact.

Let 0 < t ≤ s ≤ a be fixed and let ε be a real number satisfying 0 < ε < t, and δ > 0. For x ∈ Br, we define,

Φε,δ(x)(t) = q

∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds

= T (εqδ)q
∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ − εqδ)f(s, xρ(s,xs))dθds,

Since T (εqδ) is a compact operator for εqδ > 0, the set Yε,δ(t) = {Φε,δ(x)(t) : x ∈ Br} is precompact in X

for every ε, 0 < ε < t. Moreover

‖Φ(x)(t)− Φε,δ(x)(t)‖

= q
[∥∥∥ ∫ t−ε

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥

+
∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥]

≤ ‖p‖∞Ω(r∗)
qM

Γ(1 + q)

[ ∫ t−ε

0

(t− s)q−1ds

∫ δ

0

θξq(θ)dθ +
∫ t

t−ε

(t− s)q−1ds

∫ ∞

δ

θξq(θ)dθ
]
.

Therefore, there are precompact sets arbitrarly close to the set Y (t) = {Φε,δ(x)(t) : x ∈ Br} is precompact.
Hence the set Y (t) = {Φε,δ(x)(t) : x ∈ Br} is precompact in X.

As a consequence of the Step 1 to Step 4 and the Arzela-Ascoli theorem, we can conclude that the operator
Φ is completely continuous.
Step 5: We now show there exists an open set U ⊂ Y with x 6= λΦ(x) for λ ∈ (0, 1) and x ∈ ∂U . Let x ∈ Y
and x = λΦ(x) for some 0 < λ < 1. Then for each t ∈ J we have,

x(t) = λ

∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds.

This implies by (H3) and Lemma(2.1) that

|x(t)| ≤
∫ t

0

(t− s)q−1‖Tq(t− s)‖‖f(s, xρ(s,x(s)))‖ds

≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
(
(Ma + J

φ
)‖φ‖B +Ka sup{|x(s)| : s ∈ [0, t]}

)
ds,



Velusamy Kavitha et al. / Existence results for ... 55

since ρ(s, xs) ≤ s for every s ∈ J . Here J
φ

= sup{Jφ(s) : s ∈ R(ρ−)}.
Set µ(t) = sup{|x(s)| : 0 ≤ s ≤ t}, t ∈ J . Then we have

µ(t) ≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
(
(Ma + J

φ
)‖φ‖B +Kaµ(s)

)
ds.

If ξ(t) = (Ma + J
φ
)‖φ‖B +Kaµ(t) then we have,

ξ(t) ≤ (Ma + J
φ
)‖φ‖B +

qMKa

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(ξ(s))ds

≤ (Ma + J
φ
)‖φ‖B +MKaΩ(‖ξ‖∞)

1
Γ(q)

∫ t

0

(t− s)q−1p(s)ds

≤ (Ma + J
φ
)‖φ‖B +MKaΩ(‖ξ‖∞)‖Iqp‖∞.

Then

‖ξ‖∞
(Ma + J

φ
)‖φ‖B +MKaΩ(‖ξ‖∞)‖Iqp‖∞

≤ 1.

Then there exists M∗ such that ‖x‖∞ 6= M∗. Set U = {x ∈ Y : ‖x‖∞ < M∗ + 1}.
Then Φ : U → Y is continuous and completely continuous. From the choice of U , there is no x ∈ ∂U such

that x = λΦ(x) for λ ∈ (0, 1). As a consequence of the nonlinear aiternative of Leray- Schauder type [14], we
deduce that Φ has a fixed point x in U , which is a solution of (1.1)-(1.2).

4 Existence results for netural functional fractional differential equations with

state-dependent delay

In this section, we study existence results for netural fractional differential equations with state-dependent
delay of the form

cDq[x(t)− g(t, xt)] = A[x(t)− g(t, xt)] + f(t, xρ(t,xt)), t ∈ J = [0, a], 0 < q < 1, (4.1)

x(t) = φ(t) ∈ B, t ∈ (−∞, 0], (4.2)

where A, f, ρ, and φ are same as defined in (1.1)-(1.2) and g : J × B → X is appropriate given function.

Definition 4.1. A function x : (−∞, a] → X is said to be a mild solution of (4.1)-(4.2) if x0 = φ, xρ(s,xs) ∈ B
for each s ∈ J and

x(t) = Sq(t)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J,

where

Sq(t) =
∫ ∞

0

ξq(θ)T (tqθ)dθ,

Tq(t) = q

∫ ∞

0

θξq(θ)T (tqθ)dθ,

ξq(θ) =
1
q
θ−1− 1

qwq(θ−
1
q ) ≥ 0,

wq(θ) =
1
π

∞∑
k=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞),

ξq is a probability density function on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0

ξq(θ)dθ = 1.

To prove the next theorems, in addition, we need the following hypotheses:
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(H5) The function g : J × B → X is completely continuous and there exist positive constants c1 and c2 such
that

‖g(t, ψ)‖ ≤ c1‖ψ‖B + c2, t ∈ J, ψ ∈ B.

(H5)∗ The function g : J × B → X is continuous and there exists Lf > 0 such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lf‖ψ1 − ψ2‖B, t ∈ J, ψi ∈ B, i = 1, 2.

Theorem 4.1. Assume that the hypotheses (H1)− (H5) are fulfilled. If

Ka

[
Lf +

qM

Γ(1 + q)
lim

ξ→∞
inf

Ω(ξ)
ξ

∫ a

0

(t− s)q−1p(s)ds
]
< 1

then there exist a mild solution of (4.1)-(4.2) on J .

Proof. Let φ : (−∞, a] → X be the extension of φ to (−∞, a] such that φ(θ) = φ(0) on J = [0, a]. Consider
the space S(a) = {u ∈ C(J ;X) : u(0) = φ(0)} endowed with the uniform operator topology and define the
operator Υ : S(a) → S(a) by

Υx(t) = Sq(t)[φ(0)− g(0, φ(0)) + g(t, xt) +
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J,

where x : (−∞, a] → X is such that x0 = φ and x = x on J . From our assumptions, it is easy to see that
ΥS(a) ⊂ S(a).

We shall prove that there exists a r > 0 such that Υ(Br(φ|J , S(a))) ⊂ Br(φ|J , S(a)). If this property is
false, then for every r > 0 there exist xr ∈ Br(φ|J , S(a)) and tr ∈ J such that r < ‖Υxr(tr) − φ(0)‖. Then
from Lemma (2.1), we find,

r ≤ ‖Υxr(tr)− φ(0)‖
≤ ‖Sq(tr)φ(0)− φ(0)‖+ ‖Sq(tr)g(0, φ)− g(0, φ)‖+ ‖g(t, (xr)tr − g(0, φ)‖

+
∫ tr

0

∥∥(t− s)q−1Tq(tr − s)f(s, xr
ρ(s,(xr)s

)
∥∥ds

≤ (M + 1)H‖φ‖B + ‖Sq(tr)g(0, φ)− g(0, φ)‖+ Lf

(
Kar + (Ma +HKa + 1)‖φ‖B

)
+

qM

Γ(1 + q)
Ω

((
Ma + J

φ)
‖φ‖B +Ka

(
r + ‖φ(0)‖

)) ∫ a

0

(t− s)q−1p(s)ds

and hence

1 ≤ Ka

[
Lf +

qM

Γ(1 + q)
lim

ξ→∞
inf

Ω(ξ)
ξ

∫ a

0

(t− s)q−1p(s)ds
]

which contradicts our assumption.
Let r > 0 be such that Υ(Br(φ|J , S(a))) ⊂ Br(φ|J , S(a)), in what follows, r∗ is the number defined by

r∗ := (Ma+J
φ)
‖φ‖B+Ka

(
r+‖φ(0)‖

)
. To prove that Υ is condensing operator, we introduce the decomposition

Υ = Υ1 + Υ2, where

Υ1x(t) = Sq(t)[φ(0)− g(0, φ) + g(t, xt),

Υ2x(t) =
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J.

Step 1: Υ1(·) is contraction on Br(φ|J , S(a)).
If x, y ∈ Br(φ|J , S(a)) and t ∈ J , then we have

‖Υ1x(t)−Υ1y(t)‖ ≤ ‖g(t, xt)− g(t, yt)‖
≤ LfKa‖x− y‖a,

which proves that Υ1(·) is a contraction on Br(φ|J , S(a)).
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Next we prove that Υ2(·) is completely continuous from Br(φ|J , S(a)) into Br(φ|J , S(a)).
Step 2: Υ2 is continuous on Br(φ|J , S(a)).

