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Abstract

In this paper we study the oscillatory behavior of third order neutral difference equation of the form
d
A(r(n)A%z(n)) + Z q(n,s)f(x(n+s—0))=0,n>ng >0, (0.1)

where z(n) = z(n) + Y.°_, p(n, s)z(n+ s — 7). We establish some sufficient conditions which ensure that every solution
of the equation (0.1) oscillates or converges to zero by using a generalized Ricaati transformation and Philos - type

technique. An example is given to illustrate the main result.
Keywords: Third order, oscillation, neutral difference equations, Philos - type.

2010 MSC: 39A10. (©2012 MJM. All rights reserved.

1 Introduction

In this paper we consider the oscillatory behavior of third order neutral difference equation of the form

d
A(T(n)A2z(n)) + Z q(n,s)f(z(n+s—o0)=0,n€ Ny (1.1)

where
b

z(n) = z(n) + Zp(n7 s)x(n+s—1), (1.2)

A is the forward difference operator defined by Az(n) = z(n+ 1) — z(n), No = {ng, no+1, no+2, ...}, ng

is a nonnegative integer, and a, b, ¢, d € Ny subject to the following conditions:

o0 1
n=ng r(n) ~

(C1) {r(n)} is a positive real sequence with > 00;

(C2) {q(n,s)} and {p(n,s)} are nonnegative real sequences with 0 < p(n) = le’:a p(n,s) < P <1,
(C5) f:R — Ris a continuous function such that @ > L >0, for u#0.

By a solution of equation (1.1) we mean a real sequence {z(n)} and satisfying equation (1.1) for all n € Ny.
We consider only those solution {z(n)} of equation (1.1) which satisfy sup{|z(n)| : n > N} > 0 for all N € Np.
A solution of equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative
and nonoscillatory otherwise.

In recent years there is a great interest in studying the oscillatory behavior of third order difference equa-
tions, see for example [1-5, 7-14] and the references cited therein. Motivated by this observation, in this paper

*Corresponding author.
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we obtain some sufficient conditions for the oscillation of all solution of equation (1.1).

In Section 2, we present some preliminary lemmas and in Section 3, we establish some sufficient conditions
which ensure that all solutions of equation (1.1) are either oscillatory or converges to zero. An example is given
to illustrate the main result.

2 Preliminary Lemmas

In this section, we present some lemmas which will be useful to prove our main results.

Lemma 2.1. Let {z(n)} be a positive solution of equation (1.1) and {z(n)} be defined as in (1.2). Then {z(n)}
satisfies only of the following two cases eventually

(I) z(n) >0, Az(n)>0, A%z(n)>0;
(IT) z(n) >0, Az(n) <0, A2?z(n)>0.
Proof. Assume that {z(n)} is a positive solution of equation (1.1). By definition of {z(n)} we have z(n) >
xz(n) > 0 for all n > ng. From the equation (1.1), we have

d

A(r(n)A%z(n)) = — Z q(n,s)f(z(n+s—o) <0.

S=cC

Thus 7(n)A?z(n) is a nonincreasing function and therefore eventually of one sign. So A?z(n) is either eventually
positive or eventually negative for n > ny > ng. If A2z(n) < 0, then there is constant M > 0 such that

r(n)A%z(n) < —M <0, n>n;.

Summing the last inequality from n; to n — 1, we obtain

n—1 1

Az(n) < Az(ny) — M Z )

S=nnq

Letting n — oo, then using condition (Cy), we have Az(n) — —oo, and therefore Az(n) < 0. Since A%z(n) < 0
and Az(n) < 0, we have z(n) < 0, which is a contradiction to our assumption. This proves that A%z(n) > 0
and we have only Case (I) or (IT) for {z(n)}. This completes the proof. O

Lemma 2.2. Let {z(n)} be a positive solution of equation (1.1), and let the corresponding function {z(n)}
satisfies the Case (IT) of Lemma 2.1. If

i i [@iiq(m)} = o0, (2.1)

then lim,_,oc (n) = lim, .« z(n) = 0.

Proof. Let {z(n)} be a positive solution of equation (1.1), and {z(n)} satisfies Case (IT) of Lemma 2.1. Then
there exists £ > 0 such that lim,,_,o z(n) = £. We shall prove that £ = 0. Assume that ¢ > 0, then we have
l+e< z(n) <{forall e>0andn>n; >mng. Choosing 0 < e < @. From (1.2), we have

b
z(n) = z(n)-— Zp(n, s)x(n+s—7)

b
> Epr(n,s)z(n+sz)

> (—P(l+e¢)
L —P(l+e)
= T e (L +€)
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where k = %. From the equation (1.1), we have

d

A(r(m)A%z(n)) = = q(n,s)f(z(n+s—0)
P
< - Z q(n,s)Lx(n+ s — o).

