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On graph differential equations and its associated matrix

differential equations

J. Vasundhara Devi,a,∗ R.V.G. Ravi Kumarb and N. Giribabuc

a,b,cGVP-Prof.V.Lakshmikantham Institute for Advanced Studies, Department of Mathematics, GVP College of Engineering,

Visakhapatnam-530048, Andhra Pradesh, India.

Abstract

Networks are one of the basic structures in many physical phenomena pertaining to engineering applications. As a

network can be represented by a graph which is isomorphic to its adjacency matrix, the study of analysis of networks

involving rate of change with respect to time reduces to the study of graph differential equations or equivalently matrix

differential equations. In this paper, we develop the basic infrastructure to study the IVP of a graph differential equation

and the corresponding matrix differential equation. Criteria are obtained to guarantee the existence of a solution and

an iterative technique for convergence to the solution of a matrix differential equation is developed.

Keywords: Dynamic graph, adjacency matrix, graph linear space, graph differential equations, matrix differential equations,

existence of a solution, monotone iterative technique.

2010 MSC: 34G20. c©2012 MJM. All rights reserved.

1 Introduction

A graph [1] represents a network of a natural or a man-made system, wherein interconnections between its
constituents play an important role. Graphs have been utilized to model organizational structures in social
sciences. It has been observed that the graphs which are static in nature limit the study in social phenomena
where changes with time are natural. Hence, it was thought that a dynamic graph will be more appropriate
in modeling such social behavior [2, 4]. The concept of a dynamic graph was introduced in [2] and a graph
differential equation was utilized to describe the famous prey predator model and its stability properties were
studied [2].

The importance of networks in engineering fields and the representation of a network by a graph led us to
consider a graph differential equation as an important topic of study. Thus we plan to study the existence of
solutions through monotone iterative technique [3] for the graph differential equation through its associated
matrix differential equations.

2 Preliminaries

In this section we introduce the notions and concepts that are necessary to develop graph differential equa-
tions and and the corresponding matrix differential equations. All the basic definitions and results are taken
from [2] and suitable changes are made to suit our set up. Consider a weighted directed simple graph (called
digraph) D = (V,E) an ordered pair, where V is a non-empty finite set of N vertices and E is the set of all
directed edges. To each directed edge (vi, vj) we assign a nonzero weight eij ∈ R if (vi, vj) ∈ E while eij = 0
if (vi, vj) /∈ E. Corresponding to a digraph D we associate an adjacency matrix E = (eij). This association is
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an isomorphism.

Graph linear space. Let v1, v2, . . . vN be N vertices, N fixed and DN be the set of all weighted directed
simple graphs ( called digraphs), D = (V,E). Then (DN ,+, .) is a linear space over the field of real numbers
with the following definition of the addition and scalar multiplication.
Let D1, D2 be two digraphs D1 = (V,E1) and D2 = (V,E2).
Then the sum D1 +D2 is defined as

D1 +D2 = (V,E1 + E2)

where E1 +E2 is the set of all edges (vi, vj) ∈ E1 ∪E2 where the weight of (vi, vj) is defined as the sum of the
weights of the edges (vi, vj) in the respective digraphs D1 and D2.

Let D = (V,E) be a graph then by αD = (V, αE) where αE is the set of all edges (vi, vj) whose weight is α
times the weight of (vi, vj). Observe that if α = 0 then αD = 0 ∈ DN is the graph consisting of N isolated
vertices. Hence the set of edges is empty. With the fore mentioned operations, (DN ,+, .) is a linear space.
This space is isomorphic to the linear space MN of all N ×N adjacency matrices with entries of the principal
diagonal being zero, defined over the field of real numbers, with the usual definition of matrix addition and
scalar multiplication.
Let γ be a matrix norm defined as

γ : MN → R+ satisfying

(i) γ(m) > 0 ∀ m ∈MN ,m 6= 0
(ii) γ(αm) = |α| γ(m), ∀ m ∈MN , α ∈ R
(iii) γ(m1 +m2) ≤ γ(m1) + γ(m2), ∀ m1,m2 ∈MN .

Once a matrix norm is chosen we can define an associated matrix norm on DN and induced metric η is
given by

η(m1,m2) = γ (m1 −m2), ∀ m1,m2 ∈MN .

In order to study graph functions that vary over time, we use an axiomatic definition of the abstract linear
space DN into itself.
Consider the space DN and a family of mappings Φ : R+ × DN → DN , where to any graph D ∈ DN and any
parameter (time) t ∈ R+ assigns a graph Φ (t,D) ∈ DN .

Dynamic graph. A dynamic graph D̂ = ΦD(t) is a one parameter mapping ΦD : R+ → DN with ΦD(t) =
Φ (t,D) ∈ DN satisfying the following axioms.
(i). Φ (t0, D0) = D0

(ii). Φ is continuous
(iii). Φ(t2,Φ (t1, D)) = Φ(t1 + t2, D), ∀ t1, t2 ∈ R+, ∀ D ∈ DN .

The first axiom establishes D(t0) = D0 as the initial graph. The second axiom requires continuity of
mapping Φ (t,D) with respect to t and D which includes continuity with respect to t0 and D0. The third axiom
establishes that dynamic graph D as a one parameter graph Φ (t,D) of transformations of the space DN into
itself. Corresponding to a dynamic graph the dynamic adjacency matrix is defined as follows.

Definition 2.1. A dynamic adjacency matrix Ê is a one-parameter mapping ψ : R+ × EN → EN of the space
EN into itself satisfying the following axioms.

(i) ψ(t0, E0) = E0.

(ii) ψ(t, E) is continuous.

(iii) ψ(t2, ψ(t1, E)) = ψ(t1 + t2, E), ∀ t1, t2 ∈ R+ and ∀ E ∈ EN .

Examples.
A dynamic graph can be defined by the corresponding adjacency matrix and a few examples are given

below.
(1) Let ψ(t, E) = E, ∀ t ∈ R+, ∀ E ∈ DN

Then ψ(t0, E0) = E0 and ψ(t, E) = E is continuous ∀ t and ∀ E and

ψ(t2, ψ(t1, E)) = ψ(t2, E) = E
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= ψ(t1 + t2, E)

Therefore, the dynamic graph D̂ = D for all t ∈ R+.

(2) Let ψ(t, E) = E0 ∀ t ∈ R+, ∀ E ∈ EN . Then the dynamic graph D̂ = E0 for all t ∈ R+.

(3) Let ψ(t, E) = t E0 + E, ∀ t ∈ R+, ∀ E ∈ EN and E0 be any initial adjacency matrix.
Then ψ(0, E0) = E0

and ψ(tn, E) → ψ(t0, E) whenever tn → t0
and ψ(t, En) → ψ(t, E0) whenever En → E0

Further ψ(t2, ψ(t1, E)) = ψ(t2, t1E0 + E)

= t2E0 + (t1E0 + E)

= (t1 + t2)E0 + E

= ψ(t1 + t2, E).

Therefore, the dynamic graph D̂ = tE0 +D for all t ∈ R+.
Motion of the graph. The mapping Φ(t,D) = D̂ is called the motion of the graph. The mapping ψ(t, E) is
called as the motion of the adjacency matrix Ê. A graph De satisfying Φ(t,De) = De is called as the equilibrium
graph.

In order to define the time evolution of a graph one needs the concept of a derivative in the abstract space,
we can use the theory of abstract differential equations. Introducing the concept of Frechet derivative, if it
exists on the notion of a generalized derivative we consider the time-evolution of a dynamic graph abstractly
by the equation ∆D = G(t,D) where ∆D represents the tendency of the graph to change in time t.

In order to introduce the corresponding concept in the adjacency matrices we need the following notions.

(1) The adjacency matrix Ê = E(t) is said to be continuous if the entry eij(t) is continuous for all i, j =
1, 2, . . . N.

(2) The continuous adjacency matrix Ê = E(t) is said to be differentiable if each continuous entry eij(t) is
differentiable for all i, j = 1, 2, . . . N, and is denoted by E′ = (e′ij)N×N . With the above definitions in
place we can express the corresponding changes in an adjacency matrix that evolved in time ‘t’ for a
dynamic graph by the equation

dE

dt
= F (t, E).

With the concept of rate of change of a graph with respect to time t, one can consider the differentiable
equation in the abstract space DN . Using the theory of differential equations in abstract spaces one can
study the graph differential equations.

An alternative approach that is more useful for practical purposes would be to consider the corresponding
adjacency matrix differential equation or simply the matrix differential equation.

3 Linear Matrix differential equations

In this section, we study a graph differential equation that can be expressed as a linear matrix differential
equation. Now consider a matrix differential equation (MDE) given by

E′ = F (t, E).
where F (t, E) is a N ×N matrix in which each entry fij(t) is a function of t, eij where i, j = 1, 2, . . . , N and
satisfies certain smoothness conditions.

In order to analyze the graph differential equation through the Matrix differential equation (MDE) we
first consider those equations that can be transformed to a linear system.

Consider the IVP of a MDE, corresponding to some graph differential equation, given by

E′ = F (t, E)
E(t0) = E0 = (kij)N×N

}
(3.1)
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where F : I × EN → EN is continuous, I = [t0, T ]. This means that
F (t, E) = (fij (t, e11, e12, . . . , e1N , e21, e22, . . . , e2N , . . . , eN1, eN2, . . . , eNN ))N×N and fij is a continuous, real
valued function. Suppose that fij(t) are linear combinations of the functions eij(t). Then the system (3.1) can
be written as a linear system

X ′ = AX

X(t0) = X0

}
(3.2)

where X is the vector given by

XT = [e11, e12, . . . , e1N , e21, e22, . . . , e2N , . . . , eN1, eN2, . . . , eNN ],

A is N2 ×N2 coefficient matrix and

XT
0 = [k11, k12, . . . , k1N , k21, k22, . . . , k2N , . . . , kN1, kN2, . . . , kNN ].

As the qualitative theory of the system (3.2) is well established, using it one can easily analyze the linear system
(3.2) and the corresponding graph differential equation.
Next suppose that MDE(3.2) along with its initial condition is of the form

E′ = AE

E(t0) = E0 = (kij)N×N

}
(3.3)

where A is the coefficient matrix of order N ×N . The system (3.2) can be considered as N subsystems given
by

X ′
j = AXj , Xj(t0) = kj , j = 1, 2, . . . , N (3.4)

where Xj =


e1j

e2j

...
eNj

 and Kj =


k1j

k2j

...
kNj

.

The N subsystems given by (3.4) can be completely understood through the theory of ordinary differential
systems and the corresponding graph differential equation can be analyzed.

4 Nonlinear matrix differential equation

We proceed to introduce an initial value problem of the nonlinear matrix differential equation in this section.
Further we prove some basic inequality theorems.
Consider the Matrix differential equation (MDE) given by,

E′ = F (t, E)
E(t0) = E0,

}
(4.1)

where E′ = (e′ij)N×N and F (t, E) is the matrix given by F (t, E) = (fij(t, ers)) i, j = 1, 2, . . . , N and r, s =
1, 2, . . . , N and fij are real valued functions which are nonlinear in terms of the entries ers. In order to study
the MDE (4.1) we need to devlop new notions that would help us to develop basic Matrix differential inequality
results. We begin with a Partial Order ≤.

Definition 4.1. Consider two matrices A and B of order N . We say that A ≤ B if and only if aij ≤ bij for
all i, j = 1, 2, . . . , N .

Definition 4.2. A matrix function E : I → EN defined by E(t) = (eij(t)) is said to be continuous if and only
if eij : I → R is continuous for all i, j = 1, 2, . . . , N .

Definition 4.3. A matrix function E : I → EN is said to be continuous and differentiable if and only if
eij : I → R is continuous and differentiable for all i, j = 1, 2, . . . , N .

Definition 4.4. By a solution of the IVP(4.1) we mean a matrix function E : I → EN which is continuous,
differentiable and satisfies the equation(4.1) along with the initial condition.
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In order to state the basic differential inequality theorem we introduce the following notions.

Definition 4.5. By a lower solution of the MDE(4.1) we mean a continuous differentiable matrix function
V (t) satisfying the inequalities

V ′ ≤ F (t, V ), V (t0) ≤ E0 (4.2)

Definition 4.6. By a upper solution of the MDE(4.1) we mean a continuous differentiable matrix function
W (t) satisfying the inequalities

W ′ ≥ F (t,W ), W (t0) ≥ E0 (4.3)

Definition 4.7. A function F (t, U) ∈ C[I×EN , EN ] is said to be quasi monotone nondecreasing in U for each t,
if and only if V ≤W and vmn = wmn for some m,n implies fij(t, V (t)) ≤ fij(t,W (t)) for all i, j = 1, 2, . . . , N .

The basic matrix differential inequlity results is given below.

Theorem 4.1. Assume that
V ′ ≤ F (t, V ) (4.4)

W ′ ≥ F (t,W ) (4.5)

where V,W ∈ C1[I, EN ] and F ∈ C[I × EN , EN ] and F (t, U) be quasi monotone nondecreasing in U for each t.
Further assume that V0 < W0 where V (t0) = V0 ∈ EN and W (t0) = W0 ∈ EN . Then V (t) < W (t), t ∈ I,where
I = [t0, T ] provided one of the inequalities in (4.4) and (4.5) is strict.

Proof. Assume that V ′ ≤ F (t, V ), W ′ > F (t,W ). Suppose that the conclusion does not hold. Then there
exists an element t1 ∈ I such that V (t) < W (t) for t0 < t < t1 and there exists a pair of indices k and l such
that vkl(t1) = wkl(t1). Now since F (t, U) is quasi monotone nondecreasing in U , this implies that

fij(t, V (t)) ≤ fij(t,W (t)), t ∈ I (4.6)

for i, j = 1, 2, . . . , N. Further vkl(t) < wkl(t), t0 < t < t1 and vkl(t1) = wkl(t1) implies for small h < 0, vkl(t1 +
h)− vkl(t1) < wkl(t1 + h)− wkl(t1), which further implies that

vkl(t1 + h)− vkl(t1)
h

>
wkl(t1 + h)− wkl(t1)

h

taking limit as h→ 0, we get
v′kl (t1) ≥ w′kl (t1) (4.7)

Using the inequalities (4.4), (4.5) and (4.7), yield
fkl (t1, V (t1)) ≥ v′kl (t1) ≥ w′kl (t1) > fkl (t1,W (t1)) = fkl (t1, V (t1)), which is a contradiction. Hence the
conclusion holds and the proof is complete.

Next we state and prove a theorem involving non strict inequalities in this set up.

Theorem 4.2. Suppose (4.4) and (4.5) holds and that F (t, U) is quasi monotone nondecreasing in U for each
t. Further, suppose that F satisfies,

F (t,W )− F (t, V ) ≤ L (W − V ) for W ≥ V , where L > 0 is a N ×N matrix.

Then V0 ≤W0 implies that V (t) ≤W (t), t ∈ I.

Proof. Let us define

Wε(t) = W (t) + ε e2Lt, where ε > 0 is sufficiently small.

Then W ′
ε (t) = W ′(t) + 2L ε e2 Lt

≥ F (t,W (t)) + 2L ε e2Lt

≥ F (t,W (t))− F (t,Wε(t)) + F (t,Wε(t)) + 2L ε e2Lt
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≥ −L(Wε(t)−W (t)) + F (t,Wε(t)) + 2L ε e2Lt

= F (t,Wε(t)) + L ε e2Lt

> F (t,Wε(t)).

Further, Wε(t0) = W (t0) + ε e2Lt0

> W0

≥ V0

Hence we are in a position to apply the result for strict differential inequalities which yields V (t) < Wε(t), t ∈ I
which implies as ε→ 0,

V (t) ≤W (t) and the proof is complete.

The study of existence of a solution in a sector is essential to develop the monotone iterative technique.
The following theorem deals with the existence of a solution in a sector.

Theorem 4.3. Let V,W ∈ C1 [I, EN ] be lower and upper solutions of the Matrix differential equation

E′ = F (t, E)
E(t0) = E0

}
(4.8)

such that V (t) ≤W (t) on I and F ∈ C[Ω, EN ], where
Ω = {(t, E) : V (t) ≤ E ≤W (t), t ∈ I} . Then there exists a solution E(t) of (4.8) such that

V (t) ≤ E(t) ≤W (t) on I.

Proof. Let P : I × EN → EN be defined by P (t, E) = (pij(t))N×N where
pij(t) = Max{vij(t),Min{eij , wij(t)}}

Then F (t, P ) = (fij (t, P (t, E)) defines a continuous extension of F to I × EN and is also bounded since
F is bounded on Ω, which implies that E′ is bounded on Ω. Hence the system
E′ = F (t, P (t, E)), E(t0) = E0 has a solution E(t) on I.

For ε > 0, consider
wεij

(t) = wij (t) + ε(1 + t) and vεij
(t) = vij (t)− ε(1 + t) for i, j = 1, 2, . . . , N.

We claim that Vε(t) < E(t) < Wε(t). Since vεij (0) < eij(0) < wεij (0) for any i and j we have Vε(0) <

E(0) < Wε(0). Suppose that there exists an element t1 ∈ (t0, T ] and a pair of indices k and l such that
vεkl

(t) < ekl(t) < wεkl
(t) on [t0, t1) and ekl(t1) = wεkl

(t1).
Then ekl(t1) > wkl(t1) and hence pkl(t1) = wkl(t1).
Also we have V (t1) ≤ P (t1, E(t1)) ≤W (t1).
Since F is quasi monotone nondecreasing, we have

F (t1, P (t1, E(t1))) ≤ F (t1,W (t1))

Then w′kl (t1) ≥ fkl (t1,W (t1))

≥ fkl (t1, P (t1, E(t1))

= e′kl (t1)

Since w′εkl
(t1) > w′kl (t1), we have w′εkl

(t1) > e′kl (t1), which is a contradiction to the fact that ekl (t) < wεkl
(t)

for t ∈ [t0, t1) and ekl(t1) = wεkl
(t1).

Therefore Vε(t) < E(t) < Wε(t) on I.
Now as ε→ 0, we obtain that V (t) ≤ E(t) ≤W (t) and the proof is complete.

5 Monotone iterative technique

In this section we shall construct monotone sequences that converges to the solutions of

E′ = F (t, E)
E(t0) = E0

}
(5.1)
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Theorem 5.1. Assume that V0,W0 ∈ C1[I, EN ], I = [t0, T ] are lower and upper solutions of the IVP (5.1)
such that V0 ≤ W0 on I. Let F ∈ C[I × EN , EN ]. Suppose further that F (t,X) − F (t, Y ) ≥ −M(X − Y ), for
V0 ≤ Y ≤ X ≤ W0, M ∈ RN×N ,M ≥ 0. Then there exists monotone sequences {Vn}, {Wn} such that {Vn}
converges to ρ and {Wn} converges to R as n → ∞ uniformly and monotonically on I and that ρ and R are
the minimal and maximal solutions of IVP (5.1) respectively.

Proof. For any Y ∈ C1[I, EN ] such that V0 ≤ Y ≤W0, we consider the linear Matrix differential equation

X ′ = F (t, Y )−M(X − Y ), X(t0) = X0. (5.2)

Then there exists a unique solution of (5.2) given by

X(t) = eM(t−t0)X0 +
∫ t

t0

eM(t−s)[F (s, Y (s)) +MY (s)]ds

Define a sequence {Vn} by

V ′
n = F (t, Vn−1)−M (Vn − Vn−1) , Vn(t0) = X0, n = 1, 2, . . . , (5.3)

Let V1 be the solution of (5.3) for n = 1.

Consider P = V0 − V1

Then P ′ = V ′
0 − V ′

1

≤ F (t, V0)− F (t, V0) +M (V1 − V0) ,

≤ −MP.

and P (t0) ≤ 0 which implies that P ≤ 0 on I, and thus V0 ≤ V1 on I.
Similarly, we consider a sequence {Wn} by

W ′
n = F (t,Wn−1)−M (Wn −Wn−1) ,Wn(t0) = X0 (5.4)

Let W1 be the solution of (5.4) for n = 1.

Consider Q = W1 −W0

Then Q′ = W ′
1 −W ′

0

≤ F (t,W0)−M (W1 −W0)− F (t,W0)

= −M Q

and Q (t0) ≤ 0 which implies that Q(t) ≤ 0. Hence W1 ≤W0 on I.
Now we proceed to show that V1 ≤W1 on I.

Set R = V1 −W1

Then R′ = V ′
1 −W ′

1

= F (t, V0)−M(V1 − V0)− F (t,W0) +M(W1 −W0)

≤ M (W0 − V0)−M (V1 − V0 −W1 +W0)

= −MR

and R (t0) = 0, which implies that R ≤ 0 on I and thus V1 ≤W1 on I.
Hence we have shown that V0 ≤ V1 ≤W1 ≤W0 on I.
Now suppose that for some n = k, the result Vk−1 ≤ Vk ≤Wk ≤Wk−1 holds on I. We claim that Vk ≤ Vk+1 ≤
Wk+1 ≤Wk on I. To prove this we first set n = k in (5.3) and (5.4). Then clearly there exists unique solutions
Vk+1(t) and Wk+1(t) satisfying (5.3) and (5.4) respectively on I.

Consider S = Vk − Vk+1

Then S′ = V ′
k − V ′

k+1

= F (t, Vk−1)−M(Vk − Vk−1)− F (t, Vk) +M (Vk+1 − Vk) ,
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≤ M(Vk − Vk−1) +M (Vk+1 − Vk − Vk + Vk−1) ,

≤ −MS.

and S(t0) = 0 which implies that S ≤ 0 on I and thus Vk ≤ Vk+1 on I.
Similarly we can show that Wk+1 ≤Wk on I.

Set T = Vk+1 −Wk+1

Then T ′ = V ′
k+1 −W ′

k+1

= F (t, Vk)−M(Vk+1 − Vk)− F (t,Wk) +M (Wk+1 −Wk) ,

≤ M(Wk − Vk) +M (Wk+1 −Wk − Vk+1 + Vk) ,

≤ −MT.

and T (t0) = 0, which implies that T ≤ 0 on I and thus Vk+1 ≤Wk+1 on I.
We have shown that Vk ≤ Vk+1 ≤Wk+1 ≤Wk on I.
Therefore we have

V0 ≤ V1 ≤ · · · ≤ Vn ≤Wn ≤ · · · ≤W1 ≤W0 on [t0, T ]. (5.5)

The sequences {Vn}, {Wn} are uniformly bounded on [t0, T ] and by (5.3) and (5.4) it follows that {|V ′
n|}, {|W ′

n|}
are also uniformly bounded. As a result, the sequences {Vn} and {Wn} are equicontinuous on [t0, T ] and conse-
quently by Ascoli-Arzela’s Theorem there exists subsequences {Vnk

}, {Wnk
} that converge uniformly on [t0, T ].

In view of (5.5) it also follows that the entire sequences {Vn}, {Wn} converge uniformly and monotonically to
ρ and R respectively as n→∞. By considering the integral equations corresponding to the IVP of MDE (5.3)
and (5.4) respectively, we can show that ρ and R are solutions of IVP(5.1). The proof uses the concepts of
uniform convergence and uniform continuity and is well established.
To prove that ρ,R are respectively the minimal and maximal solutions of (5.1) we have to show that if X is
any solution of (5.1) such that V0 ≤ X ≤W0 on I, then V0 ≤ ρ ≤ X ≤ R ≤W0 on I. To do this, suppose that
for some n, Vn ≤ X ≤Wn on I and set φ = X − Vn+1 so that

φ′ = F (t,X)− F (t, Vn) +M(Vn+1 − Vn)
≥ −M(X − Vn) +M(Vn+1 − Vn) = −Mφ;

and φ(t0) = 0.
Hence, it follows that Vn+1 ≤ X on I. Similarly X ≤Wn+1 on I.
Hence Vn+1 ≤ X ≤Wn+1 on I.
Since V0 ≤ X ≤ W0 on I, this proves by induction that Vn ≤ X ≤ Wn on I for all n. Taking the limit as
n→∞, we conclude that ρ ≤ X ≤ R on I and the proof is complete.

Corollary 5.1. If in addition to the assumption Theorem 5.1, if F satisfies the following condition

F (t,X)− F (t, Y ) ≤M(X − Y ), X ≥ Y

then the solution is unique.

Proof. We have ρ ≤ R on I.

Consider φ(t) = R(t)− ρ(t)

Then φ′ = R′(t)− ρ′(t)

= F (t, R)− F (t, ρ)

≤ M(R− ρ)

≤ Mφ.

and φ(t0) = 0 which implies that φ(t) ≤ 0 on I and thus R(t) ≤ ρ(t) on I. Hence ρ(t) = X(t) = R(t) on I,
and the proof is complete.
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Abstract

In this paper, the authors established the solution of the additive functional equation and inequality

f(x) + f(y + z)− f(x + y) = f(z)

and

||f(x) + f(y + z)− f(x + y)|| ≤ ||f(z)||.

We also prove that the above functional equation and inequality are stable in Banach space in the sense of Ulam, Hyers,

Rassias. An application of this functional equation is also studied.

Keywords: Additive functional equations, generalized Hyers - Ulam - Rassias stability.
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1 Introduction

The stability problem of functional equations originated from a question of S.M. Ulam [21] concerning the
stability of group homomorphisms. D.H. Hyers [10] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ theorem was generalized by T. Aoki [2] for additive mappings and by Th.M.
Rassias [20] for linear mappings by considering an unbounded Cauchy difference.

The paper of Th.M. Rassias [20] has provided a lot of influence in the development of what we call generalized
Hyers-Ulam stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by
P. Gavruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of
Rassias approach.

In 1982, J.M. Rassias [14] followed the innovative approach of the Th.M. Rassias theorem [20] in which he
replaced the factor ||x||p + ||y||p by ||x||p||y||q for p, q ∈ R with p + q = 1.

In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference was obtained by Ravi
etal., [19] by considering the summation of both the sum and the product of two p− norms in the sprit of Rassias
approach. The stability problems of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see [1, 3, 4, 5, 6, 8, 9, 11, 12, 16, 17]).

The solution and stability of the following additive functional equations

f(x + y) = f(x) + f(y), (1.1)

f(2x− y) + f(x− 2y) = 3f(x)− 3f(y), (1.2)

f(x + y − 2z) + f(2x + 2y − z) = 3f(x) + 3f(y)− 3f(z), (1.3)

∗Corresponding author.

E-mail addresses: annarun2002@yahoo.co.in (M. Arunkumar) and agilram@gmail.com (P. Agilan).
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f(2x± y ± z) = f(x± y) + f(x± z), (1.4)

were discussed in [1, 3, 13, 18].
One of the most famous functional equations is the additive functional equation (1.1). In 1821, it was first

solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called an additive Cauchy
functional equation in honor of A.L. Cauchy. The theory of additive functional equations is frequently applied
to the development of theories of other functional equations. Moreover, the properties of additive functional
equations are powerful tools in almost every field of natural and social sciences. Every solution of the additive
functional equation (1.1) is called an additive function.

It is well known that if an additive function f : R → R satisfies one of the following conditions:

(a) f is continuous at a point;

(b) f is monotonic on an interval of positive length;

(c) f is bounded on an interval of positive length;

(d) f is integrable;

(e) f is measurable,

then f is of the form f(x) = cx with a real constant c. That is to say f has the linearity. That is, if a solution
of the additive equation (1.1) satisfies one of the very weak conditions (a) to (e), then it does have the linearity.
But every additive functional which is not linear displays a very strange behavior. More precisely, the graph
of every additive functional f : R → R which is not of the form f(x) = cx is dense in R2 .

In this paper, the authors established the solution and generalized Ulam-Hyers stability of the additive
functional equation and inequality

f(x) + f(y + z)− f(x + y) = f(z) (1.5)

||f(x) + f(y + z)− f(x + y)|| ≤ ||f(z)||. (1.6)

In Section 2, we proved the general solution of (1.5) and (1.6) is provided.
In Section 3, the generalized Ulam-Hyers stability of the functional equation (1.5) is investigated.
The generalized Ulam-Hyers stability of the functional inequality (1.6) is discussed in section 4.
In Section 5, the application of functional equation (1.5) is studied.

2 General Solution of (1.5) and (1.6)

In this section, the general solution of (1.5) and (1.6) are given. Through out this section let X and Y be
real vector spaces.

Theorem 2.1. The mapping f : X → Y satisfies the functional equation

f(x + y) = f(x) + f(y) (2.1)

if and only if f : X → Y satisfies the functional equation

f(x) + f(y + z)− f(x + y) = f(z) (2.2)

for all x, y, z ∈ X with f(0) = 0.

Proof. Let f : X → Y satisfies the functional equation (2.1). Setting x = y = 0 in (2.1), we get f(0) = 0. Set
x = −y in (2.1), we get f(−y) = −f(y) for all y ∈ X. Therefore f is an odd function. Replacing y by x and y

by 2x in (2.1), we obtain
f(2x) = 2f(x) and f(3x) = 3f(x) (2.3)

for all x ∈ X. In general for any positive integer a, we have f(ax) = af(x).
Replacing (x, y) by (x, y + z) in (2.1), we get

f(x) + f(y + z) = f(x + y + z) (2.4)
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for all x, y, z ∈ X. Again replacing (x, y) by (x + y, z) in (2.1), we obtain

f(x + y) + f(z) = f(x + y + z) (2.5)

for all x, y, z ∈ X. From (2.4) and (2.5), we derive (1.5) for all x, y, z ∈ X.
Conversely, assume f : X → Y satisfies the functional equation (2.2) with f(0) = 0. Set (x, z) by (−y, 0)

in (2.2), we get f(−y) = −f(y) for all y ∈ X. Therefore f is an odd function. Replacing (y, z) by (x, 0) and
(2x, 0) respectively, in (2.2), we obtain

f(2x) = 2f(x) and f(3x) = 3f(x) (2.6)

for all x ∈ X. In general for any positive integer a, we have f(ax) = af(x).
Replacing z by 0 in (2.2), we derive (2.1) for all x, y ∈ X.