Let {xn} ⊂ Br(φ|J , S(a)) and x ∈ Br(φ|J , S(a)) with xn → x (n → ∞). From axiom A1, it is easy to see
that (xn)s → xs uniformly for s ∈ (−∞, a] as n→∞. By (H3), we have

‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(x)s

)‖

≤ ‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(xn)s

)‖+ ‖f(s, xρ(s,(xn)s))− f(s, xρ(s,(x)s
)‖

which implies that f(s, xn
ρ(s,(xn)s)) → f(s, xρ(s,(x)s

) as n → ∞ for each s ∈ J . By axiom A1(ii), Lemma(2.1)
and the dominated convergence theorem we obtain

‖Υ2x
n −Υ2x‖ ≤

∥∥∥∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds
∥∥∥

→ 0 as n→∞

Therefore, Υ2 is continuous.
Step 3: Υ2(·) is equicontinuous on J .

Let τ1, τ2 ∈ J with τ2 > τ1 and Br be a bounded set as in step 2. Let ε > 0 be given. For each t ∈ J , we
have

‖Υ2(x)(τ2)−Υ2(x)(τ1)‖

≤
∫ τ1−ε

0

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ1

τ1−ε

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ2

τ1

∥∥∥(τ2 − s)q−1Tq(τ2 − s)f(s, xρ(s,xs))
∥∥∥ds

≤ Ω(r∗)
[ ∫ τ1−ε

0

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
p(s)ds

+
∫ τ1

τ1−ε

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
p(s)ds+

qM

Γ(1 + q)

∫ τ2

τ1

|(τ2 − s)q−1|p(s)ds
]
.

The right hand side tends to zero as τ2 − τ1 → 0, since Tq(t), t ≥ 0 is a strongly continuous semigroup
and Tq(t) is compact for t > 0 (so Tq(t) is continuous in the uniform operator topology for t > 0). The
equicontinuous for the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ a are very simple.
Step 4: Υ2 is precompact.

Let 0 < t ≤ s ≤ a be fixed and let ε be a real number satisfying 0 < ε < t, and δ > 0. For x ∈ Br, we define,

Υ2ε,δ
(x)(t) = q

∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds

= T (εqδ)q
∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ − εqδ)f(s, xρ(s,xs))dθds,

Since T (εqδ) is a compact operator for εqδ > 0, the set Vε,δ(t) = {Υ2ε,δ
(x)(t) : x ∈ Br} is precompact in X

for every ε, 0 < ε < t. Moreover

‖Υ2(x)(t)−Υ2ε,δ
(x)(t)‖

= q
[∥∥∥ ∫ t−ε

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥

+
∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥]
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≤ Ω(r∗)
qM

Γ(1 + q)

[ ∫ t−ε

0

(t− s)q−1p(s)ds
∫ δ

0

θξq(θ)dθ +
∫ t

t−ε

(t− s)q−1p(s)ds
∫ ∞

δ

θξq(θ)dθ
]
.

Therefore, there are precompact sets arbitrarly close to the set V (t) = {Υ2ε,δ
(x)(t) : x ∈ Br} is precompact.

Hence the set V (t) = {Υ2ε,δ
(x)(t) : x ∈ Br} is precompact in X.

As a consequence of the Step 2 to Step 4 and the Arzela-Ascoli theorem, we can conclude that the operator
Υ2 is completely continuous.

These arguments enable us to conclude that Υ = Υ1 + Υ2 is a condensing mapping on Br(φ|J , S(a)) and
the existence of a mild solution for (4.1)-(4.2) is now a consequence of [[30], Theorem 4.3.2]. This completes
the proof.

Theorem 4.2. Assume that the hypotheses (H1) − (H5) and (H5)∗ are fulfilled with ρ(t, ψ) ≤ t for every
t ∈ J, ψ ∈ B. If

‖ξ‖∞
(Ma + J

φ
)‖φ‖B + Ka

1−c1

[
M(H + c1)‖φ‖B + c2(1 +M) +MΩ(‖ξ‖∞)‖Iqp‖∞

] > 1

then there exists a mild solution of (4.1)-(4.2) on J .

Proof. Let Υ be a function given in the proof of Theorem 4.1.
We show that there exists an open set U1 ⊂ S(a) with x 6= λΥ(x) for λ ∈ (0, 1) and x ∈ ∂U1. Let x ∈ S(a)

and x = λΥ(x) for some 0 < λ < 1. Then

x(t) = λ
[
Sq(t)[φ(0)− g(0, φ) + g(t, xt) +

∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds
]
, t ∈ J,

and

|x(t)| ≤MH‖φ‖B +M [c1‖φ‖B + c2] + c1‖xt‖B + c2

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(‖xρ(s,(x))‖B)ds

≤M [H + c1]‖φ‖B + c2[1 +M ] + c1‖xt‖B

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
((
Ma + J

φ)
‖φ‖B +Ka‖x‖

)
ds.

If µ(t) = sup{|x(s)| : s ∈ [0, t]} then

µ(t) ≤M [H + c1]‖φ‖B + c2[1 +M ] + c1µ(t)

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
((
Ma + J

φ)
‖φ‖B +Kaµ(s)

)
ds.

Since 0 < c1 < 1, we have

µ(t) ≤ 1
1− c1

[
M [H + c1]‖φ‖B + c2[1 +M ]

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
((
Ma + J

φ)
‖φ‖B +Kaµ(s)

)
ds

]
, t ∈ J.

If ξ(t) = (Ma + J
φ
)‖φ‖B +Kaµ(s) then we have

ξ(t) = (Ma + J
φ
)‖φ‖B +

Ka

1− c1

[
M [H + c1]‖φ‖B + c2[1 +M ]

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(ξ(s))ds
]

≤ (Ma + J
φ
)‖φ‖B +

Ka

1− c1

[
M [H + c1]‖φ‖B + c2[1 +M ] +MΩ(‖ξ‖∞)‖Iqp‖∞

]
.

Consequently,

‖ξ‖∞
(Ma + J

φ
)‖φ‖B + Ka

1−c1

[
M(H + c1)‖φ‖B + c2(1 +M) +MΩ(‖ξ‖∞)‖Iqp‖∞

] ≤ 1.
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Now, there exist L∗ such that ‖x‖∞ 6= L∗. set

U1 = {x ∈ Y : ‖x‖∞ < L∗ + 1}.

From the choice of U1 there is no x ∈ ∂U1 such that x = λΥ(x) for λ ∈ (0, 1).
To prove that Υ is completely continuous on S(a), we introduce the decomposition Υ = Υ1 +Υ2 introduced

in the proof of the Theorem 4.1. From the proof of Theorem 4.1, we obtain that Υ2 is completely continuous
on S(a) and from the condition (H5) it follows that Υ1 is completely continuous on S(a). As a consequence
of the nonlinear alternative of Leray-Schauder type [14], we deduce that Υ has a fixed point x in U1. Then Υ
has a fixed poinf, whixh is a solution of (4.1)-(4.2).

5 Example

In this section, we consider an applications of our abstract results. At first we introduce the required
technical framework. In the rest of this secion, X = L2([0, π]) and A : D(A) ⊂ X → X be the operator
Aw = w′′ with domain D(A) := {w ∈ X : w′′ ∈ X, w(0) = w(π) = 0}. It is well known that A is the
infinitesimal generator of an analytic semigroup on X.

Then

Aw = −
∞∑

n=1

n2 < w, en > en, w ∈ D(A),

where en(ξ) :=
(

2
π

)1/2 sin(nξ), 0 ≤ ξ ≤ π, n = 1, 2, . . . . Clearly A generates a compact semigroup T (t), t > 0
in X and it is given by

T (t)w =
∞∑

n=1

e−n2t < w, en > en, for everyw ∈ X.

Clearly the assumption (H1) is satisfied. Consider the fractional differential system

∂α

∂tα
u(t, ξ) =

∂2

∂ξ2
u(t, ξ) +

∫ t

−∞
a2(s− t)u(s− ρ1(t)ρ2(‖u(t)‖), ξ)ds, t ∈ J, ξ ∈ [0, π], (5.1)

submitted to the conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (5.2)

u(θ, ξ) = ϕ(θ, ξ), θ ≤ 0, 0 ≤ ξ ≤ π, (5.3)

where ∂α

∂tα is a Caputo fractional partial derivative of order 0 < α < 1. In the sequel, B = C0 ×L2(g,X) is the
space introduced in [20]; ϕ ∈ B with the identification ϕ(s)(θ) = ϕ(s, θ).

To treat this system, we assume that ρi : [0,∞) → [0,∞), i = 1, 2, are continuous functions and the
following condition.