Now using (2.2), we obtain

d

A(r(n)A%z(n)) < —kL Z q(n,s)z(n+s— o).
Summing the last inequality from n to oo, we have
oo d
—r(n)A%z(n) < kLZZq (t+s—o)
t=n s=c
or
oo d
A?z(n) Z > alt
t n s=c
Summing again from n to co, we have
1 co d
—Az(n >kL€ZL(S Zth]}
t=s j=c

Summing the last inequality from n; to oo, we obtain

z(ny) > kLEni i [éiiq(tj)}

which contradicts condition (2.1). Thus ¢ = 0. Moreover, the inequality 0 < z(n) < z(n) implies that
lim,, . #(n) = 0. The proof is now complete. O

Lemma 2.3. Assume that y(n) > 0, Ay(n) >0, A%y(n) <0 for all n > ng. Then for each o € (0,1) there
exists a N € Ny such that
vn—0) _ ynt1)
n—o n—+

for all n > N. (2.3)

Proof. From the monotonicity property of {Ay(n)}, we have

yn+1)—y(n—o) Z Ay(s) < (o + 1)Ay(n — o)

or
y(n+1) 14 (o0 +1)Ay(n—o) (2.4)
yn—o y(n—o)
Also,
y(n—o) > y(n—o) —y(ng) = (n — o —no)Ay(n — o).
So, for each « € (0, 1), there is a N € Ny such that
y(n —o)
- > — > N. 2.
Ay(n—a)_a(n o), n> (2.5)

Combining (2.4) and (2.5), we obtain
yn+1) <14 (c+1) < an—ao+o+1

yln—o) ~ an—o) ~ aln—o)
" yn+1) _ (1)
yn—o) = aln—0)

This completes the proof. O
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Lemma 2.4. Assume that z(n) >0, Az(n) >0, A%z(n) >0, A32(n) <0 for alln > N. Then

z(n) n—N
Az(n) = 2

for all n > N. (2.6)

Proof. From the monotonicity property of {A2%z(n)}, we have
n—1
Az(n) = Az(N) + Z A?z(n) > (n — N)A%z(n).
s=N
Summing from N to n — 1, we obtain

z(n) > z(N)+ Z(s — N)A%z(s)
=2z(N)4+ (n—N)Az(n) —z(n+ 1) + z(N).

Hence z(n) > WAZ(TL), n > N. This completes the proof. O

3 Main Results

In this section, we obtain new oscillation criteria for the equation (1.1) by using the generalized Riccati
transformation and Philos type technique.

Theorem 3.1. Assume that condition (2.1) holds. If there exists a positive nondecreasing real sequence {p(n)}
such that

lim f Q) - 41@97(‘9))2} = 0 (3.1)

n—oo oy p(s + 1)7’(8)
where N
Q) = s () TR (5:2)
and .,
a(n) = L(1 - P) Y q(n.s), (3.3)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Assume that {x(n)} is a nonoscillatory solution of equation (1.1). Without loss of generality we may
assume that x(n) > 0, x(n+s—7) > 0 for n > ny > no € Ny and {z(n)} is defined as in (1.2). Then {z(n)}
satisfies two cases of Lemma 2.1.

Case(I). Let {z(n)} satisfies Case (I) of Lemma 2.1. From (1.2), we have

b

z(n) > z(n)-— Zp(n, s)z(n+s—1)

; =a
> (1 - Zp(nvs))z(n)
> (1= P)z(n). (3.4)

Using condition (C3) in equation (1.1), we have

d
A(r(n)A%z(n)) < =Y q(n,s)La(n+s - o). (3.5)

Now using (3.4) in inequality (3.5), we obtain

d
A(r(n)A%z(n)) < —L(1—P) Z q(n,s)z(n+s—o)

S=c
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< —qi(n)z(n+c—o).

Define A2
r(n)A%z(n
w(n) = p(n)(A)z(n)()’ n>mni.
Then w(n) > 0 for all n > n; and from (3.6), we have

@(n)znt+c—o)  Apn)

Awn) = —p(n) Az(n+1) p(n+ 1)w( +1)

A2%z(n)

—w(n+1) Ax(n)

qa(n)z(n+c—o) Ap(n)
B w?(n+1)
p(n+1)r(n)
By Lemma 2.3 with y(n) = Az(n), we have
L elr-o 1 for all n> N.

Az(n+1) = n+1 Az(n-—o)
Unsing (3.9) in (3.8), we obtain
an—o0)z(n+c—o) Ap(n)
n+1 Az(n—o) p(n+1)
B w?(n+1)
p(n+1)r(n)”

Aw(n) < —p(n)q(n)

w(n+1)

Now applying Lemma 2.4 in the last inequality, we obtain

Aw(n) < —pn)pm) 2P nte—o=N)

n+1 2
Ap(n) _ w(n+l)
o+ 0 T S )
< —Q(n) + A(n)w(n +1) — B(n)w’(n +1)
Q(n) < —Aw(n) + A(n)w(n + 1) — B(n)w?*(n + 1)
where Ap(n) )
_ Ap(n .
A= ey P ey

Now, using completing the square, we have

(A(n))?
1B(n) = Aw).