Theorem 2.2. The mapping f : X → Y satisfies the functional equation (2.1) if and only if f : X → Y

satisfies the functional inequality

||f(x) + f(y + z)− f(x + y)|| ≤ ||f(z)|| (2.7)

for all x, y, z ∈ X with ||f(0)|| = 0.

Proof. Let f : X → Y satisfies the functional equation (2.7). Setting z = 0 in (2.7), we get

||f(x) + f(y)− f(x + y)|| ≤ ||f(0)|| (2.8)

for all x, y, z ∈ X. It follows from (2.8) our result is desired.
Conversely, assume f : X → Y satisfies the functional equation (2.1). Adding f(z) on both sides of (2.1)

and using (2.1) and rewrite the equation, we have

f(x) + f(y + z)− f(x + y) = f(z) (2.9)

for all x, y, z ∈ X. It follows from (2.9) our result is desired.

Corollary 2.3. For a mapping f : X → Y the following conditions are equivalent.

(i) f is additive

(ii) f(x) + f(y + z)− f(x + y) = f(z)

(iii) ||f(x) + f(y + z)− f(x + y)|| ≤ ||f(z)||.

Hereafter through out this paper, let us consider X and Y to be a normed linear space and a Banach space,
respectively.

3 Stability Results for Functional Equation (1.5)

In this section, the generalized Ulam-Hyers stability of the functional equation (1.5) is investigated.

Theorem 3.1. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function such that
∞∑

n=0

α
(
2njx, 2njy, 2njz

)
2nj

converges in R and lim
n→∞

α
(
2njx, 2njy, 2njz

)
2nj

= 0 (3.1)

for all x, y, z ∈ X. Let f : X → Y be a function satisfying the inequality

‖f(x) + f(y + z)− f(x + y)− f(z)‖ ≤ α (x, y, z) (3.2)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y and satisfying the functional
equation (1.5) such that

‖f(x)−A(x)‖ ≤ 1
2

∞∑
k= 1−j

2

α(2kjx, 2kjx, 0)
2kj

(3.3)

for all x ∈ X. The mapping A(x) is defined by

A(x) = lim
n→∞

f(2njx)
2nj

(3.4)

for all x ∈ X.
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Proof. Assume j = 1. Replacing (x, y, z) by (x, x, 0) in (3.2), we get∥∥∥∥f(x)− f(2x)
2

∥∥∥∥ ≤ α (x, x, 0)
2

(3.5)

for all x ∈ X. Now replacing x by 2x and dividing by 2 in (3.5), we get∥∥∥∥f(2x)
2

− f(22x)
22

∥∥∥∥ ≤ α (2x, 2x, 0)
22

(3.6)

for all x ∈ X. From (3.5) and (3.6), we obtain∥∥∥∥f(x)− f(22x)
22

∥∥∥∥ ≤ ∥∥∥∥f(x)− f(2x)
2

∥∥∥∥ +
∥∥∥∥f(2x)

2
− f(22x)

22

∥∥∥∥
≤ 1

2

[
α(x, x, 0) +

α(2x, 2x, 0)
2

]
(3.7)

for all x ∈ X. In general for any positive integer n , we get∥∥∥∥f(x)− f(2nx)
2n

∥∥∥∥ ≤ 1
2

n−1∑
k=0

α(2kx, 2kx, 0)
2k

(3.8)

≤ 1
2

∞∑
k=0

α(2kx, 2kx, 0)
2k

for all x ∈ X. In order to prove the convergence of the sequence{
f(2nx)

2n

}
,

replace x by 2mx and dividing by 2m in (3.8), for any m,n > 0 , we deduce∥∥∥∥f(2mx)
2m

− f(2n+mx)
2(n+m)

∥∥∥∥ =
1

2m

∥∥∥∥f(2mx)− f(2n · 2mx)
2n

∥∥∥∥
≤ 1

2

n−1∑
k=0

α(2k+mx, 2k+mx, 0)
2k+m

≤ 1
2

∞∑
k=0

α(2k+mx, 2k+mx, 0)
2k+m

→ 0 as m →∞

for all x ∈ X. Hence the sequence
{

f(2nx)
2n

}
is Cauchy sequence. Since Y is complete, there exists a mapping

A : X → Y such that

A(x) = lim
n→∞

f(2nx)
2n

∀ x ∈ X.

Letting n →∞ in (3.8) we see that (3.3) holds for all x ∈ X. To prove that A satisfies (1.5), replacing (x, y, z)
by (2nx, 2ny, 2nz) and dividing by 2n in (3.2), we obtain

1
2n

∥∥∥f(2nx) + f(2n(y + z))− f(2n(x + y))− f(2nz)
∥∥∥ ≤ 1

2n
α(2nx, 2ny, 2nz)

for all x, y, z ∈ X. Letting n →∞ in the above inequality and using the definition of A(x), we see that

A(x) + A(y + z) = A(x + y) + A(z).

Hence A satisfies (1.5) for all x, y, z ∈ X. To prove A is unique, we let B(x) be another mapping satisfying
(1.5) and (3.3), then

‖A(x)−B(x)‖ =
1
2n

‖A(2nx)−B(2nx)‖
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≤ 1
2n

{‖A(2nx)− f(2nx)‖+ ‖f(2nx)−B(2nx)‖}

≤
∞∑

k=0

2 α(2k+nx)
2(k+n)

→ 0 as n →∞

for all x ∈ X. Hence A is unique.
For j = −1, we can prove a similar stability result. This completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [10],
Ulam-Hyers-Rassias [20] and Ulam-JRassias [19] stabilities of (1.5).

Corollary 3.2. Let λ and s be nonnegative real numbers. Let a function f : X → Y satisfies the inequality

‖f(x) + f(y + z)− f(x + y)− f(z)‖

≤


λ,

λ (||x||s + ||y||s + ||z||s) , s < 1 or s > 1;
λ

{
||x||s||y||s||z||s + (||x||3s + ||y||3s + ||z||3s)

}
, s < 1

3 or s > 1
3 ;

(3.9)

for all x, y, z ∈ X. Then there exists a unique additive function A : X → Y such that

‖f(x)−A(x)‖ ≤


λ,
2 λ||x||s

|2− 2s|
,

2 λ||x||3s

|2− 23s|
,

(3.10)

for all x ∈ X.

4 Stability Results for Functional Inequality (1.6)

In this section, we discussed the generalized Ulam-Hyers stability of the functional inequality (1.6).

Theorem 4.1. Let j ∈ {−1, 1} and β : X3 → [0,∞) be a function such that

∞∑
n=0

β
(
2njx, 2njy, 2njz

)
2nj

converges in R and lim
n→∞

β
(
2njx, 2njy, 2njz

)
2nj

= 0 (4.1)

for all x, y, z ∈ X. Let f : X → Y be a function satisfying the functional inequality

‖f(x) + f(y + z)− f(x + y)‖ ≤ ||f(z)||+ β (x, y, z) (4.2)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y and satisfying the functional
equation (1.6) such that

‖f(x)−A(x)‖ ≤ 1
2

∞∑
k= 1−j

2

β(2kjx, 2kjx, 0)
2kj

(4.3)

for all x ∈ X. The mapping A(x) is defined by

A(x) = lim
n→∞

f(2njx)
2nj

(4.4)

for all x ∈ X.

Proof. Assume j = 1. Replacing (x, y, z) by (x, x, 0) in (4.2), we get∥∥∥∥f(x)− f(2x)
2

∥∥∥∥ ≤ β (x, x, 0)
2

(4.5)
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for all x ∈ X. Now replacing x by 2x and dividing by 2 in (4.5), we get∥∥∥∥f(2x)
2

− f(22x)
22

∥∥∥∥ ≤ β (2x, 2x, 0)
22

(4.6)

for all x ∈ X. From (4.5) and (4.6), we obtain∥∥∥∥f(x)− f(22x)
22

∥∥∥∥ ≤ ∥∥∥∥f(x)− f(2x)
2

∥∥∥∥ +
∥∥∥∥f(2x)

2
− f(22x)

22

∥∥∥∥
≤ 1

2

[
β(x, x, 0) +

β(2x, 2x, 0)
2

]
(4.7)

for all x ∈ X. In general for any positive integer n , we get∥∥∥∥f(x)− f(2nx)
2n

∥∥∥∥ ≤ 1
2

n−1∑
k=0

β(2kx, 2kx, 0)
2k

(4.8)

≤ 1
2

∞∑
k=0

β(2kx, 2kx, 0)
2k

for all x ∈ X. In order to prove the convergence of the sequence{
f(2nx)

2n

}
,

replace x by 2mx and dividing by 2m in (4.8), for any m,n > 0 , we deduce∥∥∥∥f(2mx)
2m

− f(2n+mx)
2(n+m)

∥∥∥∥ =
1

2m

∥∥∥∥f(2mx)− f(2n · 2mx)
2n

∥∥∥∥
≤ 1

2

n−1∑
k=0

β(2k+mx, 2k+mx, 0)
2k+m

≤ 1
2

∞∑
k=0

β(2k+mx, 2k+mx, 0)
2k+m

→ 0 as m →∞

for all x ∈ X. Hence the sequence
{

f(2nx)
2n

}
is Cauchy sequence. Since Y is complete, there exists a mapping

A : X → Y such that

A(x) = lim
n→∞

f(2nx)
2n

∀ x ∈ X.

Letting n →∞ in (4.8) we see that (4.3) holds for all x ∈ X. In order to prove that A satisfies (1.6) and it is
unique, the proof is similar to that of Theorem 3.1.

For j = −1, we can prove a similar stability result. This completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 4.1 concerning the Ulam-Hyers [10],
Ulam-Hyers-Rassias [20] and Ulam-JRassias [19] stabilities of (1.6).

Corollary 4.2. Let λ and r, s, t be nonnegative real numbers. Let a function f : X → Y satisfies the functional
inequality

‖f(x) + f(y + z)− f(x + y)‖

≤ ||f(z)||+


λ,

λ (||x||r + ||y||s + ||z||t) , r, s < 1 or r, s > 1;
λ {||x||r||y||s||z||t + (||x||r+s+t + ||y||r+s+t + ||z||r+s+t)} ,

r + s + t < 1
3 or r + s + t > 1

3 ;

(4.9)
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for all x, y, z ∈ X. Then there exists a unique additive function A : X → Y such that

‖f(x)−A(x)‖ ≤


λ,
λ||x||r

|2− 2r|
+

λ||x||s

|2− 2s|
,

λ||x||r+s+t

|2− 2r+s+t|
,

(4.10)

for all x ∈ X.

5 Application of Functional Equation (1.5)

Consider the additive functional equation (1.5), that is

f(x) + f(y + z)− f(x + y) = f(z).

The above functional equation can be rewritten as

f(x) + f(y + z) = f(x + y) + f(z).

This functional equation is originating from an excellent definition of Group Theory which states the associative
law for the binary operation ”+”.

Since f(x) = x is the solution of the functional equation, the above equation is written as follows

x + (y + z) = (x + y) + z
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Abstract

In this paper, we defined a new subclass of uniformly convex functions and corresponding subclass of starlike

functions with negative coefficients and obtain coefficient estimates. Further we investigate extreme points, growth and

distortion bounds, radii of starlikeness and convexity and modified Hadamard products.
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1 Introduction

Denoted by S the class of functions of the form

f(z) = z +
∞∑

n=j+1

anzn (1.1)

that are analytic and univalent in the unit disc U = {z : |z| < 1} and by ST and CV the subclasses of S that
are respectively, starlike and convex. Goodman [5, 6] introduced and defined the following subclasses of CV

and ST.

A function f(z) is uniformly convex (uniformly starlike) in U if f(z) is in CV (ST ) and has the property
that for every circular arc γ contained in U , with center ξ also in U , the arc f(γ) is convex (starlike) with
respect to f(ξ). The class of uniformly convex functions denoted by UCV and the class of uniformly starlike
functions by UST (for details see [5]). It is well known from [8, 11] that

f ∈ UCV ⇔

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ ≤ Re

{
1 +

zf
′′
(z)

f ′(z)

}
.

In [11], Running introduced a new class of starlike functions related to UCV and defined as

f ∈ Sp ⇔

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ ≤ Re

{
zf

′
(z)

f(z)

}
.

Note that f(z) ∈ UCV ⇔ zf ′(z) ∈ Sp . Further Running generalized the class Sp by introducing a parameter
α, − 1 ≤ α < 1,

f ∈ Sp(α) ⇔

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ ≤ Re

{
zf

′
(z)

f(z)
− α

}
.

∗Corresponding author.

E-mail addresses: nmagi 2000@yahoo.co.in (N. Magesh) and vasuprameelak@gmail.com (V. Prameela).
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Motivated by the works of Bharati et al [2], Frasin [3, 4], Murugusundaramoorthy and Magesh [10] and
others [5, 6, 8, 11, 12, 17, 18], we define the following class:

For β ≥ 0, −1 ≤ α < 1 and 0 ≤ λ < 1, we let S(λ, α, β, j) denote the subclass of S consisting of functions
f(z) of the form (1.1) and satisfying the analytic criterion

Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− α

}
(1.2)

> β

∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣ , z ∈ U . (1.3)

We also let TS(λ, α, β, j) = S(λ, α, β, j)
⋂

T where T, the subclass of S consisting of functions of the form

f(z) = z −
∞∑

n=j+1

anzn, an ≥ 0,∀ n ≥ j + 1 (1.4)

introduced and studied by Silverman [14].
We note that, by specializing the parameters j, λ, α, and β we obtain the following subclasses studied by

various authors.

1. TS(0, α, 0, 1) = T ∗(α) and TS(1, α, 0, 1) = K(α) (Silverman [14])

2. TS(0, α, 0, j) = T ∗(α, j) and TS(1, α, 0, j) = K(α, j) (Srivastava et al. [15])

3. TS(1/2, α, 0, 1) = P(α) (Al-Amiri [1], Gupta and Jain [7] and Sarangi and Uralegaddi [13])

4. TS(λ, α, 0, j) = BT (λ, α, j) (Frasin [3, 4] and Magesh [9])

5. TS(1/2, α, β, 1) = TR(α, β) (Rosy [12] and Stephen and Subramanian [16])

6. TS(0, α, β, 1) = TS(α, β) and TS(1, α, β, 1) = UCV (α, β) (Bharati et al. [2])

7. TS(0, 0, β, 1) = TSp(β) ( Subramanian et al. [17])

8. TS(1, 0, β, 1) = UCV (β) (Subramanian et al. [18])

The main object of this paper is to obtain a necessary and sufficient conditions for the functions f(z) in
the generalized class TS(λ, α, β, j). Further we investigate extreme points, growth and distortion bounds, radii
of starlikeness and convexity and modified Hadamard products for class TS(λ, α, β, j).

2 Coefficient Estimates

In this section we obtain a necessary and sufficient condition for functions f(z) in the classes TS(λ, α, β, j).

Theorem 2.1. A function f(z) of the form (1.1) is in S(λ, α, β, j) if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]|an| ≤ 1− α, (2.1)

where

Mn = (2λ2 − λ)n2 + (1 + λ− 2λ2)n, Fn = (2λ2 − λ)n + (1 + 2λ2 − 3λ) (2.2)

and −1 ≤ α < 1, 1
2 ≤ λ < 1, β ≥ 0.

Proof. It suffices to show that

β

∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣

−Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
}
≤ 1− α.
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We have

β

∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣

− Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
}

≤ (1 + β)
∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣

≤
(1 + β)

∞∑
n=j+1

(Mn − Fn)|an|

1−
∞∑

n=j+1

|an|
.

This last expression is bounded above by (1− α) if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]|an| ≤ 1− α,

and hence the proof is complete.

Theorem 2.2. A necessary and sufficient condition for f(z) of the form (1.4) to be in the class TS(λ, α, β, j),
is that

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn] an ≤ 1− α. (2.3)

Proof. In view of Theorem 2.1, we need only to prove the necessity. If f(z) ∈ TS(λ, α, β, j) and z is real then

1−
∞∑

n=j+1

Mn anzn−1

1−
∞∑

n=j+1

Fn anzn−1

− α ≥ β

∣∣∣∣∣∣∣∣
∞∑

n=j+1

(Mn − Fn) anzn−1

1−
∞∑

n=j+1

Fn anzn−1

∣∣∣∣∣∣∣∣ .

Letting z → 1 along the real axis, we obtain the desired inequality

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn] an ≤ 1− α, −1 ≤ α < 1, β ≥ 0.

Finally, the function f(z) given by

f(z) = z − 1− α

[Mj+1(1 + β)− (α + β)Fj+1]
zj+1, (2.4)

where Mj+1 and Fj+1 as written in (2.2), is extremal for the function.

Corollary 2.3. Let the function f(z) defined by (1.4) be in the class TS(λ, α, β, j). Then

an ≤
1− α

[Mn(1 + β)− (α + β)Fn]
, n ≥ j + 1. (2.5)

This equality in (2.5) is attained for the function f(z) given by (2.4).

3 Growth and Distortion Theorem

Theorem 3.1. Let the function f(z) defined by (1.4) be in the class TS(λ, α, β, j). Then for |z| < r = 1

r − 1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1 ≤ |f(z)| ≤ r +

1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1. (3.1)

The result (3.1) is attained for the function f(z) given by (2.4) for z = ±r.
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Proof. Note that

[Mj+1(1 + β)− (α + β)Fj+1]
∞∑

n=j+1

an ≤
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn] an ≤ 1− α,

this last inequality follows from Theorem 2.2. Thus

|f(z)| ≥ |z| −
∞∑

n=j+1

an|z|n ≥ r − rj+1
∞∑

n=j+1

an ≥ r − 1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1.

Similarly,

|f(z)| ≤ |z|+
∞∑

n=j+1

an|z|n ≤ r + rj+1
∞∑

n=j+1

an ≤ r +
1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1.

This completes the proof.

Theorem 3.2. Let the function f(z) defined by (1.4) be in the class TS(λ, α, β, j). Then for |z| < r = 1

r − (j + 1)(1− α)
[Mj+1(1 + β)− (α + β)Fj+1]

rj ≤ |f
′
(z)| ≤ r +

(j + 1)(1− α)
[Mj+1(1 + β)− (α + β)Fj+1]

rj . (3.2)

Proof. We have

|f ′(z)| ≥ 1−
∞∑

n=j+1

nan|z|n−1 ≥ 1− rj
∞∑

n=j+1

nan (3.3)

and

|f ′(z)| ≤ 1 +
∞∑

n=j+1

nan|z|n−1 ≤ 1 + rj
∞∑

n=j+1

nan. (3.4)

In view of Theorem 2.2,

[Mj+1(1 + β)− (α + β)Fj+1]
j + 1

∞∑
n=j+1

nan ≤
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]an ≤ 1− α, (3.5)

or, equivalently
∞∑

n=j+1

nan ≤
(j + 1)(1− α)

[Mj+1(1 + β)− (α + β)Fj+1]
. (3.6)

A substitution of (3.6) into (3.3) and (3.4) yields the inequality (3.2). This completes the proof.

Theorem 3.3. Let fj(z) = z , and

fn(z) = z − 1− α

[Mn(1 + β)− (α + β)Fn]
zn, n ≥ j + 1 (3.7)

for 0 ≤ λ ≤ 1, β ≥ 0,−1 ≤ α < 1. Then f(z) is in the class TS(λ, α, β, j) if and only if it can be expressed in
the form

f(z) =
∞∑

n=j

µnfn(z), (3.8)

where µn ≥ 0(n ≥ j) and
∑∞

n=j µn = 1.

Proof. Assume that

f(z) = µjfj(z) +
∞∑

n=j+1

µn

[
z − 1− α

[Mn(1 + β)− (α + β)Fn]
zn

]

=
∞∑

n=j

µnz −
∞∑

n=j+1

1− α

[Mn(1 + β)− (α + β)Fn]
µnzn.
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Then it follows that
∞∑

n=j+1

1− α

[Mn(1 + β)− (α + β)Fn]
µn

[Mn(1 + β)− (α + β)Fn]
1− α

=
∞∑

n=j+1

µn ≤ 1,

so by Theorem 2.2, f(z) ∈ TS(λ, α, β, j).
Conversely, assume that the function f(z) defined by (1.4) belongs to the class TS(λ, α, β, j), then

an ≤
1− α

[Mn(1 + β)− (α + β)Fn]
, n ≥ j + 1.

Setting µn = [Mn(1+β)−(α+β)Fn]
1−α an, (n ≥ j + 1) and µj = 1−

∑∞
n=j+1 µn, we have,

f(z) = z −
∞∑

n=j+1

anzn

f(z) = z −
∞∑

n=j+1

1− α

[Mn(1 + β)− (α + β)Fn]
µnzn. (3.9)

Then (3.8) gives

f(z) = z +
∞∑

n=j+1

(fn(z)− z)µn

= fj(z)µj +
∞∑

n=j+1

fn(z)µn

=
∞∑

n=j

µnfn(z)

and hence the proof is complete.

4 Radii of close-to-convexity, Starlikeness and Convexity

In this subsection, we obtain the radii of close-to-convexity, starlikeness and convexity for the class TS(λ, α, β, j).

Theorem 4.1. Let f ∈ TS(λ, α, β, j). Then f(z) is close-to-convex of order σ (0 ≤ σ < 1) in the disc |z| < r1,

where

r1 := inf
[
(1− σ)[Mn(1 + β)− (α + β)Fn]

n(1− α)

] 1
n−1

, n ≥ j + 1. (4.1)

The result is sharp, with extremal function f(z) given by (2.4).

Proof. Given f ∈ T, and f is close-to-convex of order σ, we have

|f ′(z)− 1| < 1− σ. (4.2)

For the left hand side of (4.2) we have

|f ′(z)− 1| ≤
∞∑

n=j+1

nan|z|n−1.

The last expression is less than 1− σ if

∞∑
n=j+1

n

1− σ
an|z|n−1 < 1.

Using the fact, that f ∈ TS(λ, α, β, j), if and only if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]
(1− α)

an ≤ 1.
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We can say (4.2) is true if
n

1− σ
|z|n−1 ≤ [Mn(1 + β)− (α + β)Fn]

(1− α)
.

Or, equivalently,

|z|n−1 =
[
(1− σ)[Mn(1 + β)− (α + β)Fn]

n(1− α)

]
,

which completes the proof.

Theorem 4.2. Let f ∈ TS(λ, α, β, j). Then

(i) f is starlike of order σ(0 ≤ σ < 1) in the disc |z| < r2; where

r2 = inf
[(

1− σ

n− σ

)
[Mn(1 + β)− (α + β)Fn]

(1− α)

] 1
n−1

, n ≥ j + 1, (4.3)

(ii) f is convex of order σ (0 ≤ σ < 1) in the unit disc |z| < r3, where

r3 = inf
[(

1− σ

n(n− σ)

)
[Mn(1 + β)− (α + β)Fn]

(1− α)

] 1
n−1

, n ≥ j + 1. (4.4)

Each of these results are sharp for the extremal function f(z) given by (2.4).

Proof. (i) Given f ∈ T, and f is starlike of order σ, we have∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− σ. (4.5)

For the left hand side of (4.5) we have

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
n=j+1

(n− 1)an |z|n−1

1−
∞∑

n=j+1

an |z|n−1

.

The last expression is less than 1− σ if

∞∑
n=j+1

n− σ

1− σ
an |z|n−1 < 1.

Using the fact, that f ∈ TS(λ, α, β, j) if and only if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]
(1− α)

an ≤ 1.

We can say (4.5) is true if
n− σ

1− σ
|z|n−1 <

[Mn(1 + β)− (α + β)Fn]
(1− α)

.

Or, equivalently,

|z|n−1 =
[(

1− σ

n− σ

)
[Mn(1 + β)− (α + β)Fn]

(1− α)

]
which yields the starlikeness of the family.
(ii) Using the fact that f is convex if and only if zf ′ is starlike, we can prove (ii), on lines similar to the
proof of (i).
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5 Modified Hadamard Product

Let the functions fi(z)(i = 1, 2) be defined by

fi(z) = z −
∞∑

n=j+1

an,iz
n, an,i ≥ 0; j ∈ N, (5.1)

then we define the modified Hadamard product of f1(z) and f2(z) by

(f1 ∗ f2)(z) = z −
∞∑

n=j+1

an,1an,2z
n. (5.2)

Now, we prove the following.

Theorem 5.1. Let each of the functions fi(z)(i = 1, 2) defined by (5.1) be in the class TS(λ, α, β, j). Then
(f1 ∗ f2) ∈ TS(λ, δ1, β, j), for

δ1 =
[Mn(1 + β)− (α + β)Fn]2 − [Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − Fn(1− α)2
. (5.3)

The result is sharp.

Proof. We need to prove the largest δ1 such that
∞∑

n=j+1

[Mn(1 + β)− (δ1 + β)Fn]
1− δ1

an,1an,2 ≤ 1. (5.4)

From Theorem 2.2, we have
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]
1− α

an,1 ≤ 1

and
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]
1− α

an,2 ≤ 1,

by the Cauchy-Schwarz inequality, we have
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]
1− α

√
an,1an,2 ≤ 1. (5.5)

Thus it is sufficient to show that

[Mn(1 + β)− (δ1 + β)Fn]
1− δ1

an,1an,2 ≤
[Mn(1 + β)− (α + β)Fn]

1− α

√
an,1an,2, n ≥ j + 1 (5.6)

that is
√

an,1an,2 ≤
[Mn(1 + β)− (α + β)Fn](1− δ1)
[Mn(1 + β)− (δ1 + β)Fn](1− α)

, n ≥ j + 1. (5.7)

Note that
√

an,1an,2 ≤
(1− α)

[Mn(1 + β)− (α + β)Fn]
, n ≥ j + 1. (5.8)

Consequently, we need only to prove that

(1− α)
[Mn(1 + β)− (α + β)Fn]

≤ [Mn(1 + β)− (α + β)Fn](1− δ1)
[Mn(1 + β)− (δ1 + β)Fn](1− α)

, (5.9)

or equivalently

δ1 ≤
[Mn(1 + β)− (α + β)Fn]2 − [Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − Fn(1− α)2
= ∆(n). (5.10)

Since ∆(n) is an increasing function of n(n ≥ j + 1), letting n = j + 1 in (5.10) we obtain

δ1 ≤ ∆(j + 1) =
[Mj+1(1 + β)− (α + β)Fj+1]2 − [Mj+1(1 + β)− βFj+1](1− α)2

[Mj+1(1 + β)− (α + β)Fj+1]2 − Fj+1(1− α)2
(5.11)

which proves the main assertion of Theorem 5.1. The result is sharp for the functions defined by (2.4).



N. Magesh et al. / Uniformly convex functions ... 25

Theorem 5.2. Let the function fi(z)(i = 1, 2) defined by (5.1) be in the class TS(λ, α, β, j). If the sequence
{[Mn(1 + β)− (α + β)Fn]} is non-decreasing. Then the function

h(z) = z −
∞∑

n=j+1

(a2
n,1 + a2

n,2)z
n (5.12)

belongs to the class TS(λ, δ2, β, j) where

δ2 =
[Mn(1 + β)− (α + β)Fn]2 − 2[Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − 2Fn(1− α)2
.

Proof. By virtue of Theorem 2.2, we have for fj(z)(j = 1, 2) ∈ TS(λ, α, β, j) we have

∞∑
n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

a2
n,1 ≤

∞∑
n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α
an,1

]2

≤ 1

(5.13)

and
∞∑

n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

a2
n,2 ≤

∞∑
n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α
an,2

]2

≤ 1.

(5.14)

It follows from (5.13) and (5.14) that

∞∑
n=j+1

1
2

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

(a2
n,1 + a2

n,2) ≤ 1. (5.15)

Therefore we need to find the largest δ2, such that

[Mn(1 + β)− (δ2 + β)Fn]
1− δ2

≤ 1
2

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

, n ≥ j + 1

that is

δ2 ≤
[Mn(1 + β)− (α + β)Fn]2 − 2[Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − 2Fn(1− α)2
= Ψ(n).

Since Ψ(n) is an increasing function of n, (n ≥ j + 1), we readily have

δ2 ≤ Ψ(j + 1) =
[Mj+1(1 + β)− (α + β)Fj+1]2 − 2[Mj+1(1 + β)− βFj+1](1− α)2

[Mj+1(1 + β)− (α + β)Fj+1]2 − 2Fj+1(1− α)2

which completes the proof.
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Abstract

In this paper, we study the existence, uniqueness and other properties of solutions of a nonlinear functional second

order Volterra integrodifferential equation in a general Banach space. The techniques used in our analysis are the theory

of the strongly continuous cosine family, Schauder fixed point theorem and Pachpatte’s integral inequality.
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1 Introduction

Let X denotes a Banach space with norm ‖ · ‖. Let C = C([−r, 0], X), 0 < r <∞, be the Banach space of
all continuous functions from ψ : [−r, 0] −→ X with supremum norm

‖ψ‖C = sup{‖ψ(θ)‖ : −r ≤ θ ≤ 0}.