(a) The functions a1 : R → R, are continuous and L1 =
(∫ 0

−∞
(a1(s))

2

g(s) ds
)1/2

<∞.

Under these conditions, we can define the operators f : J × B → X, and ρ : J × B → R by

f(t, ϕ)(ξ) =
∫ 0

−∞
a1(s)ϕ(s, ξ)ds, (5.4)

ρ(s, ϕ) = s− ρ1(s)ρ2(‖ ϕ(0) ‖), (5.5)

which permit to transform system (5.1)-(5.3) into the abstract Cauchy problem (1.1)-(1.2). Moreover, the maps
f is bounded linear operators with ‖ f ‖L(B,X)≤ L1. The following result is a direct consequence of Theorem
3.1.

Proposition 5.1. Let ϕ ∈ B be such that condition (H4) holds. Then there exists a mild solution of (5.1)-(5.3).
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Abstract

In this paper, using Hadamard fractional integral, we establish two main new result on fractional integral inequalities

by considering the extended Chebyshev functional in case of synchronous function. The first result concerns with some

inequalities using one fractional parameter and other with two parameter.
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1 Introduction

In recent years, many authors have worked on fractional integral inequalities and its application which
plays important role in classical differential and integral equations, see [3, 5, 6, 7, 8, 9, 10]. Dahmani gave the
following fractional integral inequalities, using the Riemann-Liouville fractional integral for extended Chebyshev
functional, see for instance [6].

Theorem 1.1. Let f and g be two synchronous function on [0,∞[ and let r, p, q : [0,∞[→ [0,∞[ for all
t > 0, α > 0 and then

2Jαr(t) [Jαp(t)Jα(qfg)(t) + Jαq(t)Jα(pfg)(t)] + 2Jαp(t)Jαq(t)Jα(rfg)(t) ≥
Jαr(t) [Jα(pf)(t)Jα(qg)(t) + Jα(qf)(t)Jα(pg)(t)] Jαp(t)[Jα(rf)(t)Jα(qg)(t) + Jα(qf)(t)Jα(rg)(t)]

+ Jαq(t) [Jα(rf)(t)Jα(pg)(t) + Jα(pf)(t)Jα(rg)(t)] .

(1.1)

Theorem 1.2. Let f and g be two synchronous function on [0,∞[ and let r, p, q : [0,∞[→ [0,∞[ for all
t > 0, α > 0 β > 0 then we have,

Jαr(t)
[
Jαq(t)Jβ(pfg)(t) + 2Jαp(t)Jβ(qfg)(t) + Jβq(t)Jα(pfg)(t)

]
+

[
Jαp(t)Jβq(t) + Jβp(t)Jαq(t)

]
Jα(rfg)(t) ≥

Jαr(t)
[
Jα(pf)(t)Jβ(qg)(t) + Jβ(qf)(t)Jα(pg)(t)

]
Jαp(t)[Jα(rf)(t)Jβ(qg)(t) + Jβ(qf)(t)Jα(rg)(t)]

+ Jαq(t)
[
Jα(rf)(t)Jβ(pg)(t) + Jβ(pf)(t)Jα(rg)(t)

]
.

(1.2)

The main objective of this paper is to establish some inequalities for the extended Chebyshev functional
given in [6], using Hadamard fractional integrals. The paper has been organized as follows. In Section 2, we
define basic definitions and proposition related to Hadamard fractional derivatives and integrals. In Section 3,
we give the main results.
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2 Preliminaries

Recently many authors have studied integral inequalities on fractional calculus using Riemann-Liouville,
Caputo derivative, see [3, 5, 6, 7, 8, 9, 10]. The necessary background details are given in the book A.A. Kilbas
[1], and in book of S.G. Samko et al. [4], here we present some definitions of Hadamard derivative and integral
as given in [2, p.159-171].

Definition 2.1. The Hadamard fractional integral of order α ∈ R+ of function f(x), for all x > 1 is defined
as,

HD−α
1,xf(x) =

1
Γ(α)

∫ x

1

ln(
x

t
)α−1f(t)

dt

t
, (2.1)

where Γ(α) =
∫∞
0

e−uuα−1du.

Definition 2.2. The Hadmard fractional derivative of order α ∈ [n− 1, n), n ∈ Z+, of function f(x) is given
as follows

HDα
1,xf(x) =

1
Γ(n− α)

(x
d

dx
)n

∫ x

1

ln(
x

t
)n−α−1f(t)

dt

t
. (2.2)

From the above definitions, we can see obviously the difference between Hadamard fractional and Riemann-
Liouville fractional derivative and integrals, which include two aspects. The kernel in the Hadamard integral
has the form of ln(x

t ) instead of the form of (x− t), which is involves both in the Riemann-Liouville and Caputo
integral. The Hadamard derivative has the operator(x d

dx )n, whose construction is well suited to the case of the
half-axis and is invariant relation to dilation [4, p.330], while the Riemann-Liouville derivative has the operator
( d

dx )n.

We give some image formulas under the operator (2.1) and (2.2), which would be used in the derivation of
our main result.

Proposition 2.1. [2] If 0 < α < 1, the following relation hold:

HD−α
1,x (lnx)β−1 =

Γ(β)
Γ(β + α)

(lnx)β+α−1, (2.3)

HDα
1,x(lnx)β−1 =

Γ(β)
Γ(β − α)

(lnx)β−α−1, (2.4)

respectively.
For the convenience of establishing the result, we give the semigroup property,

(HD−α
1,x )(HD−β

1,x)f(x) =H D
−(α+β)
1,x f(x). (2.5)

3 Main Results

In this section, we present and prove the main results.

Lemma 3.1. Let f and g be two synchronous function on [0,∞[. and x, y : [0,∞) → [0,∞). Then for all
t > 0, α > 0, we have,

HD−α
1,t x(t)HD−α

1,t (yfg)(t) +H D−α
1,t y(t)HD−α

1,t (xfg)(t) ≥

HD−α
1,t (xf)(t)HD−α

1,t (yg)(t) +H D−α
1,t (yf)(t)HD−α

1,t (xg)(t).
(3.1)

Proof. Since f and g are synchronous on [0,∞[ for all τ ≥ 0, ρ ≥ 0, we have

(f(τ)− f(ρ))(g(τ)− g(ρ)) ≥ 0. (3.2)

From (3.2),
f(τ).g(τ) + f(ρ).g(ρ) ≥ f(τ)g(ρ) + f(ρ)g(τ). (3.3)
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Now, multiplying both side of (3.3) by (ln( t
τ ))α−1x(τ)

τΓ(α) , τ ∈ (0, t), t > 0. Then the integrating resulting identity
with respect to τ from 1 to t we obtain

1
Γ(α)

∫ t

1

ln(
t

τ
)α−1x(τ)f(τ).g(τ)

dτ

τ
+

1
Γ(α)

∫ t

1

ln(
t

τ
)α−1x(τ)f(ρ).g(ρ)

dτ

τ
≥

1
Γ(α)

∫ t

1

ln(
t

τ
)α−1x(τ)f(τ).g(ρ)

dτ

τ
+

1
Γ(α)

∫ t

1

ln(
t

τ
)α−1x(τ)f(ρ).g(τ)

dτ

τ
.

(3.4)

Consequently,

HD−α
1,t (xfg)(t) + f(ρ).g(ρ)HD−α

1,t (x)(t) ≥ g(ρ)HD−α
1,t (xf)(t) + f(ρ)HD−α

1,t (xg)(t). (3.5)

Multiplying both side of (3.5) by
(ln( t

ρ ))α−1y(ρ)

ρΓ(α) , ρ ∈ (0, t), t > 0. Then integrating resulting identity with
respect to ρ from 1 to t we obtain

HD−α
1,t (xfg)(t)

1
Γ(α)

∫ t

1

ln(
t

ρ
)α−1y(ρ)

dρ

ρ
+H D−α

1,t (x)(t)
1

Γ(α)

∫ t

1

ln(
t

ρ
)α−1y(ρ)f(ρ)g(ρ)

dρ

ρ

≥H D−α
1,t (xf)(t)

1
Γ(α)

∫ t

1

ln(
t

ρ
)α−1y(ρ)g(ρ)

dρ

ρ
+H D−α

1,t (xg)(t)
1

Γ(α)
,

∫ t

1

ln(
t

ρ
)α−1y(ρ)f(ρ)

dρ

ρ
,

(3.6)

and this ends the proof of inequality 3.1.

Now, we gave our main result here.