If x is a continuous function from [−r, T ], T > 0, to X and t ∈ [0, T ] then xt stands for the element of C given
by xt(θ) = x(t+θ) for θ ∈ [−r, 0]. Let B = C ([−r, T ], X) denotes the Banach space of all continuous functions
x : [−r, T ] → X endowed with supremum norm ||x ||B = sup {||x(t) || : −r ≤ t ≤ T}. We investigate the
abstract nonlinear functional second order Volterra integrodifferential equation of the form

x′′(t) = Ax(t) + f

(
t, xt,

∫ t

0

k(t, s), g(s, xs)ds
)
, t ∈ [0, T ] (1.1)

x0(t) = φ(t), −r ≤ t ≤ 0, (1.2)

x′(0) = δ (1.3)

where A is an infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R} in Banach space X,
f : [0, T ]×C ×X → X, k : [0, T ]× [0, T ] → R, g : [0, T ]×C → X are continuous functions, φ and δ are given
elements of C = C([−r, 0], X) and X respectively.

Equations of these types (1.1)-(1.3) are their special forms commonly come across in almost all phases of
physics and applied mathematics, see, for example [1-6] and the references cited therein. Many authors have
been investigated the problems such as existence, uniqueness and other properties of solutions of equations
(1.1)-(1.3) or their special forms by using various methods, see, for example [7, 8, 13, 17-22] and the references
given therein. Our attempt is to generalize some results obtained by A. Pazy [15], and C. C. Travis and G.
F. Webb [20]. It is advantageous to treat second order abstract differential equations directly rather than to
convert into first order systems, see, for example Fitzgibbon [10]. In [10], Fitzgibbon used the second order

∗Corresponding author.

E-mail addresses: pmdhakane@gmail.com (P. M. Dhakane) and pachpatte@gmail.com (D. B. Pachpatte).



28 P. M. Dhakane et al. / On a nonlinear functional second order...

abstract system for establishing the boundedness of solutions of the equation governing the transverse motion
of an extensible beam. Our work in the present chapter is motivated by the interesting results obtained by
Fattorini H. O. in [9] and is influenced by the work of Patcheu S. K. [14] and Travis C. C. and Webb G. F. [21].

The paper is organized as follows: In section 2, we present the preliminaries and statements of our results.
Section 3 proves the Theorems 2.4 and 2.5 In section 4, we discuss the proofs of Theorems 2.6 - 2.8. Finally,
section 5 presents an example to illustrate the application of our theorem.

2 Preliminaries

Before proceeding to the statements of our main results, we setforth some preliminaries from [11, 18, 20]
and hypotheses used in our further discussion.

Definition 2.1. A one parameter family {C(t) : t ∈ R} of bounded linear operators in the Banach space X is
called a strongly continuous cosine family if and only if

(a) C(0) = I (I is the identity operator);

(b) C(t)x is strongly continuous in t on R for each fixed x ∈ X;

(c) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.

The associated strongly continuous sine family {S(t) : t ∈ R} is defined by

S(t)x =
∫ t

0

C(s)xds, x ∈ X, t ∈ R. (2.1)

The infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R} is the operator A : X −→ X

defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where D(A) = {x ∈ X : C(.)x ∈ C2(R, X)}.

Definition 2.2. Let f ∈ L1(0, T ;X). The function x ∈ B defined by

x(t) = C(t)φ(0) + S(t)δ

+
∫ t

0

S(t− s)f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
ds, t ∈ [0, T ] (2.2)

x0(t) = φ(t), −r ≤ t ≤ 0 (2.3)

is called mild solution of the initial value problem (1.1)-(1.3).

Definition 2.3. A set S in a Banach space X is said to be relatively compact set if its closure is compact.

Definition 2.4. An operator T : X → X is called compact if it maps bounded sets into relatively compact sets.

Consider the following initial value problems

x′′(t) = Ax(t) + h

(
t, xt,

∫ t

t0

k(t, s), g(s, xs)ds, µ1

)
, t ∈ [0, T ] (2.4)

x0(t) = φ(t), −r ≤ t ≤ 0, (2.5)

x′(0) = δ (2.6)

and

x′′(t) = Ax(t) + h

(
t, xt,

∫ t

t0

k(t, s), g(s, xs)ds, µ2

)
, t ∈ [0, T ] (2.7)

x0(t) = φ(t), −r ≤ t ≤ 0, (2.8)

x′(0) = δ (2.9)

where A is an infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R} in Banach space X,
h : [0, T ] × C ×X × R → X, k : [0, T ] × [0, T ] → R, g : [0, T ] × C → X are continuous functions, µ1, µ2 are
real parameters, φ ∈ C and δ ∈ X are given elements.

For our convenience, we list the following hypotheses.



P. M. Dhakane et al. / On a nonlinear functional second order ... 29

(H1) There are constants K ≥ 1 and K1 > 0 such that

‖C(t)‖ ≤ K and ‖S(t)‖ ≤ K1,

for all t ∈ [0, T ].

(H2) For every t ∈ [0, T ], ψ ∈ C and x ∈ X, there exist a continuous function p : [0, T ] → R+ such that

‖f(t, ψ, x)‖ ≤ p(t)
[
‖ψ‖C + ‖x‖

]
.

(H3) There exist a continuous function q : [0, T ] → R+ such that

‖g(t, ψ)‖ ≤ q(t)‖ψ‖C

for every t ∈ [0, T ] and ψ ∈ C.

(H4) For every t ∈ [0, T ], ψ1, ψ2 ∈ C and x1, x2 ∈ X, there exists a constant M such that

‖f(t, ψ1, x1)− f(t, ψ2, x2)‖ ≤M [‖ψ1 − ψ2‖C + ‖x1 − x2‖]

(H5) There exists a constant N such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ N‖ψ1 − ψ2‖C ,

for all t ∈ [0, T ] and ψ1, ψ2 ∈ C.

(H6) For each t ∈ [0, T ] the function f(t, ., .) : [0, T ] × C ×X → X is continuous and for each ψ ∈ C and for
each x ∈ X, the function f(., ψ, x) : [0, T ]× C ×X → X is strongly measurable.

(H7) For each t ∈ [0, T ] the function g(t, .) : [0, T ] × C → X is continuous and for each ψ ∈ C, the function
g(., ψ) : [0, T ]× C → X is strongly measurable.

(H8) For every positive integer q there exists αq ∈ L1([0, T ], [0,∞)) such that for a.e. t ∈ [0, T ] and x ∈ B

sup
‖x‖B≤q

‖f
(
t, xt,

∫ t

0

k(t, s)g(s, xs)ds
)
‖ ≤ αq(t)

and

lim inf
q→+∞

1
q

∫ T

0

αq(s)ds = ζ <∞.

(H9) There exist constants M1 and M2 such that

‖h(t, ψ1, y1, ρ)− h(t, ψ2, y2, ρ)‖ ≤M1[‖ψ1 − ψ2‖C + ‖y1 − y2‖]

and
‖h(t, ψ, y, ρ1)− h(t, ψ, y, ρ2)‖ ≤M2|ρ1 − ρ2|.

We use Schauder fixed point theorem to prove our results.

Lemma 2.1. (Schauder fixed point theorem [16], p-37) Let S be a bounded, closed and convex subset of a
Banach space X. If f ∈ C(S, S), where C(S, S) is the set of all compact maps from S into S, then f has at
least one fixed point.

The following Pachpatte’s inequality is the key instrument in our subsequent discussion.

Lemma 2.2 ([12], p. 758). Let u(t), p(t) and q(t) be real valued nonnegative continuous functions defined
on R+, for which the inequality

u(t) ≤ u0 +
∫ t

0

p(s)
[
u(s) +

∫ s

0

q(τ)u(τ)dτ
]
ds,

holds for all t ∈ R+, where u0 is a nonnegative constant, then

u(t) ≤ u0

[
1 +

∫ t

0

p(s) exp
( ∫ s

0

(
p(τ) + q(τ)

)
dτ

)
ds

]
,

holds for all t ∈ R+.
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We need the following result in the sequel.

Lemma 2.3. ([16], p.76) Let C(t), (resp. S(t)), t ∈ R be a strongly continuous cosine (resp. sine) family on
X. Then there exists constants N ≥ 1 and ω ≥ 0 such that

‖C(t)‖ ≤ Neω|t|, for t ∈ R,

‖S(t1)− S(t2)‖ ≤ N

∣∣∣∣∫ t2

t1

eω|s|ds

∣∣∣∣ , for t1, t2 ∈ R

For more details on strongly continuous cosine and sine families, we refer the reader to [19] and [21].
With these preperations, now, we are in position to state our main results.

Theorem 2.4. Suppose that the hypotheses (H1), (H6) − (H8) hold. Then initial value problem (1.1)-(1.3)
has at least one mild solution on [−r, T ] if K1ζ < 1.

Theorem 2.5. Suppose that the hypotheses (H1), (H4) and (H5) hold. Then initial value problem (1.1)-(1.3)
has at most one mild solution on [−r, T ].

Theorem 2.6. Suppose that the hypotheses (H1)− (H3) hold. Then, every solution of the initial value problem
(1.1)-(1.3) is bounded on [−r, T ].

Theorem 2.7. Suppose that the hypotheses (H1), (H4) and (H5) hold. Let x1(t) and x2(t) be two solutions of
the initial value problem (1.1) with initial conditions

x10(t) = φ(t), − r ≤ t ≤ 0, x′1(0) = δ

and
x20(t) = χ(t), − r ≤ t ≤ 0, x′2(0) = σ

respectively. Then

‖x1 − x2‖B ≤
[
K‖φ− χ‖C +K1‖δ − σ‖

][
1 +K1MT exp{(K1M + LN)T}

]
.

The following theorem investigates the continuous dependency of solutions of initial value problems (2.4) -
(2.6) and (2.7) - (2.9) on parameters.

Theorem 2.8. Suppose that the hypotheses (H1), (H5) and (H9) hold. Let x1(t) and x2(t) be the solutions of
initial value problem (2.4) - (2.6) and (2.7) - (2.9) respectively on [−r, T ]. Then

‖x1 − x2‖B ≤ K1M2T |µ1 − µ2|
[
1 +K1M1T exp{(K1M1 + LN)T}

]
.

3 Proofs of the Theorems 2.4 and 2.5

Proof of Theorem 2.4. Define the operator F : B → B by

(Fx)(t) =


φ(t), t ∈ [−r, 0],

C(t)φ(0) + S(t)δ +
∫ t

0
S(t− s)f

(
s, xs,

∫ s

0
k(s, τ)g(τ, xτ )dτ

)
ds, t ∈ [0, T ].

Then the equivalent integral equation for the system (1.1) - (1.3) can be written as the fixed point problem
x = Fx. We prove that F has a fixed point x(·) by applying the Schauder fixed point theorem. For each
positive integer q, let

Bq = {x ∈ B : x(t) = φ(t), t ∈ [−r, 0] and ‖x‖B ≤ q}.

Then for each q, Bq is clearly closed, convex and bounded subset in B. Obviously, F is well defined on Bq.
We claim that there exists a positive integer q such that FBq ⊆ Bq. If this were not true for some q, then for
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each positive integer q, there is a function xq ∈ Bq with Fxq 6∈ Bq, that is ‖Fxq‖ > q. Then 1 < 1
q‖Fxq‖, and

hence

1 ≤ lim inf
q→+∞

1
q
‖Fxq(t)‖, t ∈ [0, T ] (3.1)

However, on the other hand by using the hypotheses (H1), (H8) and condition in Theorem, we have

lim inf
q→+∞

1
q
‖Fxq(t)‖

=lim inf
q→+∞

1
q
‖C(t)φ(0) + S(t)δ +

∫ t

0

S(t− s)f
(
s, xqs

,

∫ s

0

k(s, τ)g(τ, xqτ
)dτ

)
ds‖

≤lim inf
q→+∞

1
q

[
‖C(t)‖‖φ(0)‖+ ‖S(t)‖‖δ‖+

∫ t

0

‖S(t− s)‖‖f
(
s, xqs

,

∫ s

0

k(s, τ)g(τ, xqτ
)dτ

)
‖ds

]
≤lim inf

q→+∞

1
q

[
K‖φ‖C +K1‖δ‖+

∫ t

0

K1‖f
(
s, xqs

,

∫ s

0

k(s, τ)g(τ, xqτ
)dτ

)
‖ds

]
≤lim inf

q→+∞

[
K‖φ‖C +K1‖δ‖

q
+K1

1
q

∫ t

0

αq(s)ds
]

=K1ζ < 1,

which contradicts the condition (3.1). Therefore, for some positive integer q, we must have FBq ⊆ Bq.
Next we prove that F is a compact operator on Bq . For this purpose, first we prove that F is continuous

on Bq. Let {xn} ⊆ Bq with xn → x in Bq. By using hypotheses (H6) and (H7), we have

f

(
t, xnt ,

∫ t

0

k(t, s)g(s, xns)ds
)
→ f

(
t, xt,

∫ t

0

k(t, s)g(s, xs)ds
)

as n→∞,

for each t ∈ [0, T ]. Therefore by dominated convergence theorem,

‖(Fxn)(t)− (Fx)(t)‖

= ‖
∫ t

0

S(t− s)
[
f

(
s, xns

,

∫ s

0

k(s, τ)g(τ, xnτ
)dτ

)
− f

(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)]
ds‖

=
∫ t

0

‖S(t− s)‖ ‖f
(
s, xns

,

∫ s

0

k(s, τ)g(τ, xnτ
)dτ

)
− f

(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
‖ds

→ 0 as n→∞.

This implies that ‖Fxn − Fx‖B → 0 as n→∞. Therefore, F is continuous.
Next we prove that the family {Fx : x ∈ Bq} is an equicontinuous family of functions. To do this, let

0 < t1 < t2 ≤ T ; then

‖(Fx)(t1)− (Fx)(t2)‖
≤ ‖[C(t1)− C(t2)]φ(0)‖+ ‖[S(t1)− S(t2)]δ‖

+ ‖
∫ t1

0

[S(t1 − s)− S(t2 − s)]f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
ds‖

+ ‖
∫ t2

t1

S(t2 − s)f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
ds‖

≤ ‖[C(t1)− C(t2)‖‖φ‖C + ‖S(t1)− S(t2)‖‖δ‖

+
∫ t1

0

‖S(t1 − s)− S(t2 − s)‖αq(s)ds+
∫ t2

t1

‖S(t2 − s)‖αq(s)ds

The right hand side of above inequality is independent of x ∈ Bq and tends to zero as (t2 − t1) → 0, since
C(t), S(t) are uniformly continuous for t ∈ [0, T ]. The compactness of C(t), S(t) for t > 0 imply the continuity
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in the uniform operator topology (see lemma 2.3). The compactness of S(t) follows from that of C(t). Thus
F maps Bq into an equicontinuous family of functions. The equicontinuity for the cases t1 ≤ t2 ≤ 0 and
t1 ≤ 0 ≤ t2 follows from the uniform continuity of φ on [−r, 0] and from the relation

‖(Fy)(t1)− (Fy)(t2)‖ ≤ ‖φ(t1)− φ(0)‖+ ‖(Fy)(0)− (Fy)(t2)‖

respectively.
It remains to prove that V (t) = {(Fx)(t) : x ∈ Bq} is relatively compact in X for each t ∈ [−r, T ]. This is

trivial for t ∈ [−r, 0], since V (t) = {φ(t)} which is singleton set. So let 0 < t ≤ T be fixed and ε a real number
satisfying 0 < ε < t; for x ∈ Bq, we define

(Fεx)(t) = C(t)φ(0) + S(t)δ +
∫ t−ε

0

S(t− s)f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
ds

Since C(t) and S(t) are compact operators the set V ε(t) = {(Fεx)(t) : x ∈ Bq} is relative compact in X for
every ε, 0 < ε < t. Moreover by making use of hypotheses (H8), for every x ∈ Bq, we have

‖(Fx)(t)− (Fεx)(t)‖ =
∫ t

t−ε

‖S(t− s)f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
‖ds

≤
∫ t

t−ε

‖S(t− s)‖αq(s)ds

Therefore there are relative compact sets arbitrarily close to the set V (t) = {(Fx)(t) : x ∈ Bq}; hence the
set V (t) is also relative compact in X. Thus, by the Arzela-Ascoli theorem F is a compact operator and by
Schauder’s fixed point theorem there exists a fixed point x(·) for F , which is a solution of (1.1) - (1.3) satisfying
x(t) = φ(t),−r ≤ t ≤ 0. This completes proof of the Theorem 2.4.

Proof of Theorem 2.5. Assume that x and y are two solutions of the initial value problem (1.1) - (1.3) on
[−r, T ]. The function k : [0, T ] × [0, T ] −→ R being continuous on compact set, there exists a constant L > 0
such thawt

‖k(t, s)‖ ≤ L for 0 ≤ s ≤ t ≤ T (3.2)

From definition of mild solution given in (2.2) - (2.3) and using hypotheses (H1), (H4), (H5) and condition 3.2,
we have

‖x(t)− y(t)‖ ≤
∫ t

0

‖S(t− s)‖ ‖f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
− f

(
s, ys,

∫ s

0

k(s, τ)g(τ, yτ )dτ
)
‖ds

≤ K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds (3.3)

Case 1: Suppose t ≥ r. Then, for every θ ∈ [−r, 0], we have t+ θ ≥ 0. For such θ
′
s, from (3.3) we have

‖x(t+ θ)− y(t+ θ)‖ ≤ K1M

∫ t+θ

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds

≤ K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds,

which implies

‖xt − yt‖C ≤ K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds (3.4)

Case 2: Suppose 0 ≤ t < r. Then for all θ ∈ [−r,−t), we have t + θ < 0. For such θ
′
s, we observe, from

(2.2)-(2.3), that

‖x(t+ θ)− y(t+ θ)‖ = ‖xt(θ)− yt(θ)‖
= 0,

which yields
‖xt − yt‖C = 0. (3.5)
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For θ ∈ [−t, 0], t+ θ ≥ 0. Then, for such θ
′
s we obtain as in the case 1,

‖xt − yt‖C ≤ K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds (3.6)

Thus, for every θ ∈ [−r, 0], (0 ≤ t < r), from (3.5) and (3.6), we get

‖xt − yt‖C ≤ K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds (3.7)

For every t ∈ [0, T ], from inequalities (3.4) and (3.7), we have

‖xt − yt‖C ≤ K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds

< ε+K1M

∫ t

0

[
‖xs − ys‖C + LN

∫ s

0

‖xτ − yτ‖Cdτ

]
ds (3.8)

for an arbitrary ε > 0. Thanks to Pachpatte’s integral inequality given in Lemma 2.2 and applying it to (3.8)
with u(t) = ‖xt − yt‖C we get

‖xt − yt‖C ≤ ε

[
1 +

∫ t

0

K1M exp
( ∫ s

0

(K1M + LN)dτ
)
ds

]
< ε

[
1 +K1MT exp

(
{K1M + LN}T

)]
Since ‖x(t)− y(t)‖ = 0 ∀ t ∈ [−r, 0], it follows, for t ∈ [−r, T ], that

‖x(t)− y(t)‖ ≤ ε

[
1 +K1MT exp

{
(K1M + LN)T

}]
which yields

‖x− y‖B ≤ ε

[
1 +K1MT exp

{
(K1M + LN)T

}]
Since ε > 0 is an arbitrary, it follows that

‖x− y‖B = 0

which implies x(t) = y(t), ∀ t ∈ [−r, T ]. This proves that the initial value problem (1.1)-(1.3) has at most one
solution.

4 Proofs of Theorems 2.6 and 2.8

Proof of Theorem 2.6. The solution of the initial value problem (1.1)-(1.3) is given by

x(t) = C(t)φ(0) + S(t)δ +
∫ t

0

S(t− s)f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
ds

t ∈ [o, T ] (4.1)

x0(t) = φ(t), −r ≤ t ≤ 0 (4.2)

If t ∈ [0, T ] then from (4.1) and using the hypotheses (H1)− (H3) and condition (3.2), we have

‖x(t)‖ ≤ ‖C(t)‖ ‖φ(0)‖+ ‖S(t)‖ ‖δ‖+
∫ t

0

‖S(t− s)‖ ‖f
(
s, xs,

∫ s

0

k(s, τ)g(τ, xτ )dτ
)
‖ds

≤ K‖φ(0)‖+K1‖δ‖+
∫ t

0

K1p(s)
[
‖xs‖C + L

∫ s

0

q(τ)‖xτ‖Cdτ

]
ds

Since K ≥ 1, for −r ≤ t ≤ T , we get

‖x(t)‖ ≤ K‖φ‖C +K1‖δ‖+
∫ t

0

K1p(s)
[
‖xs‖C + L

∫ s

0

q(τ)‖xτ‖Cdτ

]
ds (4.3)
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From (4.3) and considering cases 1 and 2 as in the proof of the Theorem 2.5, we obtain

‖xt‖C ≤ K‖φ‖C +K1‖δ‖+
∫ t

0

K1p(s)‖xs‖Cds+
∫ t

0

K1p(s)
∫ s

0

Lq(τ)‖xτ‖Cdτds (4.4)

Thanks to Pachpatte’s integral inequality given in Lemma 2.2 and applying it to (4.4) with u(t) = ‖xt‖C , we
get

‖xt‖C ≤
[
K‖φ‖C +K1‖δ‖

][
1 +

∫ t

0

K1p(s) exp
( ∫ s

0

(K1p(τ) + Lq(τ))dτ
)
ds

]
≤

[
K‖φ‖C +K1‖δ‖

][
1 +

{
K1P exp(K1P + LQ)T

}
T

]
(4.5)

where
P = max

t∈[0,T ]
p(t), Q = max

t∈[0,T ]
q(t).

It follows that solutions x(t) of initial value problem (1.1) - (1.3) are bounded on closed interval [−r, T ] and
proof of the Theorem 2.6 is complete.

Remark 4.1. We remark that our result in Theorem 2.6 also proves the stability of a solution x(t) if ‖φ‖C , ‖δ‖
are small enough.

Remark 4.2. We note that cosine family C(t) and sine family S(t) are not bounded in R. C(t) and S(t) are
bounded only in finite interval and may have exponential growth in R. Consequently, all solutions of initial
value problem (1.1)-(1.3) are not bounded on R+.

Proof of Theorem 2.7. By making use of the definition of mild solution given in (2.2) - (2.3), the condition
(3.2) and hypothesis (H1), (H4) and (H5), we get

‖x1(t)− x2(t)‖ ≤ ‖C(t)‖ ‖φ(0)− χ(0)‖+ ‖S(t)‖ ‖δ − σ‖

+
∫ t

0

‖S(t− s)‖ ‖f
(
s, x1s ,

∫ s

0

k(s, τ), g(τ, x1τ )dτ
)

− f

(
s, x2s

,

∫ s

0

k(s, τ), g(τ, x2τ
)dτ

)
‖ds

≤ K‖φ(0)− χ(0)‖+K1‖δ − σ‖+
∫ t

0

K1M

[
‖x1s − x2s‖C + LN

∫ s

0

‖x1τ − x2τ ‖Cdτ

]
ds (4.6)

From (4.6) and considering cases 1 and 2 as in the proof of Theorem 2.5, for every t ∈ [0, T ], we get

‖x1t
− x2t

‖C ≤
[
K‖φ− χ‖C +K1‖δ − σ‖

]
+

∫ t

0

K1M

[
‖x1s

− x2s
‖C + LN

∫ s

0

‖x1τ
− x2τ

‖Cdτ

]
ds (4.7)

Applying Pachpatte’s inequality given in Lemma 2.2, to the inequality (4.7) with u(t) = ‖x1t − x2t‖C , we
obtain

‖x1t
− x2t

‖C ≤
[
K‖φ− χ‖C +K1‖δ − σ‖

][
1 +

∫ t

0

K1M exp
( ∫ s

0

(K1M + LN)dτ
)
ds

]
≤

[
K‖φ− χ‖C +K1‖δ − σ‖

][
1 +K1MT exp

{
(K1M + LN)T

}]
which yields, for every t ∈ [−r, T ],

‖x1(t)− x2(t)‖ ≤
[
K‖φ− χ‖C +K1‖δ − σ‖

][
1 +K1MT exp

{
(K1M + LN)T

}]
and therefore, we have

‖x1 − x2‖B ≤
[
K‖φ− χ‖C +K1‖δ − σ‖

][
1 +K1MT exp

{
(K1M + LN)T

}]
This completes the proof of the Theorem 2.7.
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Proof of Theorem 2.8. Using the hypotheses (H1), (H5), (H9) and condition (3.2) we have

‖x1(t)− x2(t)‖ (4.8)

=
∫ t

0

‖S(t− s)‖ ‖h
(
s, x1s ,

∫ s

0

k(s, τ)g(τ, x1τ )dτ, µ1

)
− h

(
s, x2s ,

∫ s

0

k(s, τ)g(τ, x2τ )dτ, µ1

)
+ h

(
s, x2s

,

∫ s

0

k(s, τ)g(τ, x2τ
)dτ, µ1

)
− h

(
s, x2s

,

∫ s

0

k(s, τ)g(τ, x2τ
)dτ, µ2

)
‖ds

≤
∫ t

0

‖S(t− s)‖ ‖h
(
s, x1s

,

∫ s

0

k(s, τ)g(τ, x1τ
)dτ, µ1

)
− h

(
s, x2s

,

∫ s

0

k(s, τ)g(τ, x2τ
)dτ, µ1

)
‖ds

+
∫ t

0

‖S(t− s)‖ ‖h
(
s, x2s ,

∫ s

0

k(s, τ)g(τ, x2τ )dτ, µ1

)
− h

(
s, x2s ,

∫ s

0

k(s, τ)g(τ, x2τ )dτ, µ2

)
‖ds

≤
∫ t

0

K1M1

[
‖x1s

− x2s
‖C +

∫ s

0

LN‖x1τ
− x1τ

‖Cdτ

]
ds+

∫ t

0

K1M2|µ1 − µ2|ds

≤ K1M2T |µ1 − µ2|+
∫ t

0

K1M1

[
‖x1s − x2s‖C +

∫ s

0

LN‖x1τ − x1τ ‖Cdτ

]
ds (4.9)

From (4.9) and considering cases 1 and 2 as in the proof of the Theorem 2.5, we get

‖x1t
− x2t

‖C ≤ K1M2T |µ1 − µ2|+
∫ t

0

K1M1

[
‖x1s

− x2s
‖C +

∫ s

0

LN‖x1τ
− x1τ

‖Cdτ

]
ds (4.10)

Once again, thanks to Pachpatte’s integral inequality given in Lemma 2.2 and applying it to (4.10) with
u(t) = ‖x1t

− x2t
‖C , we obtain

‖x1t
− x2t

‖C ≤ K1M2T |µ1 − µ2|
[
1 +

∫ t

0

K1M1 exp
( ∫ s

0

(K1M1 + LN)dτ
)
ds

]
≤ |µ1 − µ2|K1M2T

[
1 +K1M1T exp({K1M1 + LN}T )

]
(4.11)

Thus, for t ∈ [−r, T ], we have

‖x1(t)− x2(t)‖ ≤ K1M2T |µ1 − µ2|
[
1 +K1M1T exp({K1M1 + LN}T )

]
and hence

‖x1 − x2‖B ≤ K1M2T |µ1 − µ2|
[
1 +K1M1T exp({K1M1 + LN}T )

]
This follows that the solutions of initial value problem (2.4) - (2.6) and (2.7) - (2.9) depend continuously on
the parameters. This completes the proof of the Theorem 2.8

5 Application

To illustrate the application of our main result, consider the following nonlinear partial integrodifferential
equation of the form

ztt(w, t) = zww(w, t) +Q

(
t, z(w, t− r),

∫ t

0

k1(t, s)g1(s, z(w, s− r))ds
)
ds,

t ∈ [0, T ], 0 ≤ w ≤ π (5.1)

z(0, t) = z(π, t) = 0, t ∈ [0, T ], (5.2)

z(w, t) = φ(w, t), 0 ≤ w ≤ π,−r ≤ t ≤ 0, (5.3)

zt(w, 0) = z0(w), 0 ≤ w ≤ π, (5.4)

where φ is continuous, Q : [0, T ]×R×R → R, g1 : [0, T ]×R → R are continuous and strongly measurable and
k1 : [0, T ]× [0, T ] → R is continuous. We assume that the following condition is satisfied.
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(1) For every positive integer q1 there exists α′q1
∈ L1([0, T ], [0,∞)) such that for a.e. t ∈ [0, T ] and z ∈ R

sup
|z|≤k1

∣∣∣∣Q(
t, z(w, t− r),

∫ t

0

k1(t, s)g1(s, z(w, s− r))ds
)∣∣∣∣ ≤ α′q1

(t),

and

lim inf
q1→+∞

1
q1

∫ b

0

α′q1
(s)ds = ζ ′ <∞.

Let X = L2[0, π] be endowed with usual norm ‖ · ‖L2 . Define the operator A : X → X by Ay = y
′′

with
domain D(A) = {y ∈ X : y, y

′
are absolutely continuous, y

′′ ∈ X and y(0) = y(π) = 0}. Then

Ay =
∞∑

n=1

−n2(y, yn)yn, y ∈ D(A),

where yn(s) = (
√

2/π)sinns, n = 1, 2, 3, ... is the orthogonal set of eigenvectors of A and it can be easily shown
that A is the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R, in X and is given by
(see[18])

C(t)y =
∞∑

n=1

cosnt(y, yn)yn, y ∈ X.

The associated sine family is given by

S(t)y =
∞∑

n=1

1
n

sinnt(y, yn)yn, y ∈ X.

Further assume that K1ζ
′ < 1, where K1 = sup{‖S(t)‖ : t ∈ [0, T ]}.

Define the functions f : [0, T ]× C ×X → X, g : [0, T ]× C → X, k : [0, T ]× [0, T ] → R, as follows

f(t, ψ, x)(v) = Q(t, ψ(−r)(v), x(v)),
g(t, ψ)(v) = g1(tψ(−r)(v)),
k(t, s) = k1(t, s),

for t ∈ [0, T ], x ∈ X,ψ ∈ C and v ∈ R. Then the above partial differential system (5.1)-(5.4) can be formulated
abstractly as

x′′(t) = Ax(t) + f

(
t, xt,

∫ t

0

k(t, s)g(s, xs)ds
)
, t ∈ [0, T ] (5.5)

x0(t) = φ(t), −r ≤ t ≤ 0 (5.6)

x′(0) = δ (5.7)

Since all the hypotheses of the Theorem 2.4 are satisfied, and hence, by an application of the Theorem 2.4, the
partial differential equations (5.1) - (5.4) have at least one solution on [−r, T ].
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Abstract

Some oscillation results are obtained for the third order nonlinear mixed type neutral differential equations of the

form

((x(t) + b(t)x(t− τ1) + c(t)x(t + τ2))
α)′′′ = q(t)xβ(t− σ1) + p(t)xγ(t + σ2), t ≥ t0

where α, β and γ are ratios of odd positive integers τ1, τ2, σ1 and σ2 are positive constants.
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1 Introduction

In this paper, we study the oscillatory nature of the third order nonlinear mixed type neutral differential
equations of the form

((x(t) + b(t)x(t− τ1) + c(t)x(t + τ2))α)′′′ = q(t)xβ(t− σ1) + p(t)xγ(t + σ2), t ≥ t0 (1.1)

subject to the following conditions:

(c1) τ1, τ2, σ1 and σ2 are positive constants;

(c2) q(t) and p(t) are real valued positive continuous functions on [t0,∞);

(c3) α, β and γ are ratios of odd positive integers;

(c4) b(t) and c(t) are real valued and thrice continuously differentiable functions with 0 ≤ b(t) < b < ∞ and
0 ≤ c(t) < c <∞.

Let θ = max{τ1, σ1}. By a solution of equation (1.1), we mean a real valued continuous function x(t) defined
for all t ≥ t0− θ and satisfying the equation (1.1) for all t ≥ t0. A nontrivial solution of equation (1.1) is called
oscillatory if it has infinitely many zeros on [t0,∞), otherwise it is called nonoscillatory.

Recently there has been a great interest in studying the oscillatory and asymptotic behavior of third order
differential equations, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
and the references cited therein. In [1, 4, 7, 8, 9, 15, 20, 23], the authors studied the oscillatory behavior of
solutions of equation (1.1) when b(t) ≡ 0, c(t) ≡ 0 and p(t) ≡ 0. In [5, 6, 10, 11, 17, 18, 19, 21], the authors
studied the oscillatory behavior of solutions of equation (1.1) when c(t) ≡ 0 and p(t) ≡ 0. In [2, 13, 14, 22], the
authors discussed the oscillatory behavior of all solutions of equation (1.1) when α = β = γ = 1.

Motivated by this observation, in this paper we study the oscillatory and asymptotic behavior of all solutions
of equation (1.1) for different values of α, β and γ. So the purpose of this paper is to present some new oscillatory
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and asymptotic criteria for equation (1.1). In Section 2, we present criteria for equation (1.1) to be either
oscillatory or all its nonoscillatory solutions tend to zero as t → ∞. Examples are provided in Section 3 to
illustrate the results presented in Section 2.

2 Oscillation results

In this section, we present some new oscillation criteria for the equation (1.1). For convenience we use the
following notations:
Q(t)=min(q(t), q(t− τ1), q(t + τ2)), P (t)=min(p(t), p(t− τ1), p(t + τ2)),
and z(t)=[x(t) + b(t)x(t− τ1) + c(t)x(t + τ2)]α.

Lemma 2.1. If x(t) is a positive solution of equation (1.1), then the corresponding function z(t) satisfies only
the following two cases

Case (I) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) > 0; (2.1)

Case (II) z(t) > 0, z′(t) > 0, z′′(t) < 0, z′′′(t) > 0. (2.2)

Proof. Assume that x(t) is a positive solution of equation (1.1). Then there exists a t1 ≥ t0 such that x(t−θ) > 0
for all t ≥ t1. From the definition of z(t), it is clear that z(t) > 0 for all t ≥ t1. From equation (1.1), we have
z′′′(t) > 0 for all t ≥ t1. Therefore z′′(t) is strictly increasing for all t ≥ t1 and z′′(t) and z′(t) are of one sign for
all t ≥ t1. We prove that z′(t) > 0 for all t ≥ t1. If not, there exists a t2 ≥ t1 and M < 0 such that z′(t) < M

for all t ≥ t2. Integrating the last inequality from t2 to t, we get

z(t)− z(t2) < M(t− t2).

Letting t→∞, we see that z(t)→ −∞, which is a contradiction. Hence z′(t) > 0 for all t ≥ t1.This completes
the proof of the lemma.

Lemma 2.2. If A ≥ 0, B ≥ 0 and 0 < δ ≤ 1, then

Aδ + Bδ ≥ (A + B)δ (2.3)

If δ ≥ 1 then

(Aδ + Bδ) ≥ 1
2δ−1

(A + B)δ. (2.4)

Proof. Proof can be found in [21].

Theorem 2.3. Assume that 0 < β = γ ≤ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order differential
inequality

y′′(t) ≥ P (t)(σ1 − τ2)β/α

(1 + bβ + cβ)β/α
yβ/α(t + σ2 − σ1) (2.5)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
yβ/α(t− σ1 + τ1) (2.6)

has no positive decreasing solution, then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Without loss of generality, we
may assume that x(t) is a positive solution of equation (1.1) for all t ≥ t1 ≥ t0 (since the case x(t) is negative
is similar). Then there exists a t2 ≥ t1 such that x(t− θ) > 0 for all t ≥ t2. By the definition of z(t) we have,
z(t− θ) > 0 for all t ≥ t2. Define a function y(t) by

y(t) = z(t) + bβz(t− τ1) + cβz(t + τ2), for all t ≥ t2. (2.7)
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Then y(t) > 0 for all t ≥ t2, and

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) + cβz′′′(t + τ2)

= q(t)xβ(t− σ1) + p(t)xβ(t + σ2) + bβq(t− τ1)xβ(t− τ1 − σ1) +

bβp(t− τ1)xβ(t− τ1 + σ2) + cβq(t + τ2)xβ(t + τ2 − σ1) +

cβp(t + τ2)xβ(t + τ2 + σ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) + cβxβ(t + τ2 − σ1)] +

P (t)[xβ(t + σ2) + bβxβ(t− τ1 + σ2) + cβxβ(t + τ2 + σ2)].

Using (2.3) twice, the above inequality becomes

y′′′(t) ≥ Q(t)zβ/α(t− σ1) + P (t)zβ/α(t + σ2). (2.8)

Since x(t) is a positive solution of equation (1.1), from Lemma 2.1 we have two cases for z(t).
Case (I): In this case, we have z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 for all t ≥ t2. Then from (2.7), we have
y′(t) > 0, y′′(t) > 0 and y′′′(t) > 0 for all t ≥ t2.

From the inequality (2.8), we have

y′′′(t) ≥ P (t)zβ/α(t + σ2). (2.9)

Since z′(t) is increasing, we have

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t + τ2) for all t ≥ t0. (2.10)

Now

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds

or
z(t + σ1 − τ2) ≥ z′(t)(σ1 − τ2). (2.11)

Using (2.10) and (2.11) in (2.9), we obtain

y′′′(t) ≥ P (t)zβ/α(t + σ2)

≥ P (t)(σ1 − τ2)β/α(z′(t + σ2 − σ1 + τ2))β/α

≥ P (t)(σ1 − τ2)β/α

(1 + bβ + cβ)β/α
(y′(t + σ2 − σ1))β/α, t ≥ t2. (2.12)

By setting y′(t) = w(t), we see that w(t) > 0 and w′(t) > 0 for all t ≥ t2. Now inequality (2.9) becomes

w′′(t) ≥ P (t)
(1 + bβ + cβ)β/α

(σ1 − τ2)β/αwβ/α(t + σ2 − σ1), t ≥ t2. (2.13)

That is, w(t) is a positive increasing solution of the second order differential inequality (2.5), which is a
contradiction.

Case (II). In this case, we have z′(t) > 0, z′′(t) < 0 and z′′′(t) > 0 for all t ≥ t2. Then y′(t) > 0, y′′(t) < 0
for all t ≥ t2. From the inequality (2.8), we have

y′′′(t) ≥ Q(t)zβ/α(t− σ1). (2.14)

Since z′(t) and y′(t) are decreasing, we have

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t− τ1)

or
y′(t− σ1 + τ1) ≤ (1 + bβ + cβ)z′(t− σ1), t ≥ t2. (2.15)
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Now

z(t)− z(t− (σ1 − τ1)) =

t∫
t−(σ1−τ1)

z′(s) ds

or
z(t) ≥ z′(t)(σ1 − τ1). (2.16)

Using (2.15) and (2.16) in (2.14), we obtain

y′′′(t) ≥ Q(t)zβ/α(t− σ1)

≥ Q(t)(σ1 − τ1)β/α(z′(t− σ1))β/α

≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
(y′(t− σ1 + τ1))β/α, t ≥ t2.

By taking y′(t) = w(t), we see that w(t) > 0 and w′(t) < 0. Thus, w(t) is a positive decreasing solution of the
second order differential inequality

w′′(t) ≥ Q(t)
(1 + bβ + cβ)β/α

(σ1 − τ1)β/αwβ/α(t− σ1 + τ1), (2.17)

which is a contradiction to (2.6). This completes the proof.

Theorem 2.4. Assume that β = γ ≥ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)β/α

4β−1(1 + bβ + cβ

2β−1 )β/α
yβ/α(t + σ2 − σ1) (2.18)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ

2β−1 )β/α
yβ/α(t + τ1 − σ1) (2.19)

has no positive decreasing solution, then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Without loss of generality, we
may assume that x(t) is a positive solution of equation (1.1). Then there exists a t2 ≥ t1 such that x(t− θ) > 0
for all t ≥ t2. By the definition of z(t), we have z(t− θ) > 0 for all t ≥ t2. Now define a function y(t) by

y(t) = z(t) + bβz(t− τ1) +
cβ

2β−1
z(t + τ2), t ≥ t2. (2.20)

Then, since z(t) > 0, we have y(t) > 0 and

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) +
cβ

2β−1
z′′′(t + τ2)

= q(t)xβ(t− σ1) + p(t)xβ(t + σ2) + bβq(t− τ1)xβ(t− τ1 − σ1) +

bβp(t− τ1)xβ(t− τ1 + σ2) +
cβ

2β−1
q(t + τ2)xβ(t + τ2 − σ1) +

cβ

2β−1
p(t + τ2)xβ(t + τ2 + σ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) +
cβ

2β−1
xβ(t + τ2 − σ1)] +

P (t)[xβ(t + σ2) + bβxβ(t− τ1 + σ2) +
cβ

2β−1
xβ(t + τ2 + σ2)], t ≥ t2.

Now using (2.4) twice in the last inequality, we obtain

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1) +
P (t)
4β−1

zβ/α(t + σ2)t ≥ t2. (2.21)

Since x(t) is a positive solution of equation (1.1), there are only two cases, as given in Lemma 2.1, for z(t).
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Case (I): In this case, we have z(t) > 0, z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 for all t ≥ t2. Then from
(2.20), we have y′(t) > 0, y′′(t) > 0 for all t ≥ t2. From the inequality (2.21), we have

y′′′(t) ≥ P (t)
4β−1

zβ/α(t + σ2), t ≥ t2. (2.22)

Since z′(t) is increasing, we have

y′(t) = z′(t) + bβz′(t− τ1) +
cβ

2β−1
z′(t + τ2)

≤ (1 + bβ +
cβ

2β−1
)z′(t + τ2), t ≥ t2

or

y′(t) ≤ (1 + bβ +
cβ

2β−1
)z′(t + σ2 + τ2), t ≥ t2 (2.23)

and

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds ≥ z′(t)(σ1 − τ2)

or
z(t + σ1 − τ2) ≥ z′(t)(σ1 − τ2). (2.24)

Now using (2.23) and (2.24) in (2.22), we have

y′′′(t) ≥ P (t)
4β−1

zβ/α(t + σ2)

≥ P (t)
4β−1

(σ1 − τ2)β/α(z′(t + τ2 − σ1 + σ2))β/α

y′′′(t) ≥ P (t)(σ1 − τ2)β/α(y′(t + σ2 − σ1))β/α

4β−1(1 + bβ + cβ

2β−1 )β/α
, t ≥ t2. (2.25)

Setting y′(t) = w(t), we see that w(t) > 0, w′(t) = y′′(t) > 0 and

w′′(t) ≥ P (t)(σ1 − τ2)β/αw(t + σ2 − σ1)β/α

4β−1(1 + bβ + cβ)β/α
, t ≥ t2. (2.26)

That is w(t) is a positive increasing solution of the second order differential inequality (2.18), which is a
contradiction.

Case (II): In this case we have z′(t) > 0, z′′(t) < 0 and z′′′(t) > 0 for all t ≥ t2. Then from (2.20), we
obtain y′(t) > 0 and y′′(t) < 0 for all t ≥ t2. From the inequality (2.21), we have

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1), t ≥ t2. (2.27)

Using the monotonicity of z′(t) and y′(t), we have

y′(t) = z′(t) + bβz′(t− τ1) +
cβ

2β−1
z′(t + τ2)

≤ (1 + bβ +
cβ

2β−1
)z′(t− τ1)

or

y′(t + σ1) ≤ (1 + bβ +
cβ

2β−1
)z′(t + σ1 − τ1), t ≥ t2. (2.28)

Also from the monotonicity of z′(t) we have

z(t)− z(t− σ1 + τ1) =

t∫
t−(σ1−τ1)

z′(s) ds ≥ z′(t)(σ1 − τ1)
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or
z(t) ≥ (σ1 − τ1)z′(t). (2.29)

Using (2.28) and (2.29) in (2.27), we get

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1)

≥ Q(t)
4β−1

(σ1 − τ1)β/α(z′(t− σ1))β/α

≥ Q(t)
4β−1

(σ1 − τ1)β/α (y′(t− σ1 + τ1))β/α

(1 + bβ + cβ

2β−1 )β/α

or

y′′′(t) ≥ Q(t)
4β−1

(σ1 − τ1)β/α (y′(t− σ1 + τ1))β/α

(1 + bβ + cβ

2β−1 )β/α
, t ≥ t2.

Set y′(t) = w(t). Then w(t) > 0 and w′(t) = y′′(t) < 0 and the last inequality becomes

w′′(t) ≥ Q(t)(σ1 − τ1)β/αwβ/α(t− σ1 + τ1)
4β−1(1 + bβ + cβ

2β−1 )β/α
, t ≥ t2. (2.30)

Thus, w(t) is a positive decreasing solution of the second order differential inequality (2.19), which is a contra-
diction. Now the proof is complete.

Theorem 2.5. Assume that 0 < β ≤ 1, γ ≥ 1, b ≤ 1, c ≤ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)γ/α

4γ−1(1 + bβ + cβ)γ/α
yβ/α(t + σ2 − σ1) (2.31)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
yβ/α(t− σ1 + τ1) (2.32)

has no positive decreasing solution, then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Let us assume that x(t) is a
positive solution of (1.1) for all t ≥ t1 ≥ t0.. Then there exists a t2 ≥ t1 such that x(t − θ) > 0 for all t ≥ t2.

By the definition of z(t), we have z(t− θ) > 0 for all t ≥ t2. Set

y(t) = z(t) + bβz(t− τ1) + cβz(t + τ2) for all t ≥ t2. (2.33)

Then, y(t) > 0, and

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) + cβz′′′(t + τ2)

= q(t)xβ(t− σ1) + p(t)xγ(t + σ2) + bβq(t− τ1)xβ(t− τ1 − σ1) +

bβp(t− τ1)xγ(t− τ1 + σ2) + cβq(t + τ2)xβ(t + τ2 − σ1) +

cβp(t + τ2)xγ(t + τ2 + σ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) + cβxβ(t + τ2 − σ1)] +

P (t)[xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2)], t ≥ t2.

Using (2.3) twice in the first part of righthand side of the last inequality, we have

y′′′(t) ≥ Q(t)zβ/α(t− σ1) + P (t)[xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2)], t ≥ t2. (2.34)

Using the fact that b ≤ 1, c ≤ 1, γ ≥ 1, and 0 < β ≤ 1, we have

xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2)

≥ xγ(t + σ2) + bγxγ(t− τ1 + σ2) + cγxγ(t + τ2 + σ2)



44 Ethiraju Thandapani et al. / Oscillation results for...

≥ xγ(t + σ2) + bγxγ(t− τ1 + σ2) +
cγ

2γ−1
xγ(t + τ2 + σ2),

and applying (2.4) twice and simplifying, we obtain

xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2) ≥
1

4γ−1
z

γ
α (t + σ2). (2.35)

Substituting (2.35) in (2.34), we get

y′′′(t) ≥ Q(t)zβ/α(t− σ1) +
P (t)
4γ−1

zγ/α(t + σ2), t ≥ t2. (2.36)

Now we consider the following two cases for z(t) as in Lemma 2.1.
Case (I): In this case we have z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 for all t ≥ t2. Then from (2.33), we have

y′(t) > 0, y′′(t) > 0 and y′′′(t) > 0 for all t ≥ t2.

From the inequality (2.36), we have

y′′′(t) ≥ P (t)
4γ−1

zγ/α(t + σ2), t ≥ t2. (2.37)

Using the monotonicity of z′(t), we get

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t + τ2), t ≥ t2. (2.38)

Again using the monotonicity of z′(t), we obtain

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds ≥ z′(t)(σ1 − τ2),

or
z(t + σ1 − τ2) ≥ (σ1 − τ2)z′(t). (2.39)

Now using (2.38) and (2.39) in (2.37), we obtain

y′′′(t) =
P (t)
4γ−1

zγ/α(t + σ2)

≥ P (t)
4γ−1

(σ1 − τ2)γ/α(z′(t + σ2 − σ1 + τ2))γ/α

≥ P (t)
4γ−1

(σ1 − τ2)γ/α(y′(t + σ2 − σ1))γ/α

(1 + bβ + cβ)γ/α
, t ≥ t2.

By setting y′(t) = w(t), we see that w(t) = y′(t) > 0, w′(t) = y′′(t) > 0 and it satisfies

w′′(t) ≥ P (t)(σ1 − τ2)γ/α

4γ−1(1 + bβ + cβ)γ/α
wγ/α(t + σ2 − σ1), t ≥ t2.

Thus, w(t) is a positive increasing solution of the second order differential inequality (2.31), which is a contra-
diction.

Case (II): In this case we have z′(t) > 0, z′′(t) < 0 and z′′′(t) > 0 for all t ≥ t2. Therefore y′(t) >

0, y′′(t) < 0 and y′′′(t) > 0 for all t ≥ t2. From the inequality (2.36) we have

y′′′(t) ≥ Q(t)zβ/α(t− σ1), t ≥ t2. (2.40)

Since z′′(t) < 0, we have z′(t) is decreasing and therefore

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t− τ1), (2.41)

or
y′(t− σ1) ≤ (1 + bβ + cβ)z′(t− σ1 − τ1), t ≥ t2.
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Again using the monotonicity of z′(t), we see that

z(t)− z(t− σ1 + τ1) =

t∫
t−(σ1−τ1)

z′(s) ds ≥ (σ1 − τ1)z′(t),

or
z(t) ≥ (σ1 − τ1)z′(t). (2.42)

Substituting (2.41) and (2.42) in (2.40), we obtain

y′′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
(y′(t− σ1 + τ1))β/α, t ≥ t2. (2.43)

By setting y′(t) = w(t), we see that w(t) is a positive decreasing solution of

w′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
wβ/α(t− σ1 + τ1), t ≥ t2, (2.44)

which is a contradiction to (2.32). This completes the proof.

Theorem 2.6. Assume that 0 < γ ≤ 1, β ≥ 1, b ≤ 1, c ≤ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)γ/α

(1 + bβ + cβ)γ/α
yβ/α(t + σ2 − σ1) (2.45)

has no positive increasing solution and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ)β/α
yβ/α(t− σ1 + τ1) (2.46)

has no positive decreasing solution, then equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.5 and hence the details are omitted.

Theorem 2.7. Assume that β ≥ 1, 0 < γ ≤ 1, b ≥ 1, c ≥ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)γ/α

(1 + bβ + cβ)γ/α
yγ/α(t + σ2 − σ1) (2.47)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ)β/α
yβ/α(t + τ1 − σ1) (2.48)

has no positive decreasing solution, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Without loss of generality, let
us assume that x(t) is a positive solution of equation (1.1) for all t ≥ t1 ≥ t0. Then there exists a t2 ≥ t1 such
that x(t− θ) > 0 for all t ≥ t2. By the definition of z(t) we have z(t− θ) > 0 for all t ≥ t2. Set

y(t) = z(t) + bβz(t− τ1) +
cβ

2γ−1
z(t + τ2) for all t ≥ t2. (2.49)

Then, y′(t) > 0, and using the fact b ≥ 1, c ≥ 1, γ ≤ 1, β ≥ 1, we have

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) +
cβ

2γ−1
z′′′(t + τ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) +
cβ

2β−1
xβ(t + τ2 − σ1)] +

P (t)[xγ(t + σ2) + bβxγ(t− τ1 + σ2) +
cβ

2γ−1
xγ(t + τ2 + σ2)]

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) +
cβ

2β−1
xβ(t + τ2 + σ2)]
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+P (t)[xγ(t + σ2) + bγxγ(t− τ1 + σ2) + cγxγ(t + τ2 + σ2)], t ≥ t2

Now applying (2.4) and (2.3) twice in first and second part of right hand side of last inequality, we get

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1) + P (t)zγ/α(t + σ2), t ≥ t2. (2.50)

Now we consider the following two cases for z(t) as given in Lemma 2.1.
Case (I): In this case we have z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 and therefore y′(t) > 0, y′′(t) > 0 and

y′′′(t) > 0 for all t ≥ t2. From the inequality (2.50), we have

y′′′(t) ≥ P (t)zγ/α(t + σ2), t ≥ t2. (2.51)

Applying monotonicity of z′(t), we get

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

y′(t) ≤ (1 + bβ + cβ)z′(t + τ2), t ≥ t2. (2.52)

Also using the monotonicity of z′(t), we get

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds > z′(t)(σ2 − τ2)

z(t + σ1 − τ2) ≥ z′(t)(σ1 − τ2). (2.53)

Combining (2.51), (2.52) and (2.53), we obtain

y′′′(t) = P (t)zγ/α(t + σ2)

≥ P (t)(σ1 − τ2)γ/αz′(t + τ2)

≥ P (t)(σ1 − τ2)γ/α(y′(t + σ2 − σ1))γ/α

(1 + bβ + cβ)γ/α
, t ≥ t2.

By putting y′(t) = w(t), we see that w(t) is a positive increasing solution of

w′′(t) ≥ P (t)(σ2 − τ2)γ/α

(1 + bβ + cβ)γ/α
wγ/α(t + σ2 − σ1), t ≥ t2

which is a contradiction (2.47).
Case (II): In this case we have z′′(t) < 0 for all t ≥ t2. Therefore z′(t) is decreasing, for all t ≥ t2. Since

z′(t) is decreasing we have

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t− τ1), t ≥ t2. (2.54)

Also using the monotonicity of z′(t), we get

z(t)− z(t− σ1 + τ1) =

t∫
t−(σ1−τ1)

z′(s) ds ≥ (σ1 − τ1)z′(t)

or
z(t) ≥ (σ1 − τ1)z′(t). (2.55)

From (2.50), we have

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1), t ≥ t2. (2.56)

Combining (2.54), (2.55) and (2.56), we obtain

y′′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ)β/α
(y′(t− σ1 + τ1))β/α, t ≥ t2. (2.57)
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By taking y′(t) = w(t), we see that w(t) is a positive decreasing solution of

w′′(t) ≥ (σ1 − τ1)β/αQ(t)
4β−1(1 + bβ + cβ)β/α

(w(t− σ1 + τ1))β/α, t ≥ t2, (2.58)

which is a contradiction to (2.48). This completes the proof.

Theorem 2.8. Assume that γ ≥ 1, 0 < β ≤ 1, b ≥ 1, c ≥ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)yγ/α(t + σ2 − σ1)(σ1 − τ2)γ/α

4γ−1(1 + bβ + cβ)γ/α
(2.59)

has no positive increasing solution and the second order differential inequality

y′′(t) ≥ Q(t)yβ/α(t− σ1 + τ1)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
(2.60)

has no positive decreasing solution, then equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.7 and hence the details are omitted.

Corollary 2.9. Assume that α = β = γ ≥ 1, σ2 > σ1 > max{τ1, τ2}. If

lim sup
t→∞

t+σ2−τ2−2∫
t

(t + σ2 − τ2 − s− 1)P (s) ds ≥ 4α−1(1 + aα +
bα

2α−1
) (2.61)

and

lim sup
t→∞

t∫
t−σ1+τ1

(t− s + 1)Q(s) ds ≥ 4α−1(1 + aα +
bα

2α−1
) (2.62)

then every solution of equation (1.1) is oscillatory.

Proof. Condition (2.61) and (2.62) imply that the differential inequalities (2.59) and (2.60) have no positive
increasing and no positive decreasing solutions respectively see [12, 16]. Now the result follows from Theorem
2.8.

Corollary 2.10. Let β < γ, b ≤ 1, c ≤ 1, σ2 > σ1 > max{τ1, τ2}. If

∞∫
t0

( t+σ1−τ1∫
t

Q(s) ds
)

dt = ∞ (2.63)

∞∫
t0

( t∫
t−σ2+τ2+1

P (s) ds
)

dt = ∞ (2.64)

then every solution of equation (1.1) is oscillatory.

Proof. Conditions (2.63) and (2.64) imply that the differential inequalities (2.31) and (2.32) have no positive
increasing and no positive decreasing solutions respectively [12, 16]. Now the result follows from Theorem
2.5.

3 Examples

In this section, we shall see some examples to illustrate main results.

Example 3.1. Consider the third order differential equation

((x(t) + 2x(t− 1) + 3x(t + 2))3)′′′ = (t + 1)x3(t− 3) + tx3(t + 5), t ≥ 1 (3.1)

Here b(t) = 2, c(t) = 3, τ1 = 1, τ2 = 2, σ1 = 3, σ2 = 5, q(t) = t + 1, p(t) = t and α = β = γ = 3. Then
Q(t) = t, P (t) = t− 1 and we can easily see that all the conditions of Corollary 2.9 are satisfied. Therefore all
the solutions of equation (3.1) are oscillatory.
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Example 3.2. Consider the third order differential equation

((x(t) +
1
2
x(t− 1) +

1
3
x(t + 2))3)′′′ = (t + 1)x(t− 3) + (t + 2)2x3(t + 4), t ≥ 1 (3.2)

Here b(t) = 1
2 , c(t) = 1

3 , τ1 = 1, τ2 = 2, σ1 = 3, σ2 = 4, α = 1, β = 1, γ = 3, q(t) = t + 1, p(t) = (t + 2)2.
Then Q(t) = t, P (t) = t2 and we can easily see that all the conditions of Corollary 2.10 are satisfied. Therefore
all the solutions of equation (3.2) are oscillatory.
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[5] B. Bacuĺıková and J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput.
Modelling, 52(2010), 215-226.
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Abstract

In this work we are concerned with the discontinuous dynamical system representing the problem of the logistic

retarded functional equation with two different delays,

x(t) = ρx(t− r1)[1− x(t− r2)], t ∈ (0, T ],

x(t) = x0, t ≤ 0.

The existence of a unique solution x ∈ L1[0, T ] which is continuously dependence on the initial data, will be proved.

The local stability at the equilibrium points will be studied. The bifurcation analysis and chaos will be discussed.

Keywords: Logistic functional equation, existence, uniqueness, equilibrium points, local stability, Chaos and Bifurcation.

2010 MSC: 39A05, 39A28, 39A30. c©2012 MJM. All rights reserved.

1 Introduction

Let R+ be the set of positive real numbers and let r ∈ R+. Consider the problem of retarded functional
equation

x(t) = f(t, x(t− r)), t ∈ (0, T ] (1.1)

x(t) = xo, t ≤ 0. (1.2)

Now, if T be positive integer, r = 1, and t = n = 1, 2, 3, · · ·T, then the problem (1.1)-(1.2) will be the
discrete dynamical system

xn = f(n, xn−1), n = 1, 2, 3, · · ·T (1.3)

x0 = xo, t ≤ 0. (1.4)

This shows that the discrete dynamical system (1.3)-(1.4) is a special case of the problem of retarded functional
equation (1.1)-(1.2).

2 Discontinuous dynamical systems

The discontinuous dynamical systems have been studied, recently, in [3]-[5]. The results in [4] and [5] shows
the richness of the models of discontinuous dynamical systems.
Consider the problem of retarded functional equation

x(t) = f(x(t− r)), t ∈ (0, T ] (2.5)
∗Corresponding author.

E-mail addresses: amasayed@gmail.com (A. M. A. El-Sayed) and moh nasr 2000@yahoo.com (M. E. Nasr).
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x(t) = xo, t ≤ 0.

Let t ∈ (0, r], then t− r ∈ (−r, 0] and the solution of (1.1)− (1.2) is given by

x(t) = xr(t) = f(xo), t ∈ (0, r].