Theorem 3.2. Let f and g be two synchronous function on [0,∞[, and r, p, q : [0,∞)→ [0,∞). Then for all
t > 0, α > 0, we have

2HD−α
1,t r(t)

[
HD−α

1,t p(t)HD−α
1,t (qfg)(t) +H D−α

1,t q(t)HD−α
1,t (pfg)(t)

]
+

2HD−α
1,t p(t)HD−α

1,t q(t)HD−α
1,t (rfg)(t) ≥

HD−α
1,t r(t)

[
HD−α

1,t (pf)(t)HD−α
1,t (qg)(t) +H D−α

1,t (qf)(t)HD−α
1,t (pg)(t)

]
+

HD−α
1,t p(t)

[
HD−α

1,t (rf)(t)HD−α
1,t (qg)(t) +H D−α

1,t (qf)(t)HD−α
1,t (rg)(t)

]
+

HD−α
1,t q(t)

[
HD−α

1,t (rf)(t)HD−α
1,t (pg)(t) +H D−α

1,t (pf)(t)HD−α
1,t (rg)(t)

]
(3.7)

Proof. To prove above theorem, putting x = p, y = q, and using lemma 3.1, we get

HD−α
1,t p(t)HD−α

1,t (qfg)(t) +H D−α
1,t q(t)HD−α

1,t (pfg)(t) ≥

HD−α
1,t (pf)(t)HD−α

1,t (qg)(t) +H D−α
1,t (qf)(t)HD−α

1,t (pg)(t).
(3.8)

Now, multiplying both side of (3.8) by HD−α
1,t r(t), we have

HD−α
1,t r(t)

[
HD−α

1,t p(t)HD−α
1,t (qfg)(t) +H D−α

1,t q(t)HD−α
1,t (pfg)(t)

]
≥

HD−α
1,t r(t)

[
HD−α

1,t (pf)(t)HD−α
1,t (qg)(t) +H D−α

1,t (qf)(t)HD−α
1,t (pg)(t)

]
,

(3.9)

putting x = r, y = q, and using lemma 3.1, we get

HD−α
1,t r(t)HD−α

1,t (qfg)(t) +−α
1,t q(t)HD−α

1,t (rfg)(t) ≥

HD−α
1,t (rf)(t)HD−α

1,t (qg)(t) +H D−α
1,t (qf)(t)HD−α

1,t (rg)(t),
(3.10)

multiplying both side of (3.10) by HD−α
1,t p(t), we have

HD−α
1,t p(t)

[
HD−α

1,t r(t)HD−α
1,t (qfg)(t) +−α

1,t q(t)HD−α
1,t (rfg)(t)

]
≥

HD−α
1,t p(t)

[
HD−α

1,t (rf)(t)HD−α
1,t (qg)(t) +H D−α

1,t (qf)(t)HD−α
1,t (rg)(t)

]
.

(3.11)

With the same arguments as before, we can write

HD−α
1,t q(t)

[
HD−α

1,t r(t)−α
1,t (pfg)(t) +H D−α

1,t p(t)HD−α
1,t (rfg)(t)

]
≥

HD−α
1,t q(t)

[
HD−α

1,t (rf)(t)HD−α
1,t (pg)(t) +H D−α

1,t (pf)(t)HD−α
1,t (rg)(t)

]
.

(3.12)

Adding the inequalities (3.9), (3.11) and (3.12), we get required inequality (3.7).
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Lemma 3.3. Let f and g be two synchronous function on [0,∞[. and x, y : [0,∞[→ [0,∞[. Then for all t > 0,
α > 0, we have

HD−α
1,t x(t)HD−β

1,t (yfg)(t) +H D−β
1,t y(t)HD−α

1,t (xfg)(t) ≥

HD−α
1,t (xf)(t)HD−β

1,t (yg)(t) +H D−β
1,t (yf)(t)HD−α

1,t (xg)(t).
(3.13)

Proof. Now multiplying both side of (3.5) by
(ln( t

ρ ))β−1y(ρ)

ρΓ(β) , ρ ∈ (0, t), t > 0 we obtain:

(ln( t
ρ ))β−1y(ρ)

ρΓ(β)
.HD−α

1,t (xfg)(t) +
(ln( t

ρ ))β−1y(ρ)

ρΓ(β)
.f(ρ)g(ρ)HD−α

1,t x(t) ≥

(ln( t
ρ ))β−1y(ρ)

ρΓ(β)
.g(ρ)HD−α

1,t (xf)(t) +
(ln( t

ρ ))β−1y(ρ)

ρΓ(β)
.f(ρ)HD−α

1,t (xg)(t),

(3.14)

then integrating (3.14) over (1,t), we obtain

HD−α
1,t (xfg)(t)

1
Γ(β)

∫ t

1

ln(
t

ρ
)β−1y(ρ)

dρ

ρ
+H D−α

1,t (x)(t)
1

Γ(β)

∫ t

1

ln(
t

ρ
)β−1y(ρ)f(ρ)g(ρ)

dρ

ρ

≥H D−α
1,t (xf)(t)

1
Γ(β)

∫ t

1

ln(
t

ρ
)β−1y(ρ)g(ρ)

dρ

ρ
+H D−α

1,t (xg)(t)
1

Γ(β)
,

∫ t

1

ln(
t

ρ
)β−1y(ρ)f(ρ)

dρ

ρ
,

(3.15)

this ends the proof of inequality (3.13).

Theorem 3.4. Let f and g be two synchronous function on [0,∞[, and r, p, q : [0,∞)→ [0,∞). Then for all
t > 0, α > 0, we have

HD−α
1,t r(t)

[
HD−α

1,t q(t)HD−β
1,t (pfg)(t) + 2HD−α

1,t p(t)HD−β
1,t (qfg)(t) +H D−β

1,t q(t)HD−α
1,t (pfg)(t)

]
+

[
HD−α

1,t p(t)HD−β
1,t q(t) +H D−β

1,t p(t)HD−α
1,t q(t)

]
H

D−α
1,t (rfg)(t) ≥

HD−α
1,t r(t)

[
HD−α

1,t (pf)(t)HD−β
1,t (qg)(t) +H D−β

1,t (qf)(t)HD−α
1,t (pg)(t)

]
+

HD−α
1,t p(t)

[
HD−α

1,t (rf)(t)HD−β
1,t (qg)(t) +H D−β

1,t (qf)(t)HD−α
1,t (rg)(t)

]
+

HD−α
1,t q(t)

[
HD−α

1,t (rf)(t)HD−β
1,t (pg)(t) +H D−β

1,t (pf)(t)HD−α
1,t (rg)(t)

]
.

(3.16)

Proof. To prove above theorem, putting x = p, y = q, and using lemma 3.3 we get

HD−α
1,t p(t)HD−β

1,t (qfg)(t) +H D−β
1,t q(t)HD−α

1,t (pfg)(t) ≥

HD−α
1,t (pf)(t)HD−β

1,t (qg)(t) +H D−β
1,t (qf)(t)HD−α

1,t (pg)(t).
(3.17)

Now, multiplying both side of (3.16) by HD−α
1,t r(t), we have

HD−α
1,t r(t)

[
HD−α

1,t p(t)HD−β
1,t (qfg)(t) +H D−β

1,t q(t)HD−α
1,t (pfg)(t)

]
≥

HD−α
1,t r(t)

[
HD−α

1,t (pf)(t)HD−β
1,t (qg)(t) +H D−β

1,t (qf)(t)HD−α
1,t (pg)(t)

]
,

(3.18)

putting x = r, y = q, and using lemma 3.3, we get

HD−α
1,t r(t)HD−β

1,t (qfg)(t) +−β
1,t q(t)HD−α

1,t (rfg)(t) ≥

HD−α
1,t (rf)(t)HD−β

1,t (qg)(t) +H D−β
1,t (qf)(t)HD−α

1,t (rg)(t),
(3.19)

multiplying both side of (3.19) by HD−α
1,t p(t), we have

HD−α
1,t p(t)

[
HD−α

1,t r(t)HD−β
1,t (qfg)(t) +H D−β

1,t q(t)HD−α
1,t (rfg)(t) ≥

]
HD−α

1,t p(t)
[

HD−α
1,t (rf)(t)HD−β

1,t (qg)(t) +H D−β
1,t (qf)(t)HD−α

1,t (rg)(t)
]
.

(3.20)

With the same argument as before, we obtain

HD−α
1,t q(t)

[
HD−α

1,t r(t)−β
1,t (pfg)(t) +H D−β

1,t p(t)HD−α
1,t (rfg)(t)

]
≥

HD−α
1,t q(t)

[
HD−α

1,t (rf)(t)HD−β
1,t (pg)(t) +H D−β

1,t (pf)(t)HD−α
1,t (rg)(t)

]
.

(3.21)

Adding the inequalities (3.18), (3.20) and (3.21), we follows the inequality (3.16).
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Remark 3.1. Applying theorem 3.4 for α = β, we obtain Theorem 3.2.