For t ∈ (r, 2r], we find that t− r ∈ (0, r] and the solution of (1.1)-(1.2) is given by

x(t) = x2r(t) = f(xr(t)) = f(f(xo)) = f2(xo), t ∈ (r, 2r].

Repeating the process we can deduce that the solution of the problem (1.1)-(1.2) is given by

x(t) = xnr(t) = fn(xo), t ∈ ((n− 1)r, nr],

which is continuous on each subinterval ((k − 1)r, kr), k = 1, 2, · · · , n, but

lim
t→kr+

x(k+1)r(t) = fk+1(xo) 6= xkr(t),

which implies that the solution of the problem (1.1)-(1.2) is discontinuous (sectionally continuous) on (0, T ]
and we have proved the following theorem

Theorem 2.1. The solution of the problem of retarded functional equation (1.1)-(1.2) is discontinuous (sec-
tionally continuous) even the function f is continuous.

Now, let f : [0, T ]×Rn → Rn and r1, r2, ..., rn ∈ R+. Then we can give the following definition

Definition 2.1. The discontinuous dynamical system is the problem of retarded functional equation

x(t) = f(t, x(t− r1), x(t− r2), · · · , x(t− rn)), t ∈ (0, T ], (2.6)

x(t) = x0, t ≤ 0 (2.7)

Definition 2.2. The equilibrium points of the discontinuous dynamical system (2.6)-(2.7) is the solutions of
the equation,

x(t) = f(t, x, x, · · · , x).

Consider now the discontinuous dynamical system of the Logistic retarded functional equation with two different
delays r1, r2 > 0

x(t) = ρx(t− r1)[1− x(t− r2)], t ∈ (0, T ], (2.8)

x(t) = x0, t ≤ 0. (2.9)

We study here the existence of a unique continuously dependent solution x ∈ L1[0, T ] of the problem (2.8)−(2.9).
The asymptotic stability (see [1]- [9]) at the equilibrium points will be studied. We study the chaos and
bifurcation for different values of r1, r2 and T and we compare the results with the results of the discrete
dynamical system of the Logistic difference equations,

xn = ρ xn−1(1− xn−1), n = 1, 2, · · · . (2.10)

and

xn = ρ xn−1(1− xn−2), n = 1, 2, · · · . (2.11)
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3 Existence and Uniqueness

Let L1 = L1[0, T ], T <∞ be the class of Lebesgue integrable functions on [0, T ] with norm

‖f‖ =
∫ T

0

|f(t)| dt, f ∈ L1.

Let D = {x ∈ R : 0 ≤ x(t) ≤ 1, t ∈ (0, T ] and x(0) = x0, t ≤ 0}.

Definition 3.3. By a solution of the problem (2.8)− (2.9) we mean a function x ∈ L1 satisfying the conditions
(2.8)− (2.9).

Theorem 3.2. The problem (2.8)− (2.9) has a unique solution x ∈ L1.

Proof. Define, on D, the operator F : L1 −→ L1 by

Fx(t) = ρx(t− r1)[1− x(t− r2)].

The operator F makes sense, indeed for x ∈ D we have

|Fx(t)| ≤ ρ |x(t− r1)|

and
‖Fx‖ ≤ ρ(x0r1 + ‖x‖).

Now for x, y ∈ D,we can obtain

|Fx− Fy| = |ρx(t− r1)(1− x(t− r2))− ρy(t− r1)(1− y(t− r2))|
≤ ρ |x(t− r1)− y(t− r1)|+ ρ |x(t− r2)− y(t− r2)|

which implies that

‖Fx− Fy‖ ≤ ρ

∫ T

0

|x(t− r1)− y(t− r1)| dt+ ρ

∫ T

0

|x(t− r2)− y(t− r2)| dt =

= ρ

[∫ r1

0

|x(t− r1)− y(t− r1)| dt+
∫ T

r1

|x(t− r1)− y(t− r1)| dt+

+
∫ r2

0

|x(t− r2)− y(t− r2)| dt+
∫ T

r2

|x(t− r2)− y(t− r2)| dt

]
=

= ρ

[∫ T

r1

|x(t− r1)− y(t− r1)| dt+
∫ T

r2

|x(t− r2)− y(t− r2)| dt

]

≤ ρ

[∫ T−r1

0

|x(θ)− y(θ)| dθ +
∫ T−r2

0

|x(ϕ)− y(ψ)| dϕ

]

≤ ρ

[∫ T

0

|x(θ)− y(θ)| dθ +
∫ T

0

|x(ϕ)− y(ψ)| dϕ

]
≤ 2ρ ‖x− y‖ .

If ρ < 1
2 we deduce that

‖Fx− Fy‖ < ‖x− y‖

and then the problem (2.8)− (2.9) has, on D, a unique solution x ∈ L1.

4 Continuous dependence on initial conditions

Consider the problem
x(t) = ρx(t− r1)[1− x(t− r2)], t ∈ (0, T ],

x(t) = x∗0, t ≤ 0. (4.12)

For the continuous dependence of The solution of (2.8)−(2.9) on the initial data we have the following theorem.
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Theorem 4.3. The solution of the discontinuous dynamical system represents the problem of the logistic
retarded functional equation with two different delays is continuously dependent on the initial data.

Proof. Let x(t) and x∗(t) be the solution of the two problems (2.8)− (2.9) and (2.8)− (4.12) respectively, then

|x(t)− x∗(t)| ≤ ρ |x(t− r1)− x∗(t− r1)|+ ρ |x(t− r2)− x∗(t− r2)|

which implies that

‖x(t)− x∗(t)‖ ≤ ρ

∫ T

0

|x(t− r1)− x∗(t− r1)| dt+ ρ

∫ T

0

|x(t− r2)− x∗(t− r2)| dt =

= ρ

[∫ r1

0

|x(t− r1)− x∗(t− r1)| dt+
∫ T

r1

|x(t− r1)− x∗(t− r1)| dt+

+
∫ r2

0

|x(t− r2)− x∗(t− r2)| dt+
∫ T

r2

|x(t− r2)− x∗(t− r2)| dt

]
=

= ρ

[
|x0 − x∗0|

∫ r1

0

dt+ ‖x− x∗‖+ |x0 − x∗0|
∫ r2

0

dt+ ‖x− x∗‖
]

≤ ρ(r1 + r2) |x0 − x∗0|+ 2ρ ‖x− x∗‖

which implies

‖x− x∗‖ ≤ ρ(r1 + r2)
1− 2ρ

|x0 − x∗0|

and prove that

|x0 − x∗0| ≤ δ ⇒ ‖x− x∗‖ ≤ ε =
ρ(r1 + r2)

1− 2ρ
δ

and the theorem is proved.

5 Equilibrium Points and their asymptotic stability

The equilibrium points of (2.8) are the solution of the equation

ρ xeq (1− xeq) = xeq

which are

(xeq)1 = 0,

(xeq)2 = 1− 1
ρ
.

The equilibrium point of (2.8) is locally asymptotically sable if all the roots λ of the equation,

1 = ρ
[
(1− xeq)λ−r1 − xeq λ

−r2
]
, (5.13)

satisfy |λ| < 1 (see [10]).
Then the equilibrium point xeq = 0 is locally asymptotically sable if ρ < 1 , while the second equilibrium point
xeq = 1− 1

ρ is locally asymptotically sable if all the roots λ of the equation,

λr2 − λr2−r1 + (ρ− 1) = 0. (5.14)

satisfy |λ| < 1.
The equilibrium point xeq = 0 is locally asymptotically sable if ρ < 1 , which is the same as in the discrete
case (2.10). Also, when r2 = r1 = 1, we deduce that the equilibrium point xeq = 1 − 1

ρ , ρ > 1 is locally
asymptotically sable if 1 < ρ < 3, which is the same as in the discrete case (2.10).
In studying (2.8)− (2.9) it may be useful to study the difference equations (2.10) and (2.11).
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6 Bifurcation and Chaos

In this section, some numerical simulations results are presented to show that dynamics behaviors of the
discontinuous dynamical system (2.8)− (2.9) change for different values of r1, r2 and T . To do this, we will
use the bifurcation diagrams as follow:-

1 2 3 4
Ρ
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0.6

0.8

1.0

xHtL

0.5 1.0 1.5 2.0
Ρ

0.2

0.4

0.6

0.8

xHtL

Figure 6.1 Figure 6.2

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = r2 = 1 and t ∈ [0, 200]. respect to ρ, r1 = 1, r2 = 2 and t ∈ [0, 200].
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Figure 6.3 Figure 6.4

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = 0.1, r2 = 0.3 and t ∈ [0, 200]. respect to ρ, r1 = 0.25, r2 = 0.75 and t ∈ [0, 200].
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Figure 6.5 Figure 6.6

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = 1, r2 = 2 and t ∈ [0, 50]. respect to ρ, r1 = 0.25, r2 = 0.75 and t ∈ [0, 50].
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Figure 6.7 Figure 6.8

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = 0.5, r2 = 1 and t ∈ [0, 100]. respect to ρ, r1 = 0.1, r2 = 0.2 and t ∈ [0, 20].

From Figures (6.1-6.8) we deduce that the change of r1, r2 and T effect of stability of the Logistic equation
model, occurs of a bifurcation point, parameter sets for which aperiodic behavior occur and parameter sets for
which a chaotic behavior occur.

7 Conclusions

Discrete dynamical system of the Logistic equation model describes the dynamical properties for the case
r1 = r2 and the time is discrete t = 1, 2, 3, 4, · · · .
On the other hand, discontinuous dynamical system of the Logistic equation model describes the dynamical
properties for different values of the delayed parameters r1 and r2 and the time is continuous. Figures
(6.1),(6.2) agrees with standard results. This confirms the correctness of our computation. The results of the
other figures are new behavior (there is no analytic explanation for this behavior). From figures (6.2),(6.7) and
(6.8), it locks like that there is a scale that gives identical chaos behavior.
This shows the richness of the models of discontinuous dynamical systems.
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Abstract

This paper deals with extended M-series, which is extension of the generalized M-series [12]. Mittag-Leffler function,

ω− hypergeometric function, generalized ω− Gauss hypergeometric function, ω− confluent hypergeometric function,

Bessel-Maitland function can be deduced as special cases of our finding. Moreover, we obtain some theorem for extended

M-series by using fractional calculus operators and many results associated with Riemann-Liouville, Weyl and Erdelyi-

Kober operators. We begin our study from the following definitions.
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1 Introduction

Fractional calculus operators (Iα,β,η
0+ f)(x), (Iα,β,η

− f)(x), (Dα,β,η
0+ f)(x) and (Dα,β,η

− f)(x) be defined for and
complex α, β, η ∈ C and x ∈ <+; by Saigo [10].(

Iα,β,η
0+ f

)
(x) =

x−α−β

Γ(α)

∫ x

0

(x− t)α−1
2F1

(
α + β,−η;α; 1− t

x

)
f(t)dt (1.1)

(<(α) > 0);

=
dn

dxn

(
Iα+n,β−n,η−n
0+ f

)
(x) (1.2)

(<(α) ≤ 0;n = [<(−α)] + 1);(
Iα,β,η
− f

)
(x) =

1
Γ(α)

∫ ∞

x

(t− x)α−1t−α−β
2F1

(
α + β,−η;α; 1− x

t

)
f(t)dt (1.3)

(<(α) > 0);

= (−1)n dn

dxn

(
Iα+n,β−n,η
− f

)
(x) (1.4)

(<(α) ≤ 0;n = [<(−α)] + 1) and(
Dα,β,η

0+ f
)

(x) =
(
I−α,−β,α+η
0+ f

)
(x) =

dn

dxn

(
I−α+n,−β−n,α+η−n
0+ f

)
(x) (1.5)

(<(α) > 0;n = [<(α)] + 1);(
Dα,β,η
− f

)
(x) =

(
I−α,−β,α+η
− f

)
(x) = (−1)n dn

dxn

(
I−α+n,−β−n,α+η
− f

)
(x) (1.6)

∗Corresponding author.
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58 Dharmendra Kumar Singh / On Extended M− Series

(<(α) > 0;n = [<(α)] + 1).
When β = −α, (1.1) and (1.3) coincide with the classical Riemann-Liouville and Weyl fractional integral of
order α ∈ C shown below(

Rα
0,xf

)
(x) =

(
Iα,−α,η
0+ f

)
(x) =

1
Γ(α)

∫ x

0

(x− t)α−1
f (t) dt, (<(α) > 0); (1.7)

=
dn

dxn

(
Rα+n

0,x f
)
(x) (1.8)

(0 < <(α) + n ≤ 1;n = 1, 2, ...);

(
Wα

x,∞f
)
(x) =

(
Iα,−α,η
− f

)
(x) =

1
Γ(α)

∫ ∞

x

(t− x)α−1
f (t) dt (1.9)

(<(α) > 0);

= (−1)n dn

dxn

(
Wα+n

x,∞ f
)
(x) (1.10)

(0 < <(α) + n ≤ 1;n = 1, 2, ...);
and equation (1.5) and (1.6) coincide with Riemann- Liouville fractional derivative of order α > 0 is defined
by (

Dα
0+f

)
(x) =

(
Dα,−α,η

0+ f
)
(x) =

(
d

dx

)n 1
Γ(n− α)

∫ x

0

f(t)dt

(x− t)α−n+1 (1.11)

(n = [<(α)] + 1);

(
Dα
−f
)
(x) =

(
Dα,−α,η
− f

)
(x) =

(
d

dx

)n (−1)n

Γ(n− α)

∫ ∞

x

f(t)dt

(t− x)α−n+1 (1.12)

(n = [<(α)] + 1).
While for β = 0, (1.1) and (1.3) coincide with the Erdelyi- Kober fractional calculus operators of order α ∈ C

(
Eα,η

0,x f
)
(x) =

(
Iα,0,η
0+ f

)
(x) =

x−α−η

Γ(α)

∫ x

0

(x− t)α−1
tηf (t) dt (1.13)

(<(α) > 0); (
Kα,η

x,∞f
)
(x) =

(
Iα,0,η
− f

)
(x) =

xη

Γ(α)

∫ ∞

x

(t− x)α−1
t−α−ηf (t) dt (1.14)

(<(α) > 0).
Now here the definition of the following generalized fractional integration and differentiation operators of any
complex order involving Appell function F3(.) due to Saigo and Meada [11, p. 393, Eqs. (4.12) and (4.13)] in
the kernal in the following form.

Let α, α
′
, β, β

′
, γ ∈ C, x > 0, then the generalized fractional calculus operators involving the Appell function

F3 are defined by the following equations:(
Iα,α

′
,β,β

′
,γ

0+ f

)
(x) =

x−α

Γ(γ)

∫ x

0

t−α′ (x− t)γ−1

×F3

(
α, α

′
, β, β

′
; γ; 1− t

x
, 1− x

t

)
f (t) dt, (<(γ) > 0); (1.15)

=
dn

dxn

(
I

α,α
′
,β+n,β′,γ+n

0+ f

)
(x) (1.16)

(<(γ) ≤ 0;n = [−<(γ)] + 1); (
Iα,α

′
,β,β′,γ

− f

)
(x) =

x−α
′

Γ(γ)

∫ ∞

x

t−α (t− x)γ−1

×F3

(
α, α

′
, β, β

′
; γ; 1− x

t
, 1− t

x

)
f (t) dt, (<(γ) > 0); (1.17)
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= (−1)n dn

dxn

(
I

α,α
′
,β,β′+n,γ+n

− f

)
(x) (1.18)

(<(γ) ≤ 0;n = [−< (γ)] + 1) and(
Dα,α

′
,β,β′,γ

0+ f

)
(x) =

(
I−α

′
,−α,−β

′
,−β,−γ

0+ f

)
(x) (1.19)

=
dn

dxn

(
I
−α′,−α,−β

′
+n,−β,−γ+n

0+ f

)
(x); (1.20)

(<(γ) > 0;n = [< (γ)] + 1) ; (
Dα,α

′
,β,β′,γ

− f

)
(x) =

(
I−α

′
,−α,−β

′
,−β,−γ

− f

)
(x) (1.21)

= (−1)n dn

dxn

(
I
−α′,−α,−β

′
,−β+n,−γ+n

− f

)
(x) (1.22)

(<(γ) > 0;n = [< (γ)] + 1) .

These operators reduce to that in (1.15)-(1.22) as the following.(
Iα,0,β,β′,γ
0+ f

)
(x) =

(
Iγ,α−γ,−β
0+ f

)
(x)(γ ∈ C); (1.23)

(
Iα,0,β,β′,γ
− f

)
(x) =

(
Iγ,α−γ,−β
− f

)
(x)(γ ∈ C); (1.24)(

D0,α
′
,β,β′,γ

0+ f

)
(x) =

(
Dγ,α

′
−γ,β

′
−γ

0+ f

)
(x)(<(γ) > 0); (1.25)(

D0,α
′
,β,β′,γ

− f

)
(x) =

(
Dγ,α

′
−γ,β

′
−γ

− f

)
(x)(<(γ) > 0). (1.26)

Our results are based on a preliminary assertion giving composition formulas of generalized fractional integrals
(1.15) and (1.17) with a power function established by Saigo and Meada [11, p. 394, eqs. (4.18) and (4.19)],
we also have

(
Iα,α

′
,β,β′,γ

0+ xρ−1

)
(x) =

Γ (ρ) Γ
(
ρ + γ − α− α

′ − β
)

Γ
(
ρ + β

′ − α
′
)

Γ (ρ + γ − α− α′) Γ (ρ + γ − α′ − β) Γ (ρ + β′)

×xρ−α−α
′
+γ−1, (1.27)

where <(γ) > 0,<(ρ) > max[0,<(α + α′ + β − γ), <(α
′ − β

′
)], and(

Iα,α
′
,β,β′,γ

− xρ−1

)
(x) =

Γ
(
1 + α + α

′ − γ − ρ
)

Γ
(
1 + α + β

′ − γ − ρ
)

Γ (1− β − ρ)

Γ (1− ρ) Γ (1 + α + α′ + β′ − γ − ρ) Γ (1 + α− β − ρ)

×xρ−α−α
′
+γ−1, (1.28)

where <(γ) > 0,<(ρ) < 1 + min[<(−β),<(α + α′ − γ),<(α + β
′ − γ)].

For fractional integrals (1.1) and (1.3) with a power function established by Saigo [10], given below
(a) If α, β, η, ρ ∈ C are such that

<(α) > 0,<(ρ) > max [0,<(β − η)] , (1.29)

then (
Iα,β,η
0+ xρ−1

)
(x) =

Γ(ρ)Γ(ρ + η − β)
Γ(ρ− β)Γ(ρ + α + η)

xρ−β−1(x > 0). (1.30)

(b) If α, β, η, ρ ∈ C are such that

<(α) > 0,<(ρ) > −min [<(β),<(η)] , (1.31)

then (
Iα,β,η
− x−ρ

)
(x) =

Γ(ρ + β)Γ(ρ + η)
Γ(ρ)Γ(ρ + α + β + η)

x−ρ−β(x > 0). (1.32)



60 Dharmendra Kumar Singh / On Extended M− Series

2 Extended M-Series

Extended M -series is the Special case of the generalized Wright function [9] as remarked by Saxena [16].
Since

ω

p+2Mq+2

[
a1, ..., ap, (1, 1), (τ, ω)
b1, ..., bq, (δ, ω), (ξ, µ)

| z
]

= κp+2Ψq+2

[
(a1, 1), ..., (ap, 1), (1, 1), (τ, ω)
(b1, 1), ..., (bq, 1), (δ, ω), (ξ, µ)

| z
]

=
∞∑

k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)

zk

k!

=
∞∑

k=0

(a1)k...(ap)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)

zk, (2.1)

where
ω

p+2Mq+2(.) is called omega M-series (ω −M series) and κ =
Πq

j=1Γ(bj)k

Πp
j=1Γ(aj)k

; τ, ξ, µ, δ ∈ C,<(µ) > 0,<(ω) >

0, p ≤ q + 1.

3 Special Cases

(i) If δ = τ then equation (2.1) can be written in the following form

ξ,µ

pMq (z) =
∞∑

k=0

(a1)k...(ap)k

(b1)k...(bq)kΓ(ξ + µk)
zk, (3.1)

where z, ξ, µ ∈ C,<(µ) > 0, p ≤ q + 1 is known as generalized M-Series [12].
(ii) If we put ξ = 1 then from the above equation (3.1) called the M-series [12].

µ

pMq (z) =
∞∑

k=0

(a1)k...(ap)k

(b1)k...(bq)kΓ(1 + µk)
zk, (3.2)

where µ ∈ C, p ≤ q + 1.

(iii) The ω-confluent hypergeometric function [13, 14]: when p = q = 0 and ξ = µ = 1, we have

Γ(τ)
Γ(δ)

ω

1Φ1 (τ ; δ; z) =
∞∑

k=0

Γ(τ + ωk)
Γ(δ + ωk)Γ(1 + k)

zk =
∞∑

k=0

Γ(τ + ωk)
Γ(δ + ωk)k!

zk, (3.3)

where |z| < ∞, ω > 0, (δ + ωk) 6= 0,−1,−2, ... .
(iv) The ω-hypergeometric function [14]: For p = 1, q = 0, ξ = µ = 1, we have

Γ(τ)
Γ(δ)

ω

2R1 (a, τ ; δ; z) =
∞∑

k=0

(a)k(1)kΓ(τ + ωk)
Γ(δ + ωk)Γ(1 + k)

zk

k!
=

∞∑
k=0

(a)kΓ(τ + ωk)
Γ(δ + ωk)k!

zk, (3.4)

where |z| < 1, ω > 0.
(v) The generalized ω-Gauss hypergeometric function [21]: If we take p = 2, q = 1, ξ = µ = 1, then we have

Γ(τ)
Γ(δ)

ω

3R2

(
a1, a2, τ ; b1, δ; z

)
=

∞∑
k=0

(a1)k(a2)kΓ(τ + ωk)
(b1)kΓ(δ + ωk)k!

zk, (3.5)

where a is defined to be Γ(a+ωk)
Γ(a) and |z| < 1.

(vi) When p = 0, q = 1, τ = δ, b = 1, ξ = ξ + 1 and z is replaced by -z, the function φ(µ, ξ + 1;−z) is denoted
by Jµ

η (z) :

Jµ
ξ (z) ≡ φ(µ, ξ + 1;−z) =

∞∑
k=0

1
Γ(ξ + 1 + µk)

(−z)k

k!
(3.6)
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and such a function is known as the Bessel-Maitland function, or the Wright generalized Bessel function, See
[20, p. 352] and [15, 8.3].
(vii) If we put p = 1, q = 1 and τ = δ, b = 1 in (2.1), then we have

Ea
ξ,µ(z) =

∞∑
k=0

(a)k

Γ(ξ + µk)
zk

k!
, (3.7)

where ξ, µ ∈ C,<(ξ) > 0,<(µ) > 0 and |z| < 1 is called generalized Mitteg- leffer function introduced by
Prabhakar [19] and studied by Killbas. et. al. [1] and [3].
(viii) For ξ = µ = 1 and τ = δ, we obtain

pFq

[
a1, ..., ap

b1, ..., bq
| z
]

=
∞∑

k=0

(a1)k...(ap)k

(b1)k...(bq)kΓ(1 + k)
zk, (3.8)

where p ≤ q + 1 and |z| < 1 and pFq(.) is known as generalized hypergeometric function [3].
(ix) H-Function [2, 4, 8]: ω −M series can be represented as a special case of the Fox H-function

ω

p+2Mq+2

[
a1...ap, (1, 1), (τ, ω)
b1...bq, (δ, ω), (ξ, µ)

| z
]

= kH1,n+2
p+2,q+2

[
(1− a1, 1), ..., (1− ap, 1), (0, 1), (1− τ, ω)

(1− b1, 1), ..., (1− bq, 1), (0, 1), (1− δ, ω), (1− ξ, µ)
| (−z)

]
, (3.9)

where k =

q

Π
j=1

Γ(bj)r

p

Γ
j=1

Π(aj)r

.

4 Left-Side Generalized Fractional Integration and Differentiation of Extended

M-Series

Theorem 4.1. Let α, α
′
, β, β

′
, γ ∈ C be a complex number such that <(γ) > 0 and let ρ, δ, ξ, τ, µ ∈ C,<(ρ) >

0, p ≤ q + 1 and |x| < 1. If the condition

<(ρ) > max [0,<(α + α′ + β − γ),<(α′ − β′)]

is satisfied then [
Iα,α′,β,β′,γ
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x) = xρ+γ−α−α′−1

×
ω

p+5Mq+5

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1),

b1, ..., bq, (δ, ω), (ξ, µ), (ρ + γ − α− α′, 1),

(ρ + γ − α− α′ − β, 1), (ρ + β′ − α′, 1)
(ρ + γ − α′ − β, 1), (ρ + β′, 1)

;x
)

. (4.1)

Proof. From the equations (1.15) and (2.1), we have[
Iα,α′,β,β′,γ
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

=
∞∑

k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)k!

[
Iα,α′,β,β′,γ
0+ (tρ+k−1)

]
(x). (4.2)

Now using equation (1.27), we obtained

= xρ+γ−α−α′−1
∞∑

k=0

(a1)k...(ap)k(1)kΓ(ρ + k)
(b1)k...(bq)kΓ(ρ + γ − α− α′ + k)

× Γ(ρ + γ − α− α′ − β + k)Γ(ρ + β′ − α′ + k)Γ(τ + ωk)
Γ(ρ + γ − α′ − β + k)Γ(ρ + β′ + k)Γ(δ + ωk)Γ(ξ + µk)

xk

k!
, (4.3)

which is the required result.
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Corollary 4.1. Let α, β, η, ρ ∈ C be such that condition (1.29) is satisfied, and further let δ, ξ, τ, µ ∈ C,<(ρ) >

0 and |x| < 1. Then by relation (1.23) and (1.30) there hold the formula[
Iα,β,η
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xρ−β−1
ω

p+4Mq+4

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1), (ρ− β + η, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ− β, 1), (ρ + α + η, 1)
;x
)

. (4.4)

Corollary 4.2. Let α, ρ ∈ C be such that <(α) > 0 and <(ρ) > 0. Further let δ, ξ, τ, µ ∈ C, and |x| < 1 then
the relation (1.7) indicates that equation (4.4) reduces to the following result[
Rα

0,x

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xρ+α−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ + α, 1)
;x
)

. (4.5)

Corollary 4.3. Let α, η, ρ ∈ C be such that <(α) > 0 and <(ρ) > 0. Further let δ, ξ, τ, µ ∈ C, and |x| < 1
then the relation (1.13) indicates that equation (4.4) reduces to the following result[
Eα,η

0,x

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xρ−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (ρ + η, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ + α + η, 1)
;x
)

. (4.6)

Theorem 4.2. Let α, α
′
, β, β

′
, γ ∈ C be a complex number such that <(γ) > 0 and let ρ, δ, ξ, τ, µ ∈ C,

<(ρ) > 0, p ≤ q + 1 and |x| < 1. If the condition

<(ρ) > max [0,<(γ − α− α′ − β′),<(β − α)]

is satisfied then[
Dα,α′,β,β′,γ

0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x) = xρ−γ+α+α′−1

×
ω

p+5Mp+5

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1),

b1, ..., bq, (δ, ω), (ξ, µ), (ρ− γ + α + α′, 1),

(ρ− γ + α + α′ + β′, 1), (ρ− β + α, 1)
(ρ− γ + α + β′, 1), (ρ− β, 1)

;x
)

. (4.7)

Proof. By using equations (1.20) and (2.1), we have[
Dα,α′,β,β′,γ

0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

=
(

d

dx

)m ∞∑
k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)k!

×
[
I−α′,−α,−β′+m,−β,−γ+m
0+ (tρ+k−1)

]
(x). (4.8)

Now using equation (1.27), we obtained

=
∞∑

k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)

1
k!

× Γ(ρ + k)Γ(ρ + k − γ + α + α′ + β′)Γ(ρ + k − β + α)
Γ(ρ + k − γ + m + α + α′)Γ(ρ + k − γ + α + β′)Γ(ρ + k − β)

×
(

d

dx

)m

xρ+k−γ+m+α+α′−1.
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Using the formula dmxn

dxm = Γ(n+1)
Γ(n−m+1)x

n−m, n ≥ m, we have

= xρ−γ+α+α′−1
∞∑

k=0

(a1)k...(ap)k(1)kΓ(ρ + k)
(b1)k...(bq)kΓ(ρ− γ + α + α′ + k)

.

× Γ(ρ− γ + α + α′ + β
′
+ k)Γ(ρ− β + α + k)Γ(τ + ωk)

Γ(ρ− γ + α + β′ + k)Γ(ρ− β + k)Γ(δ + ωk)Γ(ξ + µk)
xk

k!
. (4.9)

Which is the required result.