Remark 3.2. If f, g, r, p and q satisfies the following condition,

1. The function f and g is asynchronous on [0,∞).

2. The function r,p,q are negative on [0,∞).

3. Two of the function r,p,q are positive and the third is negative on [0,∞).

then the inequality 3.7 and 3.16 are reversed.
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Abstract

Some new oscillation criteria are established for the neutral type differential equation

(a(t)((x(t) + p(t)x(τ(t)))′)α)′ + q(t)xβ(t) = e(t), t ≥ t0,

which are applicable to equations with nonnegative forcing term. Examples are provided to illustrate the results.
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1 Introduction

Consider the forced second order neutral type differential equation of the form

(a(t)((x(t) + p(t)x(τ(t)))′)α)′ + q(t)xβ(t) = e(t), t ≥ t0, (1.1)

where α > 0, β > 0 are the quotient of odd positive integers, a(t), p(t), q(t), τ(t),

e(t) ∈ C([t0,∞)) and a(t) > 0,
∞∫
t0

1

a
1
α (t)

dt = ∞, 0 ≤ p(t) ≤ p < 1, q(t) > 0, e(t) ≥ 0, τ(t) ≤ t, τ ′(t) ≥

0 and lim
t→∞

τ(t) = ∞.

Set z(t) = x(t) + px(τ(t)). By a solution of equation (1.1) we mean a function x(t) ∈ C([Tx,∞)), Tx ≥
t0, which has the properties z(t) ∈ C1([Tx,∞)), a(t)(z′(t))α ∈ C1([Tx,∞)) , and satisfies equation (1.1) on
[Tx,∞).
We consider only those solutions x(t) of equation (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx.

We assume that equation (1.1) possess such a solution. A solution of equation (1.1) is called oscillatory if it
has infinitely many zeros on [tx,∞) and otherwise it is said to be nonoscillatory. Also a solution x(t) is said
to be almost oscillatory if either x(t) is oscillatory or x′(t) is oscillatory or x(t) → 0 as t →∞.

When p(t) = 0 and α = 1 then equation (1.1) reduces to the following equation

(a(t)x′(t))′ + q(t)xβ(t) = e(t), t ≥ t0. (1.2)

The oscillatory behavior of solutions of equation (1.2) has been discussed in many papers, see for example
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references cited therein. In [2, 14], the authors studied
oscillatory behavior of equation (1.1) or (1.2) with the assumption that e(t) changes sign and therefore in this
paper we establish conditions for the oscillatory behavior of equation (1.1) when e(t) does not changes sign.

In Section 2, we present some oscillation criteria for equation (1.1) and in Section 3, we provide several
examples to illustrate our main results.

In the sequel, when we write a functional inequality without specifying its domain of validity we assume
that it holds for all sufficiently large t.

∗Corresponding author.

E-mail addresses: ethandapani@yahoo.co.in (Ethiraju Thandapani)
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2 Oscillation Results

We begin with a lemma which can be easily proved using differential calculus.

Lemma 2.1. Set F (x) = axβ−α + b
xα for x > 0. If a ≥ 0, b ≥ 0 and β > α ≥ 1 then F (x) attains its

minimum with

Fmin =
βa

α
β b1−α

β

α
α
β (β − α)1−

α
β

.

Theorem 2.1. Assume that there exists a real valued positive function ρ(t) such that

lim
t→∞

sup

t∫
t0

(
ρ(s)Q∗(s)− a(s)(ρ′(s))α+1

(α + 1)α+1ρα(s)

)
ds = ∞, (2.1)

and

lim
t→∞

sup

t∫
t0

 s∫
t0

(Mq(u)± e(u))du

 ds = ∞ (2.2)

where

Q(t) =
βq

α
β (t)e1−α

β (t)(1− p)α

α
α
β (β − α)1−

α
β

,

Q∗(t) = min{Q(t), d(β−α)q(t)(1− p)β − d−αe(t)},

M > 0 and d > 0. Then every solution of equation (1.1) is almost oscillatory.

Proof. Suppose that x(t) is not almost oscillatory.Then there is a positive solution of equation (1.1) such
that x(τ(t)) > 0 and x(t) > 0 for all t ≥ t1 ≥ t0. Then by the definition of not almost oscillatory there are two
possibilities to consider: (I) x′(t) > 0 for all t ≥ t1 and (II) x′(t) < 0 for all t ≥ t1.

Case (I). Assume that x′(t) > 0 for all t ≥ t1. Set

z(t) = x(t) + p(t)x(τ(t)) (2.3)

then z′(t) > 0 for allt ≥ t1, and x(t) ≥ (1− p)z(t). Then from equation (1.1), we have

(a(t)(z′(t))α)′ + q(t)(1− p)βzβ(t) ≤ e(t). (2.4)

Define

w(t) =
ρ(t)a(t)(z′(t))α

zα(t)
, t ≥ t1. (2.5)

Then inview of (2.4), we obtain

w′(t) ≤ −ρ(t)
(

q(t)(1− p)βzβ−α(t)− e(t)
zα(t)

)
+

ρ′(t)
ρ(t)

w(t)− α

(a(t)ρ(t))
1
α

w1+ 1
α (t). (2.6)

Set F (u) = q(t)(1 − p)βu(β−α) − e(t)
uα . Then, since u is increasing , there is a constant d > 0 such that

u ≥ d > 0 and

F (u) ≥ dβ−α(1− p)βq(t)− d−αe(t). (2.7)

Using the inequality

Bu−Au1+ 1
α ≤ αα

(α + 1)α+1

Bα+1

Aα
, A > 0, (2.8)

we have
ρ′(t)
ρ(t)

w(t)− α

(a(t)ρ(t))
1
α

w1+ 1
α (t) ≤ a(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)
. (2.9)

From (2.6),(2.7) and (2.9), we have

w′(t) ≤ −
[
ρ(t)Q∗(t)− a(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)

]
. (2.10)
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Integrating (2.10) from t1 to t , we obtain

t∫
t1

(
ρ(s)Q∗(s)− a(s)(ρ′(s))α+1

(α + 1)α+1ρα(s)

)
ds ≤ w(t1)− w(t) ≤ w(t1)

for all large t, and this contradicts (2.1). Next, assume x(t) < 0 for all t ≥ t1, and we use the transformation y(t) =
−x(t), then we have y(t) is an eventually positive solution of the equation

(a(t)((y(t) + p(t)y(τ(t)))′)α)′ + q(t)yβ(t) = −e(t).

Define

w(t) = ρ(t)
a(t)(z′(t))α

zα(t)
, t ≥ t1, (2.11)

where z(t) = y(t) + p(t)y(τ(t)). Then w(t) > 0 and satisfies

w′(t) ≤ −ρ(t)
(

q(t)(1− p)βzβ−α(t) +
e(t)
zα(t)

)
+

ρ′(t)
ρ(t)

w(t)− αw1+ 1
α (t)

(a(t)ρ(t))
1
α

. (2.12)

Set F (u) = q(t)(1− p)βuβ−α + e(t)
uα . Using Lemma 2.1, we see that

F (u) ≥ βq
α
β (t)e1−α

β (t)
α

α
β (β − α)1−

α
β

(1− p)α

and also (2.8) holds. Then the rest of the proof is similar to that of the above and hence is omitted.
Case (II). Assume that x′(t) is negative for all t ≥ t1. From the definition of z(t) we obtain z′(t) =

x′(t) + px′(τ(t))τ ′(t). Since p ≥ 0 and τ ′(t) > 0 we have z′(t) < 0 for all t ≥ t1. From x′(t) < 0 we
obtain lim

t→∞
x(t) = b. We assert that b = 0. If not then xβ(t) → bβ > 0 as t → ∞, and hence there exists a

t2 ≥ t1 such that xβ(t) ≥ bβ for t ≥ t2. Therefore, we have

(a(t)(z′(t))α)′ ≤ −q(t)bβ + e(t).

Integrating the last inequality from t2 to t, we obtain

a(t)(z′(t))α < a(t)(z′(t))α − a(t2)(z′(t2))α ≤ −
t∫

t2

(bβq(s)− e(s))ds

and then

z′(t) ≤ −

 1
a(t)

t∫
t2

(bβq(s)− e(s))ds


1
α

, t ≥ t2.

Again integrating the above inequality from t2 to t, we obtain

z(t) ≤ z(t2)−
t∫

t2

 1
a(s)

s∫
t2

(bβq(u)− e(u))du

 1
α

ds.

Condition (2.2) implies that z(t) is negative for all t ≥ t2, a contradiction. Finally, for x(t) < 0 for all t ≥ t1,
we use the transformation y(t) = −x(t) then we have y(t) is an eventually positive solution of the equation

(a(t)(z′(t))α)′ + q(t)yβ(t) = −e(t)

where z(t) = y(t) + p(t)y(τ(t)) > 0. The rest of the proof is similar to the above and hence omitted. The proof
is now complete.

Corollary 2.1. Assume that all the conditions of Theorem 2.2 hold, except the condition (2.1) is replaced by

lim
t→∞

sup

t∫
t0

ρ(s)Q∗(s)ds = ∞,
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and

lim
t→∞

sup

t∫
t0

a(s)(ρ′(s))α+1

ρα(s)
ds < ∞.

Then every solution of equation (1.1) is almost oscillatory.

In the following theorem, we provide another sufficient condition for almost oscillation of equation (1.1).

Definition 2.1. Consider the sets D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. Assume that
H ∈ C(D,R) satisfies the following assumptions:
(A1) H(t, t) = 0, t ≥ t0; H(t, s) > 0, (t, s) ∈ D0;
(A2) H has a nonpositive continuous partial derivative with respect to the second variable in D0.
Then the function H has the property P .

Theorem 2.2. Assume that condition (2.2) holds. Further assume that H ∈ C(D,R) has the property P and
there exists a function ρ ∈ C ′([t0,∞), (0,∞)) such that for all sufficiently large t1 ≥ t0

lim
t→∞

sup
1

H(t, t1)

t∫
t1

[
H(t, s)ρ(s)Q∗(s)− a(s)ρ(s)

(α + 1)α+1

(
ρ′(s)
ρ(s)

H
1

α+1 (t, s)− h(t, s)
)α+1

]
ds = ∞,

(2.13)

where h(t, s) = 1

H
α

α+1 (t,s)

∂
∂sH(t, s), (t, s) ∈ D0. Then every solution of equation (1.1) is almost oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1 we have two cases to consider. First assume that x′(t) > 0
for all t ≥ t1. Define w(t) by (2.5) , then w(t) > 0 and satisfies

w′(t) ≤ −ρ(t)Q∗(t) +
ρ′(t)
ρ(t)

w(t)− α

(a(t)ρ(t))
1
α

w1+ 1
α (t). (2.14)

In (2.14), replace t by s and then multiply both sides by H(t, s), and integrate with respect to s from t1 to
t, we have

t∫
t1

H(t, s)ρ(s)Q∗(s)ds ≤ −
t∫

t1

H(t, s)w′(s)ds +

t∫
t1

H(t, s)
ρ′(s)
ρ(s)

w(s)ds− α

t∫
t1

H(t, s)
(a(s)ρ(s))

1
α

w1+ 1
α (s)ds.

Thus we obtain

t∫
t1

H(t, s)ρ(s)Q∗(s)ds ≤ H(t, t1)w(t1)−
t∫

t1

[
− ∂

∂s
H(t, s)− ρ′(s)

ρ(s)
H(t, s)

]
w(s)ds

− α

t∫
t1

H(t, s)
(a(s)ρ(s))

1
α

w1+ 1
α (s)ds. (2.15)

From the last inequality and (2.8), we obtain

1
H(t, t1)

t∫
t1

[
H(t, s)ρ(s)Q∗(s)− a(s)ρ(s)

(α + 1)α+1

(
ρ′(s)
ρ(s)

H
1

α+1 (t, s)− h(t, s)
)α+1

]
ds

≤ w(t1)

which contradicts (2.13). Next we consider the case when x(t) < 0 for all t ≥ t1 and we use the transformation
y(t) = −x(t) then y(t) is a positive solution of the equation

(a(t)(z′(t))α)′ + q(t)yβ(t) = −e(t)

where z(t) = y(t) + p(t)y(τ(t)). Define w(t) by (2.11), then (2.12) holds. The remainder of the proof is similar
to that of first case and hence omitted. The proof for the case (II) is similar to that of Theorem 2.2. The
proof is now complete.



Ethiraju Thandapani et al. / New oscillation criteria ... 71

Corollary 2.2. Assume that all the conditions of Theorem 2.2 hold except the condition (2.13) is replaced by

lim
t→∞

sup
1

H(t, t1)

t∫
t1

H(t, s)ρ(s)Q∗(s)ds = ∞, (2.16)

and

lim
t→∞

sup
1

H(t, t1)

t∫
t1

a(s)ρ(s)
(

ρ′(s)
ρ(s)

H
1

α+1 (t, s)− h(t, s)
)α+1

ds < ∞. (2.17)

Then the conclusion of Theorem 2.2 holds.

Remark 2.1. By choosing the function H(t, s) in appropriate manners, we can derive several oscillation
criteria for equation (1.1). For example, set

H(t, s) = (t− s)m, m ≥ 1, (t, s) ∈ D0

we have the following result.

Corollary 2.3. Assume that all the conditions of Corollary 2.2 are satisfied except the conditions (2.16) and
(2.17) replaced by

lim
t→∞

sup
1

(t− t1)m

t∫
t1

(t− s)mρ(s)Q∗(s)ds = ∞

and

lim
t→∞

sup
1

(t− t1)m

t∫
t1

a(s)ρ(s)
(

ρ′(s)
ρ(s)

(t− s)
m

α+1 + m(t− s)
m

α+1−11

)α+1

ds < ∞.

Then the conclusion of Theorem 2.1 holds.

3 Examples

In this section we present some examples to illustrate the main results.
Example 3.1 Consider the differential equation

(((x(t) + 2x(t− 2))′)3)′ + tx5(t) =
1
t2

, t ≥ 1. (3.1)

Here p = 2, α = 3, β = 5, τ(t) = t− 2, q(t) = t and e(t) = 1
t2 . By taking ρ(t) = 1, we see that all conditions

of Theorem 2.1 are satisfied. Hence every solution of equation (3.1) is almost oscillatory.

Example 3.2 Consider the differential equation

(t(x(t) +
1
2
x(

t

2
))′)′ + t3(t + 1)x3(t) = t + 1 +

2
t2

, t ≥ 1. (3.2)

Here p = 1
2 , α = 1, β = 3, τ(t) = t

2 , q(t) = t3(t+1) and e(t) = t+1+ 2
t2 . By taking ρ(t) = 1, we see that all

conditions of Theorem 2.1 are satisfied and hence every solution of equation (3.2) is almost oscillatory. Infact
x(t) = 1

t is one such solution of equation (3.2) since it satisfies the equation.

Example 3.3 Consider the differential equation

(x(t) + 2x(
t

2
))′′ + t2x3(t) = t, t ≥ 1. (3.3)

Here p = 2, α = 1, β = 3, τ(t) = t
2 , q(t) = t2 and e(t) = t. By taking ρ(t) = 1 and H(t, s) = (t− s)2 we see

that all conditions of Corollary 2.3 are satisfied, and hence every solution of equation (3.3) is almost oscillatory.

Remark 3.1. Since the forcing terms e(t) in the above examples are positive, the results obtained in [2-14]
cannot be applied to these examples. So our results are new and applicable to neutral differential equations with
positive forcing terms.

Acknowledgements. The authors thank the reviewer for his/her corrections and useful comments that
have led to the present improved version of the original manuscript.
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Abstract

In this paper, we establish sufficient conditions for existence and uniqueness of solutions for semilinear functional

differential equations with finite delay involving the Riemann-Liouville fractional derivative. Our approach is based on

resolvent operators, the Banach contraction principle, and the nonlinear alternative of Leray-Schauder type.

Keywords: Semilinear functional differential equation, fractional derivative, fractional integral, fixed point, mild solutions, resolvent

operator.
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1 Introduction

This paper is concerned with existence of solutions defined on a compact real interval for fractional order
semilinear functional differential equations of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b], 0 < α < 1, (1.1)

y(t) = φ(t), t ∈ [−r, 0], (1.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × C([−r, 0], E) → E is a continuous
function, A : D(A) ⊂ E → E is a densely defined closed linear operator on E, φ : [−r, 0] → E a given
continuous function with φ(0) = 0 and (E, | · |) a real Banach space.

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary non-integer
order. Differential equations with fractional order have recently proved to be valuable tools for the description
of hereditary properties of various materials and systems. For more details, see [9].

Fractional calculus appears in rheology, viscoelasticity, electrochemistry, electromagnetism, etc. For details,
see the monographs of Kilbas et al. [8], Miller and Ross [10], Podlubny [13], Oldham et al. [12]. For some
recent developments on the subject, see for instance [1, 2, 3, 4, 7, 11] and references cited therein.