If we set α = 0 in (4.7) we arrive at

Corollary 4.4. Let α, β, η, ρ ∈ C be such that <(α) ≥ 0,

<(ρ) > −min [0,<(α + β + η)] ,

and further let δ, ξ, τ, µ ∈ C,<(ρ) > 0. Then by the relation (1.25) there hold the formula[
Dα,β,η

0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xρ+β−1
ω

p+4Mq+4

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1), (ρ + α + β + η, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ + β, 1), (ρ + η, 1)
;x
)

. (4.10)

Corollary 4.5. Let α, ρ ∈ C be such <(α) ≥ 0, and further let δ, ξ, τ, µ ∈ C, <(ρ) > 0. Then by the relation
(1.11) there hold the formula [

Dα
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xρ−α−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ− α, 1)
;x
)

. (4.11)

5 Right -Side Generalized Fractional Integration and Differentiation of Extended

M-Series

Theorem 5.1. Let α, α
′
, β, β

′
, γ ∈ C be a complex number such that <(γ) > 0 and further let τ, δ, ξ, µ ∈

C,<(ρ) > 0, p ≤ q + 1 and |x| < 1. If the condition

<(ρ) < 1 + min
[
<(−β),<(α + α

′
− γ),<(α + β

′
− γ)

]
is satisfied then[
Iα,α′,β,β′,γ
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x) = x

−ρ+γ−α−α′−1

×
ω

p+5Mq+5

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ− γ + α + α′, 1),

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ, 1),

(1 + ρ− β, 1), (1 + ρ− γ + β′ + α, 1)
(1 + ρ + α− β, 1), (1 + ρ + α + α′ + β′ − γ, 1)

;
1
x

)
. (5.1)

Proof. Proof of the theorem is similar to that of Theorem 1.

Corollary 5.1. Let α, β, η, ρ ∈ C be such that condition (1.31) is satisfied, and further let δ, ξ, τ, µ ∈ C,<(ρ) >

0 and |x| < 1. Then by relation (1.24) and (1.32) there hold the formula[
Iα,β,η
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= x−ρ−β−1
ω

p+4Mq+4

(
a1, ..., ap, (1, 1), (τ, ω),
b1, ..., bq, (δ, ω), (ξ, µ),

(1 + ρ + β, 1), (1 + ρ + η, 1)
(1 + ρ, 1), (1 + ρ + α + β + η, 1)

;
1
x

)
. (5.2)
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Corollary 5.2. Let α, ρ ∈ C be such that <(α) > 0 and <(ρ) > 0. Further let δ, ξ, τ, µ ∈ C and |x| < 1 then
the relation (1.9) indicates that equation (5.2) reduces to the following result[

Wα
x,∞

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= x−ρ+α−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ− α, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ, 1)
;
1
x

)
. (5.3)

Corollary 5.3. Let α, η, ρ ∈ C be such that <(α) > 0 and <(ρ) > 0. Further let δ, ξ, τ, µ ∈ C, and |x| < 1
then the relation (1.14) indicates that equation (5.2) reduces to the following result[

Kα,η
x,∞

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= x−ρ−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ + η, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ + α + η, 1)
;
1
x

)
. (5.4)

Theorem 5.2. Let α, α
′
, β, β

′
, γ ∈ C be a complex number such that <(γ) > 0 and further let ρ, δ, τ, ξ, µ ∈

C,<(ρ) > 0, p ≤ q + 1 and |x| < 1. If the condition

<(ρ) < 1 + min
[
<(β

′
),<(γ − α− α

′
− k),<(γ − α

′
− β)

]
is satisfied then [

Dα,α′,β,β′,γ
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x) = x−ρ+γ−α−α′−1

×
ω

p+5Mq+5

(
a1, ..., ap, (1, 1), (ζ, ω), (1 + ρ + γ − α− α′, 1),

b1, ..., bq, (δ, ω), (η, µ), (1 + ρ, 1),

(1 + ρ + β′, 1), (1 + ρ + γ − α′ − β, 1)
(1 + ρ + β

′ − α
′
, 1), (1 + ρ− α− α′ − β + γ, 1)

;
1
x

)
. (5.5)

Proof. It is similar to the previous Theorem.

Corollary 5.4. Let α, β, η, ρ ∈ C be such <(α) ≥ 0,

<(ρ) > −min [<(−β − n),< (α + η)] ,

n = [< (α)] + 1, and further let δ, ξ, τ, µ ∈ C,<(ρ) > 0. Then by the relation (1.26) there hold the formula[
Dα,β,η
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= x−ρ+β−1
ω

p+4Mq+4

(
a1, ..., ap, (1, 1), (τ, ω),
b1, ..., bq, (δ, ω), (ξ, µ),

(1 + ρ− β, 1), (1 + ρ + α + η, 1)
(1 + ρ, 1), (1 + ρ + η − β, 1)

;
1
x

)
. (5.6)

Corollary 5.5. Let α, ρ ∈ C be such <(α) ≥ 0 and further let δ, ξ, τ, µ ∈ C, <(ρ) > 0. Then by the relation
(1.12) there hold the formula [

Dα
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= x−ρ−α−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ + α, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ, 1)
;
1
x

)
. (5.7)
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6 Fractional Integro-Differentiation of Extended M Series

Theorem 6.1. Let α, α
′
, β, β

′
, γ ∈ C be a complex number such that <(γ) > 0 and let ρ, δ, ξ, τ, µ ∈ C,<(ρ) >

0, p ≤ q + 1 and |x| < 1. If the condition

<(ρ) > max [0,<(α + α′ + β − γ),<(α′ − β′)]

is satisfied then [
Iα,α′,β,β′,γ
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x) = xρ+γ−α−α′−1

×
ω

p+5Mq+5

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1),

b1, ..., bq, (δ, ω), (ξ, µ), (ρ + γ − α− α′, 1),

(ρ + γ − α− α′ − β, 1), (ρ + β′ − α′, 1)
(ρ + γ − α′ − β, 1), (ρ + β′, 1)

;x
)

. (6.1)

Proof. To prove (6.1) using equation (1.16) which represent integro-differentiation operator and applying the
same reasoning similar to the Theorem 1. Therefore we omit detail.

If we take α
′
= 0 (6.1), we arrive at

Corollary 6.1. Let α, β, η, ρ ∈ C be such that condition (1.29) is satisfied, and further let δ, ξ, τ, µ ∈ C,<(ρ) >

0 and |x| < 1. Then by relation (1.2) and (1.30) there hold the formula[
Iα,β,η
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xρ−β−1
ω

p+4Mq+4

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1), (ρ− β + η, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ− β, 1), (ρ + α + η, 1)
;x
)

. (6.2)

Theorem 6.2. Let α, α
′
, β, β

′
, γ ∈ C be a complex number such that <(γ) > 0 and further let τ, δ, ξ, µ ∈

C,<(ρ) > 0, p ≤ q + 1 and |x| < 1. If the condition

<(ρ) < 1 + min
[
<(−β),<(α + α

′
− γ),<(α + β

′
− γ)

]
is satisfied then [

Iα,α′,β,β′,γ
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x) = x

−ρ+γ−α−α′−1

×
ω

p+5Mq+5

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ− γ + α + α′, 1),

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ, 1),

(1 + ρ− β, 1), (1 + ρ− γ + β′ + α, 1)
(1 + ρ + α− β, 1), (1 + ρ + α + α′ + β′ − γ, 1)

;
1
x

)
. (6.3)

Proof. In view of (1.18) and (2.1), we have[
Iα,α′,β,β′,γ
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= (−1)n dn

dxn
x−α−α′+γ+n−1

∞∑
k=0

(a1)k...(ap)k(1)kΓ(ζ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(η + µk)k!

×
[
Iα,α′,β,β′+n,γ+n
0+

(
t1+α+α′−γ−n+ρ+k−1

)]( 1
x

)
. (6.4)

With the help of equation (1.27) we arrive at

=
∞∑

k=0

(a1)k...(ap)k(1)k

(b1)k...(bq)k

1
k!
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×Γ(1 + ρ + k + α + α′ − γ − n)Γ(1 + ρ + k − β)Γ(1 + ρ + k + α + β′ − γ)Γ(ζ + ωk)
Γ(1 + ρ + k)Γ(1 + ρ + k + α− β)Γ(1 + ρ + α + α′ − γ + β′)Γ(δ + ωk)Γ(η + µk)

×
(
1 + ρ + k + α + α

′
− γ − n

)
n

x−ρ−k−α−α
′
+γ+n−1.

Finally using formula (a)n = Γ(a+n)
Γ(a) , a 6= 0, the above expression becomes

= x−ρ+γ−α−α′−1
∞∑

k=0

(a1)k...(ap)k(1)k

(b1)k...(bq)k

Γ(1 + ρ + k + α + α′ − γ)
Γ(1 + ρ + k)Γ(1 + ρ + k + α− β)

×Γ(1 + ρ + k − β)Γ(1 + ρ + k + α + β′ − γ)Γ(ζ + ωk)
Γ(1 + ρ + α + α′ − γ + β′)Γ(δ + ωk)Γ(η + µk)

x−k

k!
, (6.5)

which is the required result.

If we take α′ = 0 in (6.3), then the following result holds:

Corollary 6.2. Let α, β, η, ρ ∈ C be such that condition (1.31) is satisfied, and further let δ, ξ, τ, µ ∈ C,<(ρ) >

0 and |x| < 1. Then by relation (1.4) there hold the formula[
Iα,β,η
−

(
t−ρ−1

ω

p+2Mq+2

(
1
t

))]
(x)

= x−ρ−β−1
ω

p+4Mq+4

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ + β, 1), (1 + ρ + η, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ, 1), (1 + ρ + α + β + η, 1)
;
1
x

)
. (6.6)

7 Usual Differentiation of the Extended M-Series

It is know that for the natural α = m ∈ N , the Riemann- Liouville fractional derivative (1.11) is the
usual derivative of order m, while (1.12) coincides with the usual derivative of order m with exactness to the
multiplier (−1)m for example see [18, section 2 and 5]:

(
Dm

0+f
)
(x) =

(
d

dx

)m

f(x),

(
Dm
− f
)
(x) = (−1)m

(
d

dx

)m

f(x) (x > 0) ;

There hold the following result.

Theorem 7.1. Let m ∈ N and let δ, ξ, τ, µ ∈ C, ρ > 0. Then for z ∈ C(z 6= 0) there hold the formula(
d

dx

)m(
zρ−1

ω

p+2Mq+2 (z)
)

= zρ−m−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (ρ−m, 1)
; z
)

, (7.1)

and (
d

dx

)m(
z−ρ−1

ω

p+2Mq+2

(
1
z

))

= (−1)mz−ρ−m−1
ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (1 + ρ + m, 1)

b1, ..., bq, (δ, ω), (ξ, µ), (1 + ρ, 1)
;
1
z

)
. (7.2)

Proof. With the help of corollaries 4.5 and 5.5 we deduce the differentiation formulas for the extended M-series
(2.1). Therefore these relations can be extended from x > 0 to any complex z ∈ C, expect z = 0, and the
condition for their validity can be omitted.
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8 Pathway Fractional Integration of Extended M-Series

The Pathway model is introduced by Mathai [5] and studied further by Mathai and Haubold [6], [7] and
Seema S. Nair [17]. Let f(x) ∈ L(a, b), η ∈ C,<(η) > 0, a > 0 and let us take a pathway parameter α < 1.
Then the pathway fractional integration operator, as an extension of (1.7) is defined as follows:

(
P

(η,α)
0+ f

)
(x) = xη

∫ [ x
a(1−α) ]

0

[
1− a (1− α) t

x

] η
(1−α)

f(t)dt. (8.1)

Theorem 8.1. Let f(x)∈ L(a, b), η, ρ ∈ C,<(η) > 0,<(ρ) > 0, a > 0 and pathway parameter α < 1. Further
let τ, δ, ξ, µ ∈ C, p ≤ q + 1. Then for the pathway fractional integral P

(η,α)
0,+ the following formula holds for the

image of extended M series [
P

(η,α)
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

=
xρ+η

(a (1− α))ρ

ω

p+3Mq+3

(
a1, ..., ap, (1, 1), (τ, ω), (ρ, 1)

b1, ..., bq, (δ, ω), (ξ, µ) , (ρ + η
(1−α) + 1, 1)

;
x

a (1− α)

)
(8.2)

Proof. From Equation (8.1) and (2.1) we have[
P

(η,α)
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

= xη

∫ [ x
a(1−α) ]

0

[
1− a (1− α) t

x

] η
(1−α)

×

( ∞∑
k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)

tρ+k−1

k!

)
dt.

Interchanging the order of integration and summation which is permissible under the condition and which is
stated with the above theorem

= xη
∞∑

k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)
(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)

1
k!

∫ [ x
a(1−α) ]

0

[
1− a (1− α) t

x

] η
(1−α)

tρ+k−1dt.

If we substitute a((1−α)t)
x = u in the above integral, and using Type-1 beta family i.e. B(m, n), it reduced to[

P
(η,α)
0+

(
tρ−1

ω

p+2Mq+2(t)
)]

(x)

=
xρ+η

(a (1− α))ρ

∞∑
k=0

(a1)k...(ap)k(1)kΓ(τ + ωk)Γ (ρ + k)

(b1)k...(bq)kΓ(δ + ωk)Γ(ξ + µk)Γ
(
ρ + η

(1−α) + 1 + k
)

× xk

(a (1− α))k

1
k!

, (8.3)

which is the required result.

Remark 8.1. When α = 0, a = 1, then replacing η by η − 1 in (8.3) the integral operator get the form of
equation (4.5).
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Abstract

In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive

neutral functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using

Sadovskii’s fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear

operators. Finally, an example is provided to illustrate the main results.

Keywords: Damped second order differential equations, impulsive neutral differential equations, controllability, state-dependent

delay, cosine function, mild solution, fixed point.
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1 Introduction

In this paper, we are interested to study the existence and controllability of mild solutions for a damped
second order impulsive neutral functional differential equation with state-dependent delay in Banach spaces.
First, we consider the following class of damped second order impulsive neutral functional differential equation
with state-dependent delay in the form:

d

dt
[x′(t)− g(t, xt)] = Ax(t) +Dx′(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (1.1)

x0 = ϕ ∈ B, x′(0) = η ∈ X, (1.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (1.3)

∆x′(ti) = Ji(xti), i = 1, 2, . . . , n, (1.4)

where A is the infinitesimal generator of a strongly continuous cosine function of bounded linear operator
(C(t))t∈R defined on a Banach space X; the function xs : (−∞, 0] → X, xs(θ) = x(s + θ), belongs to
some abstract phase space B described axiomatically; D is a bounded linear operator on a Banach space
X; 0 < t1 < · · · < tn < a are prefixed numbers; f, g : I × B → X, ρ : I × B → (−∞, a], Ii(·) : B → X,

Ji(·) : B → X are appropriate functions and the symbol ∆ξ(t) represents the jump of the function ξ(·) at t,
which is defined by ∆ξ(t) = ξ(t+)− ξ(t−).

The theory of impulsive differential equations appears as a natural description of several real processes
subject to certain perturbations whose duration is negligible in comparison with the total duration of the
process, such changes can be reasonably well approximated as being instantaneous changes of state, or in the
form of impulses. These process tend to be more suitably modeled by impulsive differential equations, which
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E-mail addresses: nadaf nabisab@yahoo.com (N. Y. Nadaf) and arjunphd07@yahoo.co.in (M. Mallika Arjunan).
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allow for discontinuities in the evolution of the state. For more details on this theory and on its applications,
we refer to the monographs of Lakshmikantham et al. [1], Samoilenko and Perestyuk [2], Bainov and Simeonov
[3], and the papers of [4, 5, 6, 7, 8, 9, 10, 11] and the references therein. Ordinary differential equations of first
and second order with impulses have been treated in several works, see for instance [12, 13]. Abstract partial
differential equations with impulses have been studied by Liu [9], Rogovchenko [10, 11], Chang et al. [4, 43],
and Hernández et al. [27, 28].

In control theory, one of the most important qualitative properties of dynamical systems is controllability.
The problem of controllability is to show the existence of a control function, which steers the solution of the
system from its initial state to final state, where the initial and final states may vary over the entire space.
Many authors has been studied the controllability of nonlinear systems with and without impulses, see for
instance [14, 15, 16, 17, 18, 19, 20]. In dynamical systems damping is another important issue; it may be
mathematically modelled as a force synchronous with the velocity of the object but opposite in direction to it.
Concerning first and second order differential equations with damped term we cite [21, 22, 23, 24, 25] among
some works.

On the other hand, functional differential equations with state-dependent delay appear frequently in ap-
plications as model of equations and for this reason the study of this type of equations has received much
attention in the recent years. The reader is referred to [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42] and
the references therein for some examples and applications. The literature related to second order impulsive
differential system with state-dependent delay is very limited, and related to this matter we only cite [43, 44].
To the best of our knowledge, the study of the existence and controllability system described in the abstract
form (1.1)-(1.4) is an untreated problem, and this fact is the main motivation of this paper.

This paper is organized as follows. In Section 2, we recall some notations, definitions and preliminary facts
which will be used throughout this paper. In Section 3, we establish sufficient conditions for the existence of
mild solutions for the problem (1.1)-(1.4) by using Sadovskii’s fixed point theorem combined with the theories
of a cosine family of bounded linear operators. In Section 4, we study controllability results for the problem
(1.1)-(1.4). In Section 5, we present some examples to show the application of the results.

2 Preliminaries

In this section, we recall briefly some notations, definitions and lemmas needed to establish our main results.
Throughout this paper, A is the infinitesimal generator of a strongly continuous cosine function of bounded

linear operators (C(t))t∈R on Banach space (X, ‖ · ‖).

Definition 2.1. A one parameter family (C(t))t∈R of bounded linear operators mapping the Banach space X
into itself is called a strongly continuous cosine family iff

(i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

(ii) C(0) = I;

(iii) C(t)x is continuous in t on R for each fixed x ∈ X.

We denote by (S(t))t∈R the sine function associated with (C(t))t∈R which is defined by S(t)x =
∫ t
0
C(s)xds, x ∈

X, t ∈ R and we always assume that N and N are positive constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ N ,
for every t ∈ I. The infinitesimal generator of a strongly continuous cosine family (C(t))t∈R is the operator
A : X → X defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where D(A) = {x ∈ X : C(t)x is twice differentiable in t}. Define E = {x ∈ X : C(t)x is once continuously
differentiable in t}.

The following properties are well known [45]:

(i) If x ∈ X then S(t)x ∈ E for every t ∈ R.

(ii) If x ∈ E then S(t)x ∈ D(A), ( ddt )C(t)x = AS(t)x and ( d
2

dt2 )S(t)x = S(t)x for every t ∈ R.
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(iii) If x ∈ D(A) then C(t)x ∈ D(A), and ( d
2

dt2 )C(t)x = AC(t)x = C(t)Ax for every t ∈ R.

(iv) If x ∈ D(A) then S(t)x ∈ D(A), and ( d
2

dt2 )S(t)x = AS(t)x = S(t)Ax for every t ∈ R.

In this paper, [D(A)] stands for the domain of the operator A endowed with the graph norm ‖x‖A = ‖x‖+‖Ax‖,
x ∈ D(A). Moreover, in this work, E is the space formed by the vectors x ∈ X for which C(·)x is of class C1

on R. It was proved by Kisinsky [46] that E endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E, (2.1)

is a Banach space. The operator valued function G(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of

bounded linear operators on the space E×X generated by the operator A =
[

0 I

A 0

]
defined on D(A)×E.

It follows from this that AS(t) : E → X is a bounded linear operator and that AS(t)x → 0, t → 0, for each
x ∈ E. Furthermore, if x : [0,∞) → X is a locally integrable function, then z(t) =

∫ t
0
S(t− s)x(s)ds defines an

E-valued continuous function. This is a consequence of the fact that∫ t

0

G(t− s)
[

0
x(s)

]
ds =

[ ∫ t

0

S(t− s)x(s) ds,
∫ t

0

C(t− s)x(s) ds
]T

defines an E ×X-valued continuous function.
The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), 0 ≤ t ≤ a, (2.2)

x(0) = z, x′(0) = w, (2.3)

where h : I → X is an integrable function has been discussed in [45]. Similarly, the existence of solutions of
the semilinear second order abstract Cauchy problem it has been treated in [47]. We only mention here that
the function x(·) given by

x(t) = C(t)z + S(t)w +
∫ t

0

S(t− s)h(s)ds, 0 ≤ t ≤ a, (2.4)

is called mild solution of (2.2)-(2.3), and that when z ∈ E, x(·) is continuously differentiable and

x′(t) = AS(t)z + C(t)w +
∫ t

0

C(t− s)h(s)ds, 0 ≤ t ≤ a. (2.5)

For additional details about cosine function theory, we refer to the reader to [45, 47].
To consider the impulsive conditions (1.3)-(1.4), it is convenient to introduce some additional concepts and

notations.
A function u : [σ, τ ] → X is said to be a normalized piecewise continuous function on [σ, τ ] if u is piece-

wise continuous and left continuous on (σ, τ ]. We denote by PC([σ, τ ], X) the space of normalized piecewise
continuous functions from [σ, τ ] into X. In particular, we introduce the space PC formed by all normalized
piecewise continuous functions u : [0, a] → X such that u is continuous at t 6= ti, i = 1, . . . , n. It is clear that
PC endowed with the norm ‖ u ‖PC= sups∈I ‖ u(s) ‖ is a Banach space.

In what follows, we set t0 = 0, tn+1 = a, and for u ∈ PC we denote by ũi, for i = 0, 1, ..., n − 1, the
function ũi ∈ C([ti, ti+1];X) given by ũi(t) = u(t) for t ∈ (ti, ti+1] and ũi(ti) = limt→t+i

u(t). Moreover, for a

set B ⊆ PC, we denote by B̃i, for i = 0, 1, ..., n− 1, the set B̃i = {ũi : u ∈ B}.

Lemma 2.1. [48] A set B ⊆ PC is relatively compact in PC if, and only if, each set B̃i, i = 0, 1, · · · , n− 1, is
relatively compact in C([ti, ti+1], X).

In this work we will employ an axiomatic definition of the phase space B, which has been used in [48] and
suitably modified to treat retarded impulsive differential equations. Specifically, B will be a linear space of
functions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B and we will assume that B satisfies the
following axioms:
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(A) If x : (−∞, σ + b] → X, b > 0, is such that xσ ∈ B and x|[σ,σ+b] ∈ PC([σ, σ + b], X), then for every
t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,

(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t− σ) sup{‖ x(s) ‖: σ ≤ s ≤ t}+M(t− σ) ‖ xσ ‖B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally bounded, and H,K,M
are independent of x(·).

(B) The space B is complete.

For more details about phase space axioms and examples, we refer the reader to [40].
Additional terminologies and notations used in the sequel are standard in functional analysis. In particular,

for Banach spaces (Z, ‖ · ‖Z), (W, ‖ · ‖W ), the notation L(Z,W ) stands for the Banach space of bounded linear
operators from Z into W and we abbreviate to L(Z) whenever Z = W . Additionally, Br(x,Z) denotes the
closed ball with center at x and radius r > 0 in Z.

Our main results are based upon the following well-known result.

Lemma 2.2. [49, Sadovskii’s Fixed Point Theorem] Let G be a condensing operator on a Banach space X. If
G(S) ⊂ S for a convex, closed and bounded set S of X, then G has a fixed point in S.

3 Existence Results

In this section we discuss the existence of mild solutions for the abstract system (1.1)-(1.4). We also suppose
that ρ : I × B → (−∞, a] is a continuous function. Additionally, we introduce following conditions.

(Hϕ) Let R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ I×B, ρ(s, ψ) ≤ 0}. The function t→ ϕt is well defined from R(ρ−) into B
and there exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖ ϕt ‖B≤ Jϕ(t) ‖ ϕ ‖B
for every t ∈ R(ρ−).

(H1) The function f : I × B → X satisfies the following conditions:

(i) Let x : (−∞, a] → X be such that x0 = ϕ and x|I ∈ PC. The function t→ f(t, xρ(t,xt)) is measurable
on I and the function t→ f(s, xt) is continuous on R(ρ−) ∪ I for every s ∈ I.

(ii) For each t ∈ I, the function f(t, ·) : B → X is continuous.

(iii) There exist an integrable function m : I → [0,∞) and a continuous nondecreasing function W :
[0,∞) → (0,∞) such that for every (t, ψ) ∈ I × B

‖ f(t, ψ) ‖ ≤ m(t)W (‖ ψ ‖B), lim inf
ξ→∞

W (ξ)
ξ

= Λ <∞.

(H2) The function g : I × B → X is continuous and there exists Lg > 0 such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lg‖ψ1 − ψ2‖B, (t, ψi) ∈ I × B, i = 1, 2.

(H3) There exist positive constants c1, c2 such that ‖g(t, ψ)‖ ≤ c1‖ψ‖B + c2, for every (t, ψ) ∈ I × B.

(H4) There are positive constants LIi
, LJi

such that

‖Ii(ψ1)− Ii(ψ2)‖ ≤ LIi
‖ψ1 − ψ2‖B, ψj ∈ B, i = 1, 2, . . . , n,

‖Ji(ψ1)− Ji(ψ2)‖ ≤ LJi‖ψ1 − ψ2‖B, ψj ∈ B, i = 1, 2, . . . , n.

(H5) The maps Ii, Ji : B → X, i = 1, 2, . . . , n are completely continuous and there exist continuous nonde-
creasing functions λi, µi : [0,∞) → (0,∞), i = 1, 2, . . . , n, such that

‖Ii(ψ)‖ ≤ λi(‖ψ‖B), lim inf
ζ→+∞

λi(ζ)
ζ

= ζi <∞, and

‖Ji(ψ)‖ ≤ µi(‖ψ‖B), lim inf
ζ→+∞

µi(ζ)
ζ

= ηi <∞.
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Remark 3.1. The condition Hϕ is frequently satisfied by functions that are continuous and bounded. In
fact, assume that the space of continuous and bounded functions Cb((−∞, 0], X) is continuously included in
B. Then, there exists L > 0 such that

‖ ϕt ‖B≤ L
supθ≤0 ‖ ϕ(θ) ‖

‖ ϕ ‖B
‖ ϕ ‖B, t ≤ 0, ϕ 6= 0, ϕ ∈ Cb((−∞, 0] : X).

It is easy to see that the space Cb((−∞, 0], X) is continuously included in PCg(X) and PC0
g (X). Moreover,

if g(·) verifies (g-5)-(g-6) in [? ] and g(·) is integrable on (−∞,−r], then the space Cb((−∞, 0], X) is also
continuously included in PCr ×Lp(g;X). For complementary details related this matter, see Proposition 7.1.1
and Theorems 1.3.2 and 1.3.8 in [50].

If x(·) is a solution of (1.1)-(1.4), then from (2.4), we adopt the following concept of mild solution,

x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, xs)ds+
∫ t

0

S(t− s)[Dx′(s) + f(s, xρ(s,xs))]ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Inspired from the above expression, we present the following definition.

Definition 3.1. A function x : (−∞, a] → X is called a mild solution of the abstract Cauchy problem (1.1)-
(1.4) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, xs)ds+
j−1∑
i=0

[S(t− ti+1)Dx(t−i+1)− S(t− ti)Dx(t+i )]

− S(t− tj)Dx(t+j ) +
∫ c

0

C(t− s)Dx(s)ds+
∫ t

0

S(t− s)f(s, xρ(s,xs))ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Remark 3.2. In the rest of this paper, y : (−∞, a] → X is the function defined by y(t) = ϕ(t) on (−∞, 0]
and y(t) = C(t)ϕ(0) + S(t)ζ for t ∈ I. In addition, ‖ y ‖a, Ma, Ka, and Jϕ0 are the constants defined by
‖ y ‖a= sup

s∈[0,a]

‖ y(s) ‖, Ma = sup
s∈[0,a]

M(s), Ka = sup
s∈[0,a]

K(s) and Jϕ0 = sup
t∈R(ρ−)

Jϕ(t).

Lemma 3.1. [51, Lemma 2.1] Let x : (−∞, a] → X be a function such that x0 = ϕ and x|I ∈ PC. Then

‖ xs ‖B≤ (Ma + Jϕ0 ) ‖ ϕ ‖B +Ka sup{ ‖ x(θ) ‖; θ ∈ [0, max{0, s}] }, s ∈ R(ρ−) ∪ I.

Theorem 3.1. Let conditions (Hϕ), (H1)− (H4) be hold and assume that S(t) is compact for every t ∈ R. If

Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi
+NLJi

)
]
< 1,

then the problem (1.1)-(1.4) has at least one mild solution on (−∞, a].

Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform convergence topology, we define
the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ c

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and our assumptions on ϕ,
we infer that Γx ∈ PC.
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Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds

+
n∑
i=1

N(LIi‖x̄ti − yti‖B + ‖Ii(yti)‖) +
n∑
i=1

N(LJi‖x̄ti − yti‖B + ‖Ji(yti)‖)

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKar +N

∫ tr

0

(c1‖ys‖B + c2)ds+ 3N‖D‖r + aN‖D‖r

+NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka ‖ y ‖a)
∫ a

0

m(s)ds

+
n∑
i=1

N(LIi
Kar + ‖Ii(yti)‖) +

n∑
i=1

N(LJi
Kar + ‖Ji(yti)‖),

and hence

1 ≤ Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi +NLJi)
]
,

which is contrary to our assumption.
Let r > 0 be such that Γ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove that Γ is a condensing map on

Br(y|I , Y ) into Br(y|I , Y ). We introduce the decomposition Γ = Γ1 + Γ2 where

Γ1x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ a

0

C(t− s)Dx̄(s)ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti).

Γ2x(t) =
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds.

From the proof of [39, Theorem 3.4], we conclude that Γ2 is completely continuous. Moreover, from the estimate

‖Γ1x− Γ1z‖PC ≤ aNLgKa‖x− z‖PC + 3N‖D‖‖x− z‖PC + aN‖D‖‖x− z‖PC

+Ka

n∑
i=1

(NLIi
+NLJi

)‖x− z‖PC

≤ Ka[aNLg +
1
Ka

(3N + aN)‖D‖+
n∑
i=1

(NLIi
+NLJi

)]‖x− z‖PC .