The purpose of this paper is to study the existence and uniqueness of mild solutions for (1.1)-(1.2) by virtue
of resolvent operator. In Section 2 we recall some definitions and preliminary facts which will be used in the
sequel. In Section 3, we give our main existence and uniqueness results. An example will be presented in the
last section illustrating the abstract theory.

∗Corresponding author.

E-mail addresses: m.belmekki@yahoo.fr (Mohammed Belmekki), kheira.mekhalfi@yahoo.fr (Kheira Mekhalfi) and

sntouyas@uoi.gr (Sotiris K. Ntouyas)
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2 Preliminaries

In this section, we recall some definitions and propositions of fractional calculus and resolvent operators.
Let E be a Banach space. By C(J,E) we denote the Banach space of continuous functions from J into E with
the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

For φ ∈ C([−r, b], E) the norm of φ is defined by

‖φ‖D = sup{|φ(θ)| : θ ∈ [−r, b]}.

C([−r, 0], E) is endowed with norm defined by

‖ψ‖C = sup{|ψ(θ)| : θ ∈ [−r, 0]}.

L(E) denotes the space of bounded linear operators from E into E, with norm

‖N‖L(E) = sup{|N(y)| : |y| = 1}.

Definition 2.1. [8, 13] The Riemann-Liouville fractional primitive of order α ∈ R+ of a function h : (0, b] → E

is defined by

Iα
0 h(t) =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds,

provided the right hand side exists pointwise on (0, b], where Γ is the gamma function.

Definition 2.2. [8, 13] The Riemann-Liouville fractional derivative of order
0 < α < 1 of a continuous function h : (0, b] → E is defined by

dαh(t)
dtα

=
1

Γ(1− α)
d

dt

∫ t

0

(t− s)−αh(s)ds

=
d

dt
I1−α
0 h(t).

Consider the fractional differential equation

Dαy(t) = Ay(t) + f(t), t ∈ J, 0 < α < 1, y(0) = 0, (2.1)

where A is a closed linear unbounded operator in E and f ∈ C(J,E). Equation (2.1) is equivalent to the
following integral equation [8]

y(t) =
1

Γ(α)
A

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ J. (2.2)

This equation can be written in the following form of integral equation

y(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Ay(s)ds, t ≥ 0, (2.3)

where

h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds. (2.4)

Examples where the exact solution of (2.1) and the integral equation (2.2) are the same, are given in [4]. Let
us assume that the integral equation (2.3) has an associated resolvent operator (S(t))t≥0 on E.

Next we define the resolvent operator of the integral equation (2.3).

Definition 2.3. [14, Definition 1.1.3] A one parameter family of bounded linear operators (S(t))t≥0 on E is
called a resolvent operator for (2.2) if the following conditions hold:

(a) S(·)x ∈ C([0,∞), E) and S(0)x = x for all x ∈ E;

(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and every t ≥ 0;
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(c) for every x ∈ D(A) and t ≥ 0,

S(t)x = x+
1

Γ(α)

∫ t

0

(t− s)α−1AS(s)xds. (2.5)

Here and hereafter we assume that the resolvent operator (S(t))t≥0 is analytic [14, Chapter 2], and there
exist a function φA ∈ L1

loc([0,∞),R+) such that ‖S′(t)x‖ ≤ φA(t)‖x‖[D(A)] for all t > 0 and each x ∈ D(A).
We have the following concept of solution using Definition 1.1.1 in [14].

Definition 2.4. A function u ∈ C(J,E) is called a mild solution of the integral equation (2.3) on J if
∫ t

0
(t−

s)α−1u(s)ds ∈ D(A) for all t ∈ J, h(t) ∈ C(J,E) and

u(t) =
A

Γ(α)

∫ t

0

(t− s)α−1u(s)ds+ h(t), ∀t ∈ J.

The next result follows from [14, Proposition I.1.2, Theorem II.2.4, Corollary II.2.6].

Lemma 2.1. Under the above conditions the following properties are valid.

(i) If u(·) is a mild solution of (2.3) on J, then the function t→
∫ t

0
S(t−s)h(s)ds is continuously differentiable

on J, and

u(t) =
d

dt

∫ t

0

S(t− s)h(s)ds, ∀t ∈ J.

(ii) If h ∈ Cβ(J,E) for some β ∈ (0, 1), then the function defined by

u(t) = S(t)(h(t)− h(0)) +
∫ t

0

S′(t− s)[h(s)− h(t)]ds+ S(t)h(0), t ∈ J,

is a mild solution of (2.3) on J.

(iii) If h ∈ C(J, [D(A)]) then the function u : J → E defined by

u(t) =
∫ t

0

S′(t− s)h(s)ds+ h(t), t ∈ J,

is a mild solution of (2.3) on J.

3 Main Results

In this section we give our main existence results for problem (1.1)-(1.2). This problem is equivalent to the
following integral equation

y(t) =


A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Motivated by Lemma 2.1 and the above representation, we introduce the concept of mild solution.

Definition 3.1. We say that a continuous function y : [−r, b] → E is a mild solution of problem (1.1)-(1.2) if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y(t) = φ(t), t ∈ [−r, 0], and

3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.
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Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the function f is continuous.
Then by Lemma 2.1 (iii), if y : [−r, b] → E is a mild solution of (1.1)-(1.2), then

y(t) =


1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Our first existence result for problem (1.1)-(1.2) is based on the Banach’s contraction principle.

Theorem 3.1. Let f : J × C([−r, 0], E) → E be continuous and there exists a constant L > 0 such that

|f(t, u)− f(t, v)| ≤ L‖u− v‖C , for t ∈ J and u, v ∈ C([−r, 0], E).

If
Lbα

Γ(α+ 1)
(1 + ‖φA‖L1) < 1, (3.1)

then the problem (1.1)-(1.2) has a unique mild solution on [−r, b].

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the operator F : C([−r, b], E) →
C([−r, b], E) defined by:

F (y)(t) =


φ(t), t ∈ [−r, 0],

1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds, t ∈ [0, b].

We need to prove that F has a fixed point, which is a unique mild solution of (1.1)-(1.2) on [−r, b]. We shall
show that F is a contraction. Let y, z ∈ C([−r, b], E). For t ∈ [0, b], we have

|F (y)(t)− F (z)(t)|

=
∣∣∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1[f(s, ys)− f(s, zs)]ds

+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1[f(τ, yτ )− f(τ, zτ ]dτ
)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys)− f(s, zs)|ds

+
∫ t

0

φA(t− s)
1

Γ(α)

∫ τ

0

(s− τ)α−1|f(τ, yτ )− f(τ, zτ )|dτds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1L‖yτ − zτ‖Cds+
1

Γ(α)

∫ t

0

φA(t− s)
∫ s

0

(s− τ)α−1L‖yτ − zτ‖Cdτds

≤ L

Γ(α)
‖y − z‖D

∫ t

0

(t− s)α−1ds+
L

Γ(α)
‖y − z‖D

∫ t

0

φA(t− s)
∫ s

0

(s− τ)α−1dτds

≤ Lbα

Γ(α+ 1)
‖y − z‖D +

‖φA‖L1Lbα

Γ(α+ 1)
‖y − z‖D.

Taking the supremum over t ∈ [−r, b], we get

‖F (y)− F (z)‖D ≤ Lbα

Γ(α+ 1)
(1 + ‖φA‖L1) ‖y − z‖D.

By (3.1) F is a contraction and thus, by the contraction mapping theorem, we deduce that F has a unique
fixed point. This fixed point is the mild solution of (1.1)-(1.2).

Next, we give an existence result based upon the following nonlinear alternative of Leray-Schauder applied
to completely continuous operators [5].

Theorem 3.2. Let E a Banach space, and U ⊂ E convex with 0 ∈ U . Let F : U → U be a completely
continuous operator. Then either
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(a) F has a fixed point, or

(b) The set E = {x ∈ U : x = λF (x), 0 < λ < 1} is unbounded.

Our main result here reads:

Theorem 3.3. Let f : J × C([−r, 0], E) → E be continuous. Assume that:

(i). S(t) is compact for all t > 0;

(ii). there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C , t ∈ J and u ∈ C([−r, 0], E).

Then, the problem (1.1)-(1.2) has at least one mild solution on [−r, b], provident that

bα‖q‖∞
Γ(α+ 1)

(1 + ‖φA‖L1) < 1.

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the operator F : C([−r, b], E) →
C([−r, b], E) defined in Theorem 3.1, namely,

F (y)(t) =


φ(t), t ∈ [−r, 0],

1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds, t ∈ [0, b].

In order to prove that F is completely continuous, we divide the operator F into two operators:

F1(y)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds,

and

F2(y)(t) =
∫ t

0

S′(t− s)F1(y)(s)ds.