It follows that Γ1 is contraction on Br(y|I , Y ), which implies that Γ is a condensing operator on Br(y|I , Y ).
Finally, from Lemma 2.2, we infer that there exists a mild solution of (1.1)-(1.4). The completes the

proof.

Theorem 3.2. Let conditions (Hϕ), (H1)− (H3) and (H5) be hold and assume that S(t) is compact for every
t ∈ R. If

Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
]
< 1,

then there exists a mild solution of (1.1)-(1.4).
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Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform convergence topology, we define
the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ c

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From axiom (A) and our assumptions on ϕ, we
infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1 we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+N
n∑
i=1

‖Ii(x̄ti)‖+N
n∑
i=1

‖Ji(x̄ti)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka ‖ y ‖a)
∫ a

0

m(s)ds

+N
n∑
i=1

λi(‖x̄ti‖B) +N
n∑
i=1

µi(‖x̄ti‖B).

Since λi and µi are nondecreasing operators, we have

r < NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka ‖ y ‖a)
∫ a

0

m(s)ds

+N
n∑
i=1

λi(r∗) +N
n∑
i=1

µi(r∗),

where ‖x̄ti‖B ≤ r∗ = (Ma + Jφ0 )‖ϕ‖B +Ka(r + ‖y‖a)
and hence

1 ≤ Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
]
,

which contradicts to our assumption.
Arguing as in the proof of Theorem 3.1, we can prove that Γ(·) is a condensing map on Br(y|I , Y ) and, from

Lemma 2.2, we conclude that there exists a mild solution x(·) for (1.1)-(1.4). The proof is now complete.

4 Controllability results

In this section, we shall establish sufficient conditions for the controllability of mild solutions for a damped
second order impulsive neutral functional differential equation with state-dependent delay. More precisely, we
consider the following abstract control system in the form:

d

dt
[x′(t)− g(t, xt)] = Ax(t) +Dx′(t) +Bu(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (4.1)
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x0 = ϕ ∈ B, x′(0) = η ∈ X, (4.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (4.3)

∆x′(ti) = Ji(xti), i = 1, 2, . . . , n, (4.4)

where A,D, f, Ii and Ji are defined as in equations (1.1)-(1.4), the control function u(·) given in L2(I, U), a
Banach space of admissible control functions with U as a Banach space and B : U → X is a bounded linear
operator on a Banach space X with D(D) ⊂ D(A).

Furthermore, we assume the following conditions:

(H1)′ The function f : I × B → X satisfies the following conditions:

(i) The function f : I × B → X is completely continuous.

(ii) For every positive constant r, there exists an αr ∈ L1(r) such that

sup
‖ψ‖≤r

‖f(t, ψ)‖ ≤ αr(t).

(H6) B is continuous operator from U to X and the linear operator W : L2(I, U) → X, defined by

Wu =
∫ a

0

S(a− s)Bu(s)ds,

has a bounded invertible operator, W−1 which takes the values in L2(I, U)/KerW such that ‖B‖ ≤ M1 and
‖W−1‖ ≤M2 for some positive integers M1,M2.

Definition 4.1. The system (4.1)-(4.4) is said to be controllable on the interval [0, a] if for every x0 = ϕ ∈
B, x′(0) = η ∈ X and x1 ∈ X, there exists a control u ∈ L2(J, U) such that the mild solution x(t) of (4.1)-(4.4)
satisfies x(a) = x1.

Definition 4.2. A functions x : (−∞, a] → X is called a mild solution of the abstract Cauchy problem (4.1)-
(4.4) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, xs)ds+
j−1∑
i=0

[S(t− ti+1)Dx(t−i+1)− S(t− ti)Dx(t+i )]

− S(t− tj)Dx(t+j ) +
∫ t

0

C(t− s)Dx(s)ds+
∫ t

0

S(t− s)
[
Bu(s) + f(s, xρ(s,xs))

]
ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Theorem 4.1. Let conditions (Hϕ), (H1)−(H6) and (H1)′ be hold. Then the system (4.1)-(4.4) is controllable
on (−∞, a] provided that

(1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi +NLJi)
)]

< 1,

Proof. Consider the space Y = {x ∈ PC;u(0) = ϕ(0)} endowed with the uniform convergence topology. Using
the assumption (H6), for an arbitrary function x(·), we define the control

u(t) = W−1
[
x1 − C(a)ϕ(0)− S(t)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, xs)ds−
j−1∑
i=0

[S(a− ti+1)Dx(t−i+1)

− S(a− ti)Dx(t+i )] + S(a− tj)Dx(t+j )−
∫ a

0

C(a− s)Dx(s)ds−
∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
∑

0<ti<a

C(a− ti)Ii(xti)−
∑

0<ti<a

S(a− ti)Ji(xti)
]
(t).

Using this control, we shall show that the operator Γ : Y → Y defined by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)
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−S(t− ti)Dx̄(t+i )]− S(t− tj)Dx̄(t+j ) +
∫ t

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds

+
∫ t

0

S(t− ξ)BW−1
[
x1 − C(a)ϕ(0)− S(a)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, x̄s)ds

−
j−1∑
i=0

[S(a− ti+1)Dx̄(t−i+1)− S(a− ti)Dx̄(t+i )] + S(a− tj)Dx̄(t+j )−
∫ a

0

C(a− s)Dx̄(s)ds

−
∑

0<ti<a

C(a− ti)Ii(x̄ti)−
∑

0<ti<a

S(a− ti)Ji(x̄ti)
]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system (4.1)-(4,4). Clearly, (Γx)(a) =
x1, which means that the control u steers the system from the initial state ϕ to x1 in time a, provided we
obtain a fixed point of the operator which implies that the system is controllable. Here x̄ : (−∞, a] → X is
such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and our assumptions on ϕ, we infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B

+N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+
n∑
i=1

N(LIi
‖x̄ti − yti‖B + ‖Ii(yti)‖)

+
n∑
i=1

N(LJi
‖x̄ti − yti‖B + ‖Ji(yti)‖)

]
+

n∑
i=1

N(LIi
‖x̄ti − yti‖B + ‖Ii(yti)‖)

+
n∑
i=1

N(LJi
‖x̄ti − yti‖B + ‖Ji(yti)‖)

r ≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW
(
(Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a

)∫ a

0

m(s)ds

+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds

+N
∫ tr

0

(c1‖ys‖B + c2)ds+ 3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds

+
n∑
i=1

N(LIi
Kar + ‖Ii(yti)‖) +

n∑
i=1

N(LJi
Kar + ‖Ji(yti)‖)

]
+

n∑
i=1

N(LIiKar + ‖Ii(yti)‖) +
n∑
i=1

N(LJiKar + ‖Ji(yti)‖),

and hence

1 ≤ (1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi +NLJi)
)]
,

which contradicts to our assumption.
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Let r > 0 be such that Γ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove that Γ is a condensing map on
Br(y|I , Y ) into Br(y|I , Y ). We introduce the decomposition Γ = Γ1 + Γ2 where

Γ1x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ a

0

C(t− s)Dx̄(s)ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti).

Γ2x(t) =
∫ t

0

S(t− s)
[
f(s, x̄ρ(s,x̄s)) +Bu(s)

]
ds.

Now

‖Bu(s)‖ ≤ ‖B‖‖W−1‖
[
‖x1‖+ ‖C(a)‖‖ϕ(0)‖+ ‖S(t)‖

[
‖η‖+ ‖g(0, ϕ)‖

]
+
∫ a

0

‖C(a− s)‖‖g(s, x̄s)ds‖

+
j−1∑
i=0

[‖S(a− ti+1)‖‖D‖‖x̄(t−i+1)‖+ ‖S(a− ti)‖‖D‖‖x̄(t+i )]‖+ ‖S(a− tj)‖‖D‖‖x̄(t+j )‖

+
∫ a

0

‖C(a− s)‖‖D‖‖x̄(s)‖ds+
∫ a

0

‖S(a− s)‖‖f(s, x̄ρ(s,x̄s))‖ds+
∑

0<ti<a

‖C(a− ti)‖‖Ii(x̄ti)‖

+
∑

0<ti<a

‖S(a− ti)‖‖Ji(x̄ti)‖
]

≤M1M2

[
‖x1‖+NH‖ϕ‖B +N

[
‖η‖+ c1‖ϕ‖+ c2

]
+N

∫ a

0

(c1‖x̄s‖+ c2)ds+ 3N‖D‖r + aN‖D‖r

+N

∫ a

0

αr(s)ds+N
n∑
i=1

λi‖x̄ti‖+
n∑
i=1

µi‖x̄ti‖
]

≤M1M2

[
‖x1‖+NH‖ϕ‖B +N

[
‖η‖+ c1‖ϕ‖+ c2

]
+ aN(c1r + c2) + 3N‖D‖r + aN‖D‖r

+N

∫ a

0

αr(s)ds+
n∑
i=1

r(Nλi +Nµi)
]

= A0.

Here by applying the same technique that is used in the proof of [16, Lemma 3.1], we arrived that Γ2 is
completely continuous.

Next, we show that Γ1 is contraction on Br(y|I , Y ). Indeed, x, z ∈ Br(y|I , Y ), we have

‖Γ1x− Γ1z‖PC ≤ aN‖D‖‖x− z‖PC + aNLgKa‖x− z‖PC + 3N‖D‖‖x− z‖PC +
n∑
i=1

NLIi
Ka‖x− z‖PC

+
n∑
i=1

NLJi
Ka‖x− z‖PC

≤ Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+
n∑
i=1

(NLIi +NLJi)
]
‖x− z‖PC .

It follows that Γ1 is a contraction on Br(y|I , Y ) which implies that Γ is a condensing operator on Br(y|I , Y ).
Finally, from the Sadovskii’s Fixed Point Theorem, Γ has a fixed point on Y . This means that any fixed

point of Γ is a mild solution of the problem (4.1)-(4.4). This completes the proof.

Theorem 4.2. Let conditions (Hϕ), (H1) − (H3), (H5) and (H1)′ be hold. Then the system (4.1)-(4.4) is
controllable on (−∞, a] provided that

(1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
)]

< 1.

Proof. Consider the space Y = {x ∈ PC;u(0) = ϕ(0)} endowed with the uniform convergence topology. Using
the assumption (H6), for an arbitrary function x(·), we define the control

u(t) = W−1
[
x1 − C(a)ϕ(0)− S(t)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, xs)ds−
j−1∑
i=0

[S(a− ti+1)Dx(t−i+1)
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− S(a− ti)Dx(t+i )] + S(a− tj)Dx(t+j )−
∫ a

0

C(a− s)Dx(s)ds−
∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
∑

0<ti<a

C(a− ti)Ii(xti)−
∑

0<ti<a

S(a− ti)Ji(xti)
]
(t).

Using this control, we shall show that the operator Γ : Y → Y defined by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)

−S(t− ti)Dx̄(t+i )]− S(t− tj)Dx̄(t+j ) +
∫ t

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds

+
∫ t

0

S(t− ξ)BW−1
[
x1 − C(a)ϕ(0)− S(a)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, x̄s)ds

−
j−1∑
i=0

[S(a− ti+1)Dx̄(t−i+1)− S(a− ti)Dx̄(t+i )] + S(a− tj)Dx̄(t+j )−
∫ a

0

C(a− s)Dx̄(s)ds

−
∑

0<ti<a

C(a− ti)Ii(x̄ti)−
∑

0<ti<a

S(a− ti)Ji(x̄ti)
]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system (4.1)-(4,4). Clearly, (Γx)(a) =
x1, which means that the control u steers the system from the initial state ϕ to x1 in time a, provided we
obtain a fixed point of the operator which implies that the system is controllable. Here x̄ : (−∞, a] → X is
such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and our assumptions on ϕ, we infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B

+N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+N
n∑
i=1

λi(‖x̄ti‖B)

+N
n∑
i=1

µi(‖x̄ti‖B)
]

+N
n∑
i=1

λi(‖x̄ti‖B) +N
n∑
i=1

µi(‖x̄ti‖B).

Since λi and µi are non-decreasing operators, we have

r ≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW
(
(Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a

)∫ a

0

m(s)ds

+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds

+N
∫ tr

0

(c1‖ys‖B + c2)ds+ 3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+N
n∑
i=1

λi(r∗)

+N
n∑
i=1

µi(r∗)
]

+N
n∑
i=1

λi(r∗) +N
n∑
i=1

µi(r∗),
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where ‖x̄ti‖B ≤ r∗ = (Ma + Jφ0 )‖ϕ‖B +Ka(r + ‖y‖a)
and hence

1 ≤ (1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
)]
,

which contradicts to our assumption.
Arguing as in the proof of Theorem 4.1, we can prove that Γ(·) is a condensing map on Br(y|I , Y ) and,

from Lemma 2.2, we conclude that there exists a mild solution x(·) for (4.1)-(4.4). The proof is now completed.

5 An example

In this section, we consider an application of our abstract results. We choose the space X = L2([0, π]),B =
PC0×L2(g,X) is the space introduced in [50] and A : D(A) ⊂ X → X is the operator defined by Au = u′′ with
domain D(A) = {u ∈ X : u′′ ∈ X,u(0) = u(π) = 0}. It is well-known that A is the infinitesimal generator of
a strongly continuous cosine family (C(t))t∈R on X. Furthermore, A has a discrete spectrum, the eigenvalues
are −n2, for n ∈ N, with corresponding eigenvectors zn(τ) =

(
2
π

)1/2 sin(nτ), and the following properties hold.

(a) The set of functions {zn : n ∈ N} forms an orthonormal basis of X.

(b) If x ∈ D(A), then Ax = −
∑∞
n=1 n

2〈x, xn〉xn, for ϕ ∈ D(A).

(c) For x ∈ X, C(t)x =
∑∞
n=1 cos (nt)〈x, xn〉xn and the associated sine family is

S(t)x =
∞∑
n=1

sin(nt)
n

〈x, xn〉xn,

which implies that the operator S(t) is compact, for all t ∈ R and that ‖C(t)‖ = ‖S(t)‖ = 1, for all t ∈ R.

(d) If G is the group of translations on X defined by G(t)x(ζ) = x̃(ζ + t), where x̃(·) is the extension of x(·)
with period 2π, then C(t) = 1

2

[
Φ(t) + Φ(−t)

]
and A = B2, where B is the infinitesimal generator of Φ

and E = {x ∈ H1(0, π) : x(0) = x(π) = 0} ( see [52] for details).

5.1 Second order neutral system
Consider the following second order damped impulsive neutral differential system with state-dependent

delay

∂

∂t

[ ∂
∂t
w(t, ζ) +

∫ t

−∞

∫ π

0

b(t− s, η, ζ)w(s, η)dηds
]

=
∂2

∂ζ2
w(t, ζ) + α

∂

∂t
w(t, ζ) +

∫ π

0

β(s)
∂

∂t
w(t, s)ds

+
∫ t

−∞
k(s− t)w(s− ρ1(t)ρ2(‖w(t)‖), ζ)ds, t ∈ I, ζ ∈ [0, π] (5.1)

w(t, 0) = w(t, π) = 0, t ∈ I (5.2)
∂

∂t
w(0, ζ) = ζ(π), (5.3)

w(τ, ζ) = ϕ(τ, ζ), τ ≤ 0, 0 ≤ ζ ≤ π (5.4)

4w(ti)(ζ) =
∫ ti

−∞
bi(ti − s)w(s, ζ)ds, i = 1, 2, . . . , n, (5.5)

4w′(ti)(ζ) =
∫ ti

−∞
b̃i(ti − s)w(s, ζ)ds, i = 1, 2, . . . , n, (5.6)

where we assume that ϕ ∈ B with the identity ϕ(s)(ζ) = ϕ(s, ζ), ϕ(0, ·) ∈ H1([0, π]) and 0 < t1 < t2 < · · · < a.
Here α is a prefixed real number and β ∈ L2([0, π]).

Let the functions ρi : [0,∞) → [0,∞), i = 1, 2, ; k : R → R are continuous, Lf =
( ∫ 0

−∞
(a2(s))
g(s) ds

) 1
2
< ∞,

and that the following conditions hold:
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(a) The functions bi, b̃i ∈ C(R,R) and LIi
:=
(∫ 0

−∞
b2i (s)
g(s) ds

) 1
2
, LJi

:=
(∫ 0

−∞
b̃2i (s)
g(s) ds

) 1
2
, i = 1, · · · , n, are

finite.

(b) The functions b(s, η, ζ), ∂b(s,η,ζ)∂ζ are measurable, b(s, η, π) = b(s, η, 0) = 0 and

Lg = max


(∫ π

0

∫ 0

−∞

∫ π

0

1
g(s)

(
∂ib(s, η, ζ)

∂ζi

)2

dηdsdζ

) 1
2

: i = 0, 1

 <∞.

Define the functions D : X → X, g, f : J × B → X, ρ : I × B → X, Ii : B → X and Ji : B → X by

Dψ(ζ) = αψ(t, ζ) +
∫ π

0

β(s)ψ(t, s)ds,

f(ψ)(ζ) =
∫ 0

−∞
k(s)ψ(s, ζ)ds,

g(ψ)(ζ) =
∫ 0

−∞

∫ π

0

b(s, ν, ζ)ψ(s, ν)dνds,

ρ(s, ψ) = s− ρ1(s)ρ2(‖ψ(0)‖),

Ii(ψ)(ζ) =
∫ 0

−∞
bi(−s)ψ(s, ζ)ds, i = 1, 2, . . . , n,

Ji(ψ)(ζ) =
∫ 0

−∞
b̃i(−s)ψ(s, ζ)ds, i = 1, 2, . . . , n.

With the choice of A,D, f, g, ρ, Ii and Ji, the system (1.1)-(1.4) is the abstract formulation of (5.1)-(5.6).
Moreover, the maps D, g, f, Ii, Ji, i = 1, 2, . . . , n are bounded linear operators with

‖D‖L(X) ≤ |α|+ ‖β‖L2(0,a), ‖g(t, ·)‖L(B,X) ≤ Lg, ‖f(t, ·)‖L(B,X) ≤ Lf , ‖Ii‖L(B,X) ≤ LIi , ‖Ji‖L(B,X) ≤ LJi .
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Abstract

This paper is concerned with the global relative controllability of fractional stochastic dynamical systems with

multiple delays in control for finite dimensional spaces. Sufficient conditions for controllability results are obtained

using Banach fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler

matrix function. An example is provided to illustrate the theory.
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1 Introduction

Control theory is an important area of application oriented mathematics which deals with the design and
analysis of control systems. In particular, the concept of controllability plays an important role in both the
deterministic and the stochastic control theory. In recent years, controllability problems for various types of
nonlinear dynamical systems in infinite dimensional spaces by using different kinds of approaches have been
considered in many publications. An extensive list of these publications can be found (see [2, 3, 6, 17] and
the references therein). Moreover, the exact controllability enables to steer the system to arbitrary final state
while approximate controllability means that the system can be steered to arbitrary small neighborhood of
final state. Klamka [8] derived a set of sufficient conditions for the exact controllability of semilinear systems.
Further, approximate controllable systems are more prevalent and very often approximate controllability is
completely adequate in applications. The approximate controllability of systems represented by nonlinear
evolution equations has been investigated by several authors [9, 13, 14, 18], in which the authors effectively
used the fixed point approach. Fu and Mei [6] studied the approximate controllability of semilinear neutral
functional differential systems with finite delay. The conditions are established with the help of semigroup
theory and fixed point technique under the assumption that the linear part of the associated nonlinear system
is approximately controllable.

Stochastic differential equations have many applications in economics, ecology and finance. In recent years,
the controllability problems for stochastic differential equations have become a field of increasing interest, (see
[10, 11, 19] and references therein). The extensions of deterministic controllability concepts to stochastic control
systems have been discussed only in a limited number of publications.

We would like to mention that controllability and approximate controllability of fractional dynamical systems
with or without delay in control have been considered by a few authors (see, for instance [1, 5, 20]). As for the
stochastic systems, there are less number of papers on the controllability and the approximate controllability of
fractional stochastic dynamical systems with delay in control. Recently, Sakthivel et al. [16] established a set of
sufficient conditions for obtaining the approximate controllability of semilinear fractional differential systems in

∗Corresponding author.

E-mail addresses: tf.guendouzi@gmail.com (Toufik Guendouzi) and iqbalhamada@gmail.com (Iqbal Hamada).
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Hilbert spaces. The same author in [15] prove the approximate controllability of nonlinear fractional stochastic
control system under the assumptions that the corresponding linear system is approximately controllable.
More recently, the approximate controllability of neutral stochastic fractional integro-differential equation with
infinite delay in a Hilbert space by using Krasnoselskii’s fixed point theorem and stochastic analysis theory has
been discussed in [18]. The authors derived a new set of sufficient conditions for the approximate controllability
of nonlinear fractional stochastic system under the assumption the corresponding linear system is approximately
controllable. Shen [21] studied the relative controllability of stochastic nonlinear systems with delay in control.
However, to the best of our knowledge, there are no relevant reports on the relative controllability of fractional
stochastic dynamical systems with multiple delay in control as treated in the current paper. Motivated by this
consideration, in this article we will study the global relative controllability problem for fractional stochastic
dynamical systems with multiple delays in control variables for finite dimensional spaces. Sufficient conditions
for the controllability results are obtained by using the Banach fixed point theorem and fractional calculus. The
paper is organized as follows: In Section 2, some well known fractional operators and special functions, along
with a set of properties are defined and the solution representation of linear fractional stochastic differential
equations are derived using Laplace transform for further discussion. In Section 3, the linear and nonlinear
stochastic fractional dynamical systems with multiple delays in control are proposed and the controllability
condition is established using the controllability Grammian matrix which is defined by means of the Mittag-
Leffler matrix function. In Section 4, example is discussed to illustrate the effectiveness of our results. Finally,
concluding remarks are given in Section 5.

2 Preliminaries

Let (Ω,F , IP) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.
right continuous and F0 containing all IP-null sets). Let α, β > 0, with n − 1 < α < n, n − 1 < β < n and
n ∈ IN, D is the usual differential operator. Let IRm be the m-dimensional Euclidean space, IR+ = [0,∞), and
suppose f ∈ L1(IR+). The following definitions and properties are well known, for α, β > 0 and f as a suitable
function (see, for instance, [7]):

(a) Riemann-Liouville fractional operators:

(Iα
0+f)(x) =

1
Γ(α)

∫ x

0

(x− t)α−1f(t)dt,

(Dα
0+f)(x) = Dn(In−α

a+ f)(x).

(b) Caputo fractional derivative:
(cDα

0+f)(x) = (In−α
0+ Dnf)(x),

in particular Iα
0+

cDα
0+f(t) = f(t)− f(0), (0 < α < 1).

The following is a well known relation, for finite interval [a, b] ∈ IR+

(Dα
a+f)(x) = (cDα

a+f)(x) +
n−1∑
k=0

f (k)(a)
Γ(1 + k − α)

(x− a)k−α, n = R(α) + 1.

The Laplace transform of the Caputo fractional derivative is

L{cDα
0+f(t)} = sαF (s)−

n−1∑
k=0

f (k)(0+)sα−1−k.

The Riemann-Liouville fractional derivatives have singularity at zero and the fractional differential equations
in the Riemann-Liouville sense require initial conditions of special form lacking physical interpretation. To
overcome this difficulty Caputo introduced a new definition of fractional derivative but in general, both the
Riemann-Liouville and the Caputo fractional operators possess neither semigroup nor commutative properties,
which are inherent to the derivatives on integer order. Due to this fact, the concept of sequential fractional
differential equations are discussed in [7].
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(c) Linear Sequential Derivative:
For n ∈ IN the sequential fractional derivative for suitable function f is defined by

f (kα) := (Dkαf)(x) = (DαD(k−1)αf)(x),

where k = 1, . . . , n, (Dαf)(x) = f(x), and Dα is any fractional differential operator, here we mention it as cDα
0+.

(d) Mittag-Leffler Function

Eα,β(y) =
∞∑

k=0

yk

Γ(kα+ β)
, α, β > 0.

The general Mittag-Leffler function satisfies∫ ∞

0

e−ttβ−1Eα,β(tαy)dt =
1

1− y
, |y| < 1.

The Laplace transform of Eα,β(y) follows from the integral∫ ∞

0

e−sttβ−1Eα,β(±atα)dt =
sα−β

(s∓ a)
.

That is

L{tβ−1Eα,β(±atα)} =
sα−β

(s∓ a)
,

for R(s) > |a|1/α and R(β) > 0. In particular, for β = 1,

Eα,1(λyα) = Eα(λyα) =
∞∑

k=0

λkykα

Γ(αk + 1)
, λ, y ∈ C

have the interesting property cDαEα(λtα) = λEα(λtα) and

L{Eα(±atα)} =
sα−1

(s∓ a)
, for β = 1.

For brevity of notation let us take Iq
0+ as Iq and cDq

0+ as cDq and the fractional derivative is taken as Caputo
sense.

Let us consider the linear fractional stochastic differential equation of the form

cDqx(t) = Ax(t) + σ(t)
dw(t)
dt

, t ∈ [0, T ],

x(0) = x0,
(2.1)

where 0 < q < 1, x(t) ∈ IRn, A is an n × n matrix, w(t) is a given l-dimensional Wiener process with the
filtration Ft generated by w(s), 0 ≤ s ≤ t and σ : [0, T ] → IRn×l is appropriate function. In order to find the
solution, apply Laplace transform on both sides and use the Laplace transform of Caputo derivative, we get

sqX(s)− sq−1x(0) = AX(s) + Σ(s)
dw(s)
ds

.

Apply inverse Laplace transform on both sides (see [4]) we have
L−1{X(s)} = L−1{sq−1(sqI −A)−1}x0 + L−1{Σ(s)dw(s)

ds } ∗ L−1{(sqI −A)−1}.
Finally, substituting Laplace transformation of the Mittag-Leffler function, we get the solution of the given
system

x(t) = Eq(Atq)x0 +
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds

where Eq(Atq) is the matrix extension of the mentioned Mittag-Leffler functions with the following represen-
tation:

Eq(Atq) =
∞∑

k=0

Aktkq

Γ(1 + kq)
with the property cDqEq(Atq) = AEq(Atq).
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3 Controllability results

Let L2
Ft

(J × Ω, IRn) be the Banach space of all Ft-measurable square integrable processes x(t) with
norm ‖x‖2L2 = sup

t∈J
IE‖x(t)‖2, where IE(.) denotes the expectation with respect to the measure IP. Let

C = C([0, T ];L2
Ft

) be the Banach space of continuous maps from [0, T ] into L2
Ft

(J × Ω, IRn) satisfying
sup
t∈J

IE‖x(t)‖2 <∞. Consider the linear fractional stochastic dynamical system with multiple delays in control

represented by the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +
M∑

k=1

Bku(hk(t)) + σ(t)
dw(t)
dt

, t ∈ J := [0, T ]

x(0) = x0,

(3.1)

where 0 < q < 1, x(t) ∈ IRn, u ∈ IRl, A is an n× n matrix, Bk are n× l matrices, for k = 0, 1, . . . ,M , w(t) is a
given l-dimensional Wiener process with the filtration Ft generated by w(s), 0 ≤ s ≤ t and σ : [0, T ] → IRn×l

is appropriate function.
Let us assume the following assumptions:

(i) Assume the function hk : J → IR, k = 0, 1, . . . ,M are twice continuously differentiable and strictly in-
creasing in J . Moreover,

hk(t) ≤ t for t ∈ J, i = 0, 1, . . . ,M. (3.2)

(ii) Introduce the time lead functions rk(t) : [hk(0), hk(T )] → J , k = 0, 1, . . . ,M such that rk(hk(t)) = t for
t ∈ J . Further assume that h0(t) = t and for t = T , the following inequalities hold

hM (T ) ≤ hM1(T ) ≤ . . . hMm+1(T ) ≤ 0 = hm(T ) < hm−1(T ) = . . . h1(T ) = h0(T ) = T. (3.3)

(iii) let h > 0 be given. For functions u : [−h, T ] → IRl and t ∈ J , we use the symbol ut to denote the function
on [−h, 0], defined by ut(s) = u(t+ s) for s ∈ [−h, 0).

The following definitions of complete state of the system (2) at time t and relative controllability are assumed.

Definition 3.1. The set φ(t) = {x(t), ut} is the complete state of the system (2) at time t.

Definition 3.2. System (2) is said to be globally relatively controllable on J if for every complete state φ(0)
and every vector x1 ∈ IRn there exists a control u(t) defined on J such that the corresponding trajectory of the
system (2) satisfies x(T ) = x1.

Note that the solution of system (2) ca be expressed in the following form

x(t) = Eq(A(t)q)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
M∑

k=0

Bku(hk(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

Taking into account the time lead functions rk(t), this solution can be further changed into

x(t) = Eq(A(t)q)x0 +
M∑

k=0

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.4)
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Using the inequalities (4), the above equation becomes,

x(t) = Eq(Atq)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.5)

For brevity, let us introduce the following notation:

ϕ(t) =
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

(3.6)

and

χ(t) =
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

Recall the controllability Grammian matrix

ψT
0 =

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?ds

where the complete state φ(0) and the vector x1 ∈ IRn are chosen arbitrarily and the ? denotes the matrix
transpose.

Theorem 3.3. The linear stochastic control system (2) is relatively controllable on [0, T ] if and only if the
controllability Grammian matrix ψT

0 is positive definite for some T > 0.