We prove that F1 and F2 are completely continuous. We note that the condition (i) implies that S′(t) is
compact for all t > 0 (see [6, Lemma 2.2]).

Step 1: F1 is completely continuous.
At first, we prove that F1 is continuous. Let {yn} be a sequence such that yn → y as n→∞ in C([−r, b], E).
Then for t ∈ [0, b] we have

|F1(yn)(t)− F1(y)(t)| ≤ 1
Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, yns)− f(s, ys)
∣∣∣∣ds

≤ 1
Γ(α)

‖f(·, yn.)− f(·, y.)‖∞
∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
‖f(·, yn.)− f(·, y.)‖∞.

Since f is a continuous function, we have

‖F1(yn)− F1(y)‖D → 0 as n→∞.

Thus F1 is continuous.
Next, we prove that F1 maps bounded sets into bounded sets in C([−r, b], E). Indeed, it is enough to show that
for any ρ > 0, there exists a positive constant δ such that for each y ∈ Bρ = {y ∈ C([−r, b], E) : ‖y‖D ≤ ρ}
one has F1(y) ∈ Bδ. Let y ∈ Bρ. Since f is a continuous function, we have for each t ∈ [0, b]

|F1(y)(t)| =
∣∣∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds
∣∣∣∣
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≤ 1
Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ys)

∣∣ds
≤ bα

Γ(α+ 1)
(
‖p‖∞ + ρ‖q‖∞

)
= δ∗ <∞.

Then, ‖F1(y)‖D = max{‖φ‖C , δ
∗} = δ, and hence F1(y) ∈ Bδ.

Now, we prove that F1 maps bounded sets into equicontinuous sets of C([−r, b], E). Let τ1, τ2 ∈ J , τ2 > τ1 and
let Bρ be a bounded set. Let y ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F1(y)(τ2)− F1(y)(τ1)|

=
∣∣∣∣ 1
Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, ys)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, ys)ds
∣∣∣∣

≤
∣∣∣∣ 1
Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds
∣∣∣∣

+
∣∣∣∣ 1
Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds
∣∣∣∣

+
∣∣∣∣ 1
Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, ys)ds
∣∣∣∣

≤ ‖p‖∞ + ρ‖q‖∞
Γ(α)

( ∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+
∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+
∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero. By Arzelá-Ascoli
theorem it suffices to show that F1 maps Bρ into a precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we define

F1ε(y)(t) =
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds.

Note that the set {
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds : y ∈ Bρ

}
is bounded since∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds
∣∣∣∣ ≤ (‖p‖∞ + ρ‖q‖∞)

∣∣∣∣ 1
Γ(α)

∫ t−ε

0

(t− s− ε)α−1ds

∣∣∣∣
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α+ 1)
(t− ε)α.

Then for t > 0, the set
Yε(t) = {F1ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F1(y)(t)− F1ε(y)(t)
∣∣∣ ≤ ‖p‖∞ + ρ‖q‖∞

Γ(α)

( ∫ t−ε

0

[(t− s)α−1 − (t− s− ε)α−1]ds+
∫ t

t−ε

(t− s)α−1ds

)
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α+ 1)
(tα − (t− ε)α).

Therefore, the set Y (t) = {F1(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F1 is completely
continuous.
Step 2: F2 is completely continuous.
The operator F2 is continuous, since S′(·) ∈ C([0, b],L(E)) and F1 is continuous as proved in Step 1.
Now, let Bρ be a bounded set as in Step 1. For y ∈ Bρ we have

|F2(y)(t)| ≤
∫ t

0

|S′(t− s)||F1(y)(s)|ds
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≤
∫ t

0

φA(t− s)‖F1(y)(s)‖[D(A)]ds

≤ ‖φ‖L1bα(‖p‖∞ + ρ‖q‖∞)
Γ(α+ 1)

= δ′.

Thus, there exists a positive number δ′ such that ‖F2(y)‖D ≤ δ′. This means that F2(y) ∈ Bδ′ .
Next, we shall show that F2 maps bounded sets into equicontinuous sets in C([−r, b], E). Let τ1, τ2 ∈ J , τ2 > τ1
and let Bρ be a bounded set as in Step 1. Let y ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F2(y)(τ2)− F2(y)(τ1)|

=
∣∣∣∣ ∫ τ2

0

S′(τ2 − s)F1(y)(τ2)ds−
∫ τ1

0

S′(τ1 − s)F1(y)(τ1)ds
∣∣∣∣

≤
bα

(
‖p‖∞ + ρ‖q‖∞

)
Γ(α+ 1)

( ∫ τ1−ε

0

|S′(τ2 − s)− S′(τ1 − s)| ds

+
∫ τ1

τ1−ε

|S′(τ2 − s)− S′(τ1 − s)| ds+
∫ τ2

τ1

|S′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero. By Arzelá-Ascoli
theorem it suffices to show that F2 maps Bρ into a precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we define

F2ε(y)(t) = S′(ε)
∫ t−ε

0

S′(t− s− ε)F1(y)(s)ds.

Since S′(t) is a compact operator for t > 0, the set

Yε(t) = {F2ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F2(y)(t)− F2ε(y)(t)
∣∣∣ ≤ ‖φA‖L1

(
‖p‖∞ + ρ‖q‖∞

)
Γ(α+ 1)

(
tα − (t− ε)α

)
.

Then Y (t) = {F2(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F2 is completely continuous.
Step 3: A priori bound on solutions.
Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF (y), 0 < λ < 1}

is bounded.
Let y ∈ E be any element. Then, for each t ∈ [0, b] ,

y(t) = λF (y)(t) = λ
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+ λ

∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds.

Then

|y(t)| ≤
∣∣∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys)|ds+
∫ t

0

φA(t− s)
1

Γ(α)

∫ s

0

(s− τ)α−1|f(τ, yτ )|dτds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]ds

+
∫ t

0

φA(t− s)
1

Γ(α)

∫ s

0

(s− τ)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]dτds

≤ bα‖p‖∞
Γ(α+ 1)

+
bα‖q‖∞
Γ(α+ 1)

‖ys‖C +
‖φA‖L1bα‖p‖∞

Γ(α+ 1)
+
‖φA‖L1bα‖q‖∞

Γ(α+ 1)
‖ys‖C

≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖φA‖L1) +
bα‖q‖∞
Γ(α+ 1)

(1 + ‖φA‖L1) ‖y‖D,
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and consequently

‖y‖D ≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖φA‖L1)
{

1− bα‖q‖∞
Γ(α+ 1)

(1 + ‖φA‖L1)
}−1

.

Hence the set E is bounded. As a consequence of Theorem 3.2 we deduce that F has at least a fixed point
which gives rise to a mild solution of problem (1.1)-(1.2) on [−r, b].

4 Example

As an application of our results we consider the following fractional time partial functional differential
equation of the form

∂α

∂tα
u(t, x) =

∂2

∂x2
u(t, x) +Q(t, u(t− r, x)), x ∈ [0, π], t ∈ [0, b], α ∈ (0, 1), (4.1)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (4.2)

u(t, x) = φ(t, x), x ∈ [0, π], t ∈ [−r, 0], (4.3)

where r > 0, φ : [−r, 0]× [0, π] → R is continuous and Q : [0, b]× R → R is a given function.
To study this system, we take E = L2[0, π] and let A be the operator given by Aw = w′′ with domain

D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.
Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(x) =
(

2
π

) 1
2

sin(nx), n = 1, 2, . . . is the orthogonal set of

eigenvectors of A. It is well known that A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on
E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact semigroup, so that R(λ,A) =
(λ−A)−1 is compact operator for all λ ∈ ρ(A).

From [14, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα −A)−1dλ, t > 0,

I, t = 0,

where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for some θ ∈ (π, π
2 ). S(t)

is differentiable (Proposition 2.15 in [3]) and there exists a constant M > 0 such that ‖S′(t)x‖ ≤ M‖x‖, for
x ∈ D(A), t > 0.

To represent the differential system (4.1)− (4.3) in the abstract form (1.1)-(1.2), let

y(t)(x) = u(t, x), t ∈ [0, b], x ∈ [0, π]

φ(θ)(x) = φ(θ, x), θ ∈ [−r, 0], x ∈ [0, π]

f(t, φ)(x) = Q(t, φ(θ, x)), θ ∈ [−r, 0], x ∈ [0, π]

Choose b such that
Lbα

Γ(α+ 1)
(1 +M) < 1.

Since the conditions of Theorem 3.1 are satisfied, there is a function u ∈ C([−r, b], L2[0, π]) which is a mild
solution of (4.1)-(4.3).
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