Proof. Since ψ is positive definite, it is non-singular and therefore its inverse is well defined. Define the control
function as,

u(t) = [B?
kEq,q(A?(T − rk(t))q)r′k(t)]ψ−1[x1 − Eq(Atq)x0 − ϕ(T )− χ(T )], k = 0, 1, . . . ,m (3.7)

where the complete state φ(0) and the vector x1 ∈ IRn are chosen arbitrarily. Inserting (8) in (6) and using (7)
we get

x(T ) = Eq(Atq)x0 + ϕ(T ) +
m∑

k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]

× [B?
kEq,q(A?(T − rk(s))q)r′k(s)]ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= x1.

Thus the control u(t) transfers the initial state φ(0) to the desired vector x1 ∈ IRn at time T . Hence the
system (2) is controllable.

On the other hand, if it is not positive definite, there exists a nonzero φ such that φ?ψφ = 0, that is

φ?

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?φds = 0

φ?

m∑
k=0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)] = 0,
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on [0, T ]. Let x0 = [Eq(AT q)]−1φ. By assumption, there exists a control u such that it steers the complete
initial state φ(0) = {x(0), u0(s)} to the origin in the interval [0, T ]. It follows that

x(T ) = Eq(Atq)x0 + ϕ(T ) +
m∑

k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]

× [B?
kEq,q(A?(T − rk(s))q)r′k(s)]ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= φ+ ϕ(T ) +
m∑

k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]

× [B?
kEq,q(A?(T − rk(s))q)r′k(s)]ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= 0.

Thus,

0 = φ?φ+
m∑

k=0

∫ T

0

φ?(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]u(s)ds+ φ?(ϕ(T ) + χ(T )).

But the second and third term are zero leading to the conclusion φ?φ = 0. This is a contradiction to φ 6= 0.
Thus ψ is positive definite. Hence the desired result.

Consider a nonlinear fractional stochastic dynamical system with multiple delays in control represented by
the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +
M∑

k=1

Bku(hk(t)) + f(t, x(t)) + σ(t, x(t))
dw(t)
dt

, t ∈ J := [0, T ]

x(0) = x0,

(3.8)

where 0 < q < 1, x(t) ∈ IRn, u ∈ IRl, A,Bk are defined as above and f : J × IRn → IRn, σ : J × IRn → IRn×l

are appropriate functions. Then the solution of the system (9) ca be expressed in the following form

x(t) = Eq(A(t)q)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
M∑

k=0

Bku(hk(s))ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

Using the time lead functions rk(t) the solution becomes,

x(t) = Eq(A(t)q)x0 +
M∑

k=0

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.9)
Now using the inequalities (4), the above equation for t = T can be expressed as

x(T ) = Eq(A(T )q)x0 +
m∑

k=0

∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ T

0

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds.

(3.10)
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For brevity, let us introduce the following notation using (7)

Υ(φ(0), x1;x) = x1 − Eq(A(T )q)x0 − ϕ(T )−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds.

(3.11)

Now let us define the controllability Grammian matrix and the control function

ψT
0 =

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?ds (3.12)

u(t) = [B?
kEq,q(A?(T − rk(t))q)r′k(s)]ψ−1Υ(φ(0), x1;x), for k = 0, 1, . . . ,m (3.13)

where the complete state φ(0) and the vector x1 ∈ IRn are chosen arbitrarily and ? denotes the matrix transpose.
Inserting (14) in (11) by using (12) and (13), it is easy to verify that the control u(t) transfers the initial complete
state φ(0) to the desired vector x1 at time T for each fixed x. Now observing (12) and substituting (14) in
(10), we have

x(t) = Eq(A(t)q)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1Υ(φ(0), x1;x)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.14)

Now, we impose the following conditions on data of the problem:

(iv) The linear fractional stochastic dynamical system (2) is globally relatively controllable.
(v) f and σ satisfy Lipschitz and linear growth conditions. That is, there exists some constants N, Ñ, L, L̃ > 0
such that

‖f(t, x)− f(t, y)‖2 ≤ N‖x− y‖2, ‖f(t, x)‖2 ≤ Ñ(1 + ‖x‖2)
‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2, ‖σ(t, x)‖2 ≤ L̃(1 + ‖x‖2).

For our convenience, let us introduce the following notations.

a1 = max{‖Eq(Atq)‖2; t ∈ J}, a2 = max{‖u0(t)‖2; t ∈ J}, rk = max{‖r′k(t)‖2; t ∈ J}

bk = max{‖Eq,q(A(t− rk(s))q)‖2; s ∈ [0, T ]}, ck =
∫ T

0

(T − rk(s))2(q−1)ds

c̃k =
∫ 0

hk(0)

(T − rk(s))2(q−1)ds, ĉk =
∫ hk(T )

hk(0)

(T − rk(s))2(q−1)ds

We claim that if (iv) holds, the operator ψT
0 is strictly positive definite and thus the inverse linear operator

(ψT
0 )−1 is bounded, say, by l, (see [10] for more details).

Theorem 3.4. Under the conditions (iv) and (v), the nonlinear system (9) is globally relatively controllable
on J .
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Proof. Firstly, from the definition (14) we can write the control function u as

u(t) = B?
kEq,q(A?(T − rk(t))q)r′k(t)ψ−1

×

[
x1 − Eq(A(T )q)x0 −

m∑
k=0

∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

−
M∑

k=m+1

∫ hk(t)

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds

]
.

Secondly, we define the operator P : C → C by

P(x)(t) = Eq(A(t)q)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1Υ(φ(0), x1;x)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

In order to prove the global relative controllability of the system (9) it is enough to show that P has a fixed
point in C. To do this, we can employ the contraction mapping principle. To apply the principle, first we show
that P maps C into itself. We have

IE‖P(x)(t)‖2 ≤ 6a1IE‖x0‖2 + 6
m∑

k=0

IE

∥∥∥∥∥
∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

∥∥∥∥∥
2

+ 6
m∑

k=0

IE

∥∥∥∥∥
∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1Υ(φ(0), x1;x)ds

∥∥∥∥∥
2

+ 6
M∑

k=m+1

IE

∥∥∥∥∥
∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

∥∥∥∥∥
2

+ 6IE

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

∣∣∣∣∣
∣∣∣∣∣
2

+ 6IE

∥∥∥∥∥
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥∥
2

.

It follows from Lemma 2.5, in [15], and the above notation that:

IE‖P(x)(t)‖2 ≤ 6a1IE‖x0‖2 + 6a2

(
m∑

k=0

c̃kbkrk‖Bk‖2 +
M∑

k=m+1

ĉkbkrk‖Bk‖2
)

+ 6b
t2q−1

2q − 1

∫ t

0

IE‖f(s, x(s))‖2ds+ 6l2
m∑

k=0

ckb
2
kr

2
k‖Bk‖4

∫ t

0

IE‖Υ(φ(0), x1;x)‖2ds

+ 6Lσb
t2q−1

2q − 1

∫ t

0

(∫ τ

0

IE‖σ(θ, x(θ))‖2dθ

)
ds.
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Thus we have

IE‖P(x)(t)‖2 ≤ 6a1IE‖x0‖2 + 6a2β + 6b
t2q−1

2q − 1
Ñ

∫ t

0

(1 + IE‖x(s)‖2)ds

+ 6l2η

[
IE‖x1‖2 + a1IE‖x0‖2 + a2β + b

T 2q−1

2q − 1
Ñ

∫ T

0

(1 + IE‖x(s)‖2)ds

+ Lσb
T 2q−1

2q − 1
L̃

∫ T

0

(∫ τ

0

(1 + IE‖x(θ)‖2)dθ

)
ds

]

+ 6Lσb
t2q−1

2q − 1
L̃

∫ t

0

(∫ τ

0

(1 + IE‖x(θ)‖2)dθ

)
ds.

Hence,

IE‖P(x)(t)‖2 ≤ 6l2ηIE‖x1‖2 + 6a1IE‖x0‖2(1 + l2η) + 6a2β(1 + l2η)

+ 6b
T 2q−1

2q − 1
Ñ(1 + l2η)(1 + ‖x‖2L2) + 6LσL̃b

T 2q−1

2q − 1
(1 + l2η)(1 + T‖x‖2L2).

It follows from from the above inequality and the condition (v) that there exists c > 0 such that

IE‖P(x)(t)‖2 ≤ c(1 + ‖x‖2L2).

Therefore P maps C into itself.
Secondly, we claim that P is a contraction mapping on C. For x, y ∈ C,

IE‖P(x)(t)− P(y)(t)‖2

≤ 3
m∑

k=0

IE

∥∥∥∥∥
∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1[Υ(φ(0), x1;x)−Υ(φ(0), x1; y)]ds

∥∥∥∥∥
2

+ 3IE

∥∥∥∥∥
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)(f(s, x(s))− f(s, y(s)))ds

∥∥∥∥∥
2

+ 3IE

∥∥∥∥∥
∫ t

0

(t− s)q−1

(∫ τ

0

(σ(θ, x(θ))− σ(θ, y(θ)))dw(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥∥
2

.

Using Lemma 2.5, in [15], condition (v), and the above notations we get

IE‖P(x)(t)− P(y)(t)‖2

≤ 3l2
T 2q

2q − 1
b

m∑
k=0

ckb
2
kr

2
k‖Bk‖4

[∫ T

0

IE‖f(s, y(s))− f(s, x(s))‖2ds

+ Lσ

∫ τ

0

IE‖σ(θ, y(θ))− σ(θ, x(θ))‖2dθ

]
+ 3

T 2q−1

2q − 1
b

∫ t

0

IE‖f(s, x(s))− f(s, y(s))‖2ds

+ 3
T 2q−1

2q − 1
bLσ

∫ t

0

(∫ τ

0

IE‖σ(θ, x(θ))− σ(θ, y(θ))‖2dθ

)
ds.

≤ 3l2bη
T 2q−1

2q − 1
[N + LLσ]

∫ T

0

IE‖x(s)− y(s)‖2ds

+ 3b
T 2q−1

2q − 1
[N + TLLσ]

∫ T

0

IE‖x(s)− y(s)‖2ds.

It results that

sup
t∈[0,T ]

IE‖P(x)(t)− P(y)(t)‖2 ≤

[
3l2bη

T 2q−1

2q − 1
[N + LLσ] + 3b

T 2q−1

2q − 1
[N + TLLσ]

]
sup

t∈[0,T ]

IE‖x(t)− y(t)‖2.
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Therefore we conclude that if 3l2bη
T 2q−1

2q − 1
[N + LLσ] + 3b

T 2q−1

2q − 1
[N + TLLσ] < 1, then P is a contraction

mapping on C, implies that the mapping P has a unique fixed point x(·) ∈ C. Hence we have

x(t) = Eq(A(t)q)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

Thus x(t) is the solution of the system (9), and it is easy to verify that x(T ) = x1. Further the control function
u(t) steers the system (9) from initial complete state φ(0) to x1 on J . Hence the system (9) is globally relatively
controllable on J .

4 An example

In this section, we apply the results obtained in the previous section for the following stochastic fractional
dynamical systems with multiple delays in control which involves sequential Caputo derivative

cDqx(t) = Ax(t) +B1u(t) +B2u(t− h) + f(t, x(t)) + σ(t, x(t))
dw(t)
dt

; 0 < q < 1, t ∈ [0, T ]

x(0) = x0,
(4.1)

where

A =
(
−1 0
3 −2

)
, B1 = B2 =

(
1 0
0 1

)
,

f(t, x(t)) =
(
x1(t) cosx2(t) + 3x2(t)
x2(t) sinx1(t) + 2x1(t)

)
, σ(t, x(t)) =

(
(2t2 + 1)x1(t)e−t 0

0 x2(t)e−t

)
.

Let us introduce the variables x1(t) = x(t) and x2(t) = cD
q
2 x1(t). Then

cD
q
2 x1(t) = cD

q
2 x(t) = x2.

The Mittag-Leffler matrix of the given system is given by(
Eq(−tq) 0

3Eq(−tq)− 3Eq(−2tq) Eq(−2tq)

)
.

Further

Eq,q(A(T − s)q) =
(

Eq,q(−(T − s)q) 0
3Eq,q(−(T − s)q)− 3Eq,q(−2(T − s)q) Eq,q(−2(T − s)q)

)
,

Eq,q(A(T − (s+ h))q) =
(

Eq,q(−(T − (s+ h))q) 0
3Eq,q(−(T − (s+ h))q)− 3Eq,q(−2(T − (s+ h))q) Eq,q(−2(T − (s+ h))q)

)
.

By simple matrix calculation one can see that the controllability matrix

ψT
0 =

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?ds

=
∫ T

0

[
(T − s)q−1

(
a2 ac

ac b2 + c2

)
+ (T − (s+ h))q−1

(
ā2 āc̄

āc̄ b̄2 + c̄2

)]
ds.
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is positive definite for any T > h, where

a = Eq,q(−(T − s)q), b = Eq,q(−2(T − (s+ h))q),
c = 3Eq,q(−(T − s)q)− 3Eq,q(−2(T − s)q), ā = Eq,q(−(T − (s+ h))q)
b̄ = Eq,q(−2(T − (s+ h))q), c̄ = 3Eq,q(−(T − (s+ h))q)− 3Eq,q(−2(T − (s+ h))q).

Further the functions f(t, x(t)) and σ(t, x(t)) satisfies the hypothesis mentioned in Theorem 3.4., and so the
fractional system (16) is globally relatively controllable on [0,T].

5 Conclusion

The article contains some controllability results for global relative controllability for the linear and nonlinear
fractional stochastic dynamical systems with multiple delays in control function. The result shows that the
Banach fixed point theorem can effectively be used to study the control problems for establishing sufficient
conditions. Here it is proved that under some hypotheses together with the assumption that the linear stochastic
system is globally relatively controllable, the nonlinear fractional stochastic system is also globally relatively
controllable. An example is also included to illustrate the importance of the results obtained.
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Abstract

This paper deals with the study on a mathematical model consisting of mutualistic interactions among three species

with continuous time delay. The delay kernels are being convex combinations of suitable nonnegative and normalized

functions, the linear chain trick gives an expanded system of ordinary differential equations with the same stability

properties as the original integro-differential system. Global stability is discussed by constructing Lyapunov function.

It has been shown that equilibrium state of the model is globally stable. Finally, numerical simulations supporting our

theoretical results are also included.
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1 Introduction

The study of equations describing population growth is very interesting and challenging mathematically
as well as biologically to discuss the problems on global stability. In the biological process of evolution, the
population of one species does not respond instantaneously to interact with other species. To incorporate this
role in a modeling approach, time delay models have been developed. Gopalsamy K. [5] and Kuang Y. [9]
discussed the necessity of delay differential equation models, see also Beretta E. and Takeuchi [1], Busekros
A. W. [2], Cushing J. M. [3], Gopalsamy K. [6], Hale J. K. and Waltman P. [7], Harlan S. W. [8], Mc Donald
N. [10], and Solimano F. and Beretta E. [13]. Relatively less attention has been given to the study of three
species model with continuous time delay and their dynamical behavior. This motivates the authors to study
mutualistic interactions among three species population model with continuous time delay.

The main purpose of this paper is to establish global stability of three species mutualistic system with
continuous time delay. In section 2, we introduce our mathematical model. In section 3, we discuss global
stability about the biologically feasible equilibrium point of the model by constructing a Lyapunov functional.
In section 4, we illustrate our results by some examples. We conclude with a short discussion in section 5.

2 Mathematical Model

In this section, we consider a mathematical model for three mutually interacting species with continuous
time delay is given by the following integro-differential equations:

dN1

dt
= N1

(
a1 − α11N1 + α12

∫ t

−∞
k2(t− s)N2(s)ds + α13

∫ t

−∞
k3(t− s)N3(s)ds

)
,

dN2

dt
= N2

(
a2 − α22N2 + α21

∫ t

−∞
k1(t− s)N1(s)ds + α23

∫ t

−∞
k3(t− s)N3(s)ds

)
,

∗Corresponding author.

E-mail addresses: mashok.math@gmail.com (A. B. Munde) and mbdhkane@yahoo.com (M.B. Dhakne)
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dN3

dt
= N3

(
a3 − α33N3 + α31

∫ t

−∞
k1(t− s)N1(s)ds + α32

∫ t

−∞
k2(t− s)N2(s)ds

)
, (2.1)

where Ni, i = 1, 2, 3 represent the population density of first, second and third species respectively, ai represent
the intrinsic growth rate of first, second and third species respectively, αii, i = 1, 2, 3 represent the rate of
decrease of first, second and third species due to limited resources, α12 is the mutual coefficient of second
species to first species, α13 is the mutual coefficient of third species to first species, α21 is the mutual coefficient
of first species to second species, α23 is the mutual coefficient of third species to second species, α31 is the
mutual coefficient of first species to third species, α32 is the mutual coefficient of second species to third
species, ki(t) called the delay kernels, are weighting factors which indicating how much emphasis should be
given to the size of the population at earlier times to determine the present effect on resources availability.
Here ai, αii, i = 1, 2, 3, and α12, α13, α21, α23, α31, α32 are assumed to be nonnegative constants. Usually the
delay kernels are normalized so that ∫ ∞

0

ki(u)du = 1 i = 1, 2, 3.

We assume that every kernel ki appearing in system (2.1) is a normalized convex combination of functions

k(u) =
βnun−1e−βu

(n− 1)!
n = 1, 2, ..

with β > 0 is a constant, n an integer. When n = 1, the kernel is k(u) = βe−βu. Therefore, the system (2.1)
becomes

dN1

dt
= N1

(
a1 − α11N1 + α12

∫ t

−∞
βe−β(t−s)N2(s)ds + α13

∫ t

−∞
βe−β(t−s)N3(s)ds

)
,

dN2

dt
= N2

(
a2 − α22N2 + α21

∫ t

−∞
βe−β(t−s)N1(s)ds + α23

∫ t

−∞
βe−β(t−s)N3(s)ds

)
,

dN3

dt
= N3

(
a3 − α33N3 + α31

∫ t

−∞
βe−β(t−s)N1(s)ds + α32

∫ t

−∞
βe−β(t−s)N2(s)ds

)
, (2.2)

where using linear chain trick, define

P1(t) =
∫ t

−∞
βe−β(t−s)N1(s)ds,

P2(t) =
∫ t

−∞
βe−β(t−s)N2(s)ds,

P3(t) =
∫ t

−∞
βe−β(t−s)N3(s)ds.

Therefore, the system (2.2) is equivalent to the following system of six ordinary differential equations.

dN1

dt
= N1(a1 − α11N1 + α12P2 + α13P3),

dN2

dt
= N2(a2 − α22N2 + α21P1 + α23P3),

dN3

dt
= N3(a3 − α33N3 + α31P1 + α32P2),

dP1

dt
= β(N1 − P1),

dP2

dt
= β(N2 − P2),

dP3

dt
= β(N3 − P3). (2.3)

3 Stability Analysis

In this section, the existence of the unique positive biologically feasible equilibrium point of the system
(2.3) and local and global stabilities are investigated. The equilibrium point E1(N∗

1 , N∗
2 , N∗

3 , P ∗1 , P ∗2 , P ∗3 ) exists



100 A. B. Munde et al. / Global stability of mutualistic interactions...

if and only if there is a unique positive solution to the following equations.

−α11N1 + α12P2 + α13P3 = −a1,

−α22N2 + α21P1 + α23P3 = −a2,

−α33N3 + α31P1 + α32P2 = −a3,

β(N1 − P1) = 0,

β(N2 − P2) = 0,

β(N3 − P3) = 0,

provided that the four conditions

(C1) a1α22α33 + a2(α12α33 + α13α32) + a3(α12α23 + α13α22) > a1α23α32,

(C2) a1(α21α33 + α23α31) + a2α11α33 + a3(α11α23 + α13α21) > a2α13α31,

(C3) a1(α22α31 + α21α32) + a2(α11α32 + α12α31) + a3α11α22 > a3α12α21,

(C4) α11α22α33 > α11α23α32 + α12α21α33 + α12α23α31 + α13α22α31 + α13α21α32,

hold, where

N∗
1 = P ∗1 =

[
a1(α22α33 − α23α32) + a2(α12α33 + α13α32 + a3(α12α23 + α13α22)

]/[
α11α22α33 − α11α23α32

− α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

]
,

N∗
2 = P ∗2 =

[
a1(α21α33 + α23α31) + a2(α11α33 − α13α31) + a3(α11α23 + α13α21)

]/[
α11α22α33 − α11α23α32

− α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

]
,

N∗
3 = P ∗3 =

[
a1(α22α31 + α21α32) + a2(α11α32 + α12α31) + a3(α11α22 − α12α21)

]/[
α11α22α33 − α11α23α32

− α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

]
.

We note that the equilibrium point E1 of the system (2.3) is also an equilibrium point of the system (2.1)
with the kernel βe−βu. To discuss the local stability of the system (2.3), we compute variational matrix about
equilibrium point E1 as

J1(N∗
1 , N∗

2 , N∗
3 , P ∗1 , P ∗2 , P ∗3 ) =

−α11N
∗
1 0 0 0 α12N

∗
1 α13N

∗
1

0 −α22N
∗
2 0 α21N

∗
2 0 α23N

∗
2

0 0 −α33N
∗
3 α31N

∗
3 α32N

∗
3 0

β 0 0 −β 0 0
0 β 0 0 −β 0
0 0 β 0 0 −β


The characteristic equation of the above variational matrix about equilibrium point E1 is

λ6 + k1λ
5 + k2λ

4 + k3λ
3 + k4λ

2 + k5λ + k6 = 0,

where,

k1 =3β + α11N
∗
1 + α22N

∗
2 + α33N

∗
3

k2 =3β2 + 3
(

α11N
∗
1 + α22N

∗
2 + α33N

∗
3

)
β + α11α22N

∗
1 N∗

2 + α22α33N
∗
2 N∗

3 + α11α33N
∗
1 N∗

3
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k3 =β3 + 3
(

α11N
∗
1 + α22N

∗
2 + α33N

∗
3

)
β2 + 3

(
α11α22N

∗
1 N∗

2 + α22α33N
∗
2 N∗

3 + α11α33N
∗
1 N∗

3

)
β

+ α11α22α33N
∗
1 N∗

2 N∗
3

k4 =
(

α11N
∗
1 + α22N

∗
2 + α33N

∗
3

)
β3 +

[(
3α11α22 − α12α21

)
N∗

1 N∗
2 +

(
3α22α33 − α23α32

)
N∗

2 N∗
3

+
(

3α11α33 − α13α31

)
N∗

1 N∗
3

]
β2 + 3α11α22α33N

∗
1 N∗

2 N∗
3 β

k5 =
[(

α11α22 − α12α21

)
N∗

1 N∗
2 +

(
α22α33 − α23α32

)
N∗

2 N∗
3 +

(
α11α33 − α13α31

)
N∗

1 N∗
3

]
β3

+
(

3α11α22α33 − α11α23α32 − α12α21α33 − α13α22α31

)
N∗

1 N∗
2 N∗

3 β2

k6 =
(

α11α22α33 − α11α23α32 − α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

)
N∗

1 N∗
2 N∗

3 β3.

It is very difficult to find the roots or apply Routh-Hurwitz criteria. Therefore, we conclude that if all the roots
have negative real part then the system (2.3) is stable (see numerical examples in Section 4).
Now we establishes the global stability of the system (2.3) by constructing a suitable Lyapunov function in the
following theorem.

Theorem 3.1. The positive equilibrium point E1(N∗
1 , N∗

2 , N∗
3 , P ∗1 , P ∗2 , P ∗3 ) of the system (2.3) is globally stable,

if

2α11 > α2
12 + α2

13 + 4

2α22 > α2
21 + α2

23 + 4

2α33 > α2
31 + α2

32 + 4

holds.

Proof. The proof can be reached by using a Lyapunov stability theorem which gives a sufficient condition.
Now, let us consider a positive definite function

V (N1, N2, N3) = V1(N1) + V2(N2) + V3(N3) + V4(P1) + V5(P2) + V6(P3)

where,

V1(N1) = 2
(

N1 −N∗
1 −N∗

1 ln
N1

N∗
1

)
,

V2(N2) = 2
(

N2 −N∗
2 −N∗

2 ln
N2

N∗
2

)
,

V3(N3) = 2
(

N3 −N∗
3 −N∗

3 ln
N3

N∗
3

)
,

V4(P1) =
2
β

(P1 − P ∗1 )2,

V5(P2) =
2
β

(P2 − P ∗2 )2,

V6(P3) =
2
β

(P3 − P ∗3 )2,

on H = {(N1, N2, N3, P1, P2, P3) | N1 > 0, N2 > 0, N3 > 0, P1 > 0, P2 > 0, P3 > 0}. It is obvious that
V (N1, N2, N3, P1, P2, P3) ∈ C1(H,R) and V (N∗

1 , N∗
2 , N∗

3 , P ∗1 , P ∗2 , P ∗3 ) = 0. The function V (N1, N2, N3, P1, P2, P3)
satisfies

V (N1, N2, N3, P1, P2, P3) > V (N∗
1 , N∗

2 , N∗
3 , P ∗1 , P ∗2 , P ∗3 ) = 0

which holds for all V (N1, N2, N3, P1, P2, P3) ∈ H−{E1}. Then the time derivative of V (N1, N2, N3, P1, P2, P3)
computed along the solution of the system (2.3) is

dV

dt
= 2

[
− α11(N1 −N∗

1 )2 − α22(N2 −N∗
2 )2 − α33(N3 −N∗

3 )2
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+ α12(N1 −N∗
1 )(P2 − P ∗2 ) + α13(N1 −N∗

1 )(P3 − P ∗3 )

+ α21(N2 −N∗
2 )(P1 − P ∗1 ) + α23(N2 −N∗

2 )(P3 − P ∗3 )

+ α31(N3 −N∗
3 )(P1 − P ∗1 ) + α32(N3 −N∗

3 )(P2 − P ∗2 )
]

+ 4
[
(N1 −N∗

1 )(P1 − P ∗1 ) + (N2 −N∗
2 )(P2 − P ∗2 )

+ (N3 −N∗
3 )(P3 − P ∗3 )− (P1 − P ∗1 )2 − (P2 − P ∗2 )2 − (P3 − P ∗3 )2

]
= −(P1 − P ∗1 )2 − (P2 − P ∗2 )2 − (P3 − P ∗3 )2 −

[
2α11 − α2

12

− α2
13 − 4

]
(N1 −N∗

1 )2 −
[
2α22 − α2

21 − α2
23 − 4

]
(N2 −N∗

2 )2

−
[
2α33 − α2

31 − α2
32 − 4

]
(N3 −N∗

3 )2 −
[
α12(N1 −N∗

1 )− (P2 − P ∗2 )
]2

−
[
α13(N1 −N∗

1 )− (P3 − P ∗3 )
]2

−
[
α21(N2 −N∗

2 )− (P1 − P ∗1 )
]2

−
[
α23(N2 −N∗

2 )− (P3 − P ∗3 )
]2

−
[
α31(N3 −N∗

3 )− (P1 − P ∗1 )
]2

−
[
α32(N3 −N∗

3 )− (P2 − P ∗2 )
]2

< 0

This shows that dV
dt < 0 on H. Therefore, the function V is a Lyapunov function with respect to E1. Hence,

the equilibrium point E1 is globally asymptotically stable on H.

Consequently, we have the following result.

Theorem 3.2. The equilibrium point (N∗
1 , N∗

2 , N∗
3 ) of the system (2.1) with a kernel k(u) = βe−βu is globally

stable.

4 Numerical Simulations

To check the feasibility of our analysis regarding stability conditions, we have conducted some numerical
computation by choosing the following set of parameters values in model system (2.3) as

a1 = 1, a2 = 0.5, a3 = 2, α11 = 1, α12 = 0.1, α13 = 0.3, α21 = 0.2,

α22 = 1.5, α23 = 0.3, α31 = 0.4 α32 = 0.6 α33 = 1.3, β = 8

With the above parameter values, it follows that the system (2.3) is locally stable as shown in Figure 1.
However, even if these parameter do not satisfy the conditions of Theorem 3.1, Figure 2 exhibits that the
system (2.3) seems to be globally stable.
Consider the another set of parameters values in system (2.3) as

a1 = 2, a2 = 4, a3 = 3, α11 = 2.5, α12 = 0.1, α13 = 0.3, α21 = 0.2,

α22 = 3.5, α23 = 0.3, α31 = 0.4 α32 = 0.6 α33 = 3.3

From Theorem 3.1, under these parameters values the system (2.3) is globally stable as shown in the figure 3.
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Figure 1: (a) Time series for N1(t), N2(t) and N3(t). (b) The phase graph with initial condition (1.8879, 1.5409,

2.4459, 1.8879, 1.5409, 2.4459).
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Figure 2: (c) Time series for N1(t), N2(t) and N3(t). (d) The phase graph with initial condition (8, 12, 10, 40, 30, 20).
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Figure 3: (e) Time series for N1(t), N2(t) and N3(t). (f) The phase graph with initial condition (2, 4, 5, 10, 20, 30).

5 Discussion

In this article, local and global stabilities of the three mutually interacting species with continuous time
delay has been investigated. Our numerical simulation shows that even if time delay parameter vary for large
value the system (2.3) remains stable. The approach of study in this article differs from Feng C. H. and Chao P.
H. [4], Mukherjee D. [11], Shukla V. P. [12] and Xia Y. [14] in the sense that it studies two species mutualistic
system with discrete delay. To the best of our knowledge, this paper is the first time to deal with the research
for system (2.1) which belongs to a three species mutualism model with continuous time delay. There is a lot of
work to do in this area. For example it would be interesting to see what the behavior of the model (2.1) would
be when several delays occurs in this system. However less attention has been given to the study of mutualism
as compared to the prey-predator and competition. Thus the present article contributes a few more results on
mutualism model.
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