Q(n) —

Summing the last inequality from N to n — 1, we have

n—1 s 2
3 (@)~ 2P < () — ) < ().

s=N

Letting n — oo, we obtain a contradiction to (3.1).

If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have lim,,_,o z(n) = 0.

the proof.
Before stating the next theorem, we define functions h, H : Ny x Ny — R such that

(¢) H(n,n) =0 for n >ng > 0;

(3.8)

(3.9)

(3.10)

This completes
O
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(#9) H(n,s) >0 for n > s > ng;

(7it) AgH(n,s) = H(n,s+1) — H(n,s) <0 for n > s > ng and there exists a positive real sequence {p(n)}
such that

Ap(s) = —h(n,s n,s
AQH(n,s)+p(s+1)H(n,s)— h(n,s)\/H(n,s)

for n > s > ny.

Theorem 3.2. Assume that (2.1) holds. If there exists a positive real sequence {p(n)} such that

nan;o supm S_Zno [H(n, $)Q(s) — ip(s + 1)r(s)h*(n, s)} = 00, (3.11)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Assume that {x(n)} is a nonoscillatory solution of equation (1.1). Proceeding as the proof of Theorem
3.1, we have (3.10). Now multiplying the inequality (3.10) by H(n,s), then summing the resulting inequality
from no to n — 1 for all n > ny > ng, we have

i H(n,s)Q(s) < — 2 Aw(s)H (n, s)

S=n2 S=n2

3 (A()uls + 1) — BlshuR(s + 1) H(n, ).

S5=na2

By summation by parts, we obtain

2:1 H(n, s)Q(s)
< H(n,no)w(ng) + n;l w(s +1)AyH(n, s)
+ Z_n:l A(s)w(s +1)H(n,s) — Ti; B(s)w?(s + 1)H(n, s)
< H(n,na)w(ng) + nf [AQH(n,s) L Bels) H(n,s)} x

S=no

w(s+1) — i B(s)w?(s + 1)H(n, s). (3.12)

S=no
Using completing the square in the last inequality, we obtain

3 [ 9)Q(s) (s + ()20, )] < Hn,ma)w(no)

or
n—1

! 1
H(n,ns) Z [H(n, $)Q(s) - ZP(S +1)r(s)h*(n, S)] < w(ng).

S=nso

Letting n — oo, we obtain a contradiction to (3.1).
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have lim,,_. x(n) = 0. This completes
the proof. ]

Corollary 3.1. If H(n,s) = (n—s)? for alln > s >0 and
n—1
lim sup— 3 [(n—)°Q(s) - ip(s F1)r(s)(n - )77 = oo, (3.13)

n—o0o n
S=ngo

for every B > 1, then every solution of equation (1.1) is oscillatory.
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B
Corollary 3.2. If H(n,s) = (log;%ll) foralln>s>0 and

n—1

lim sup(log(n + 1))_5% Z [(logn + 1)ﬁQ(s)

n— oo S+1

S=ngo

n—&—l)ﬁ*?]

- 4(571{1)2[)(8 + 1)r(s) (logS 1 = o0, (3.14)

for every B > 1, then every solution of equation (1.1) is oscillatory.
The proof of Corollary 3.1 and 3.2 follows from Theorem 3.2 and hence the details are omitted.

Theorem 3.3. Assume that all conditions of Theorem 3.2 are satisfied except condition (3.11). Also let

, o H(n,s)
s>no | | ——| < 1
0 <infs> "ngolnf (n,no)] 00 (3.15)
and
1 n—1
nlL»H;o supm Z p(s +1)r(s)h?(n, s) < oo (3.16)
S=nNgo

hold. If there exists a positive sequence {1(n)} such that

) n—1 1/1 n 2
nl;rr;() sup :Z M =00 (3.17)
and )
nlL»H;o sup% SZJ:\, {H(n, s)Q(s) — ip(s + 1)r(s)h*(n,s)| > (N), (3.18)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Proceeding as in the proof of Theorem 3.2, we obtain (3.12). Using completing the square in (3.12) and
rearranging we obtain

. 1 — h2(n, s)
Jim U () S;Z [H(n,S)Q(S) ~IB(s) } < w(ny)

— lim in
n—o00 fH(n, Tlg) s=ns 2 B(S

for n > no. It follow from (3.18) that

w(ng) = (ng) + lim inf

H(n,ns)

n—1 h 7 2

> [VAG B+ + ik
which means that,

w(ng) > ¢Y(n2) for n>N (3.19)
and .
. — h(n,s) 72
A ) ; VG B (s +1) + gm} <oe
Therefore
n—1
nlLH;o inf {m Z H(n,s)B(s)w?(s+ 1)
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n—1
+ m Z h(n,s)\/H(n,s)w(s+ 1)

S=no

N 1 1 — h?(n, s)
4 H(n,ns) B(s)

] <o

S=no

Then

lim mf{m i: H(n,s)B(s)w?(s + 1)

s=ns
n—1
+ m S;Q h(n,s)\/H(n,s)w(s + 1)} < oo. (3.20)
Define the functions
1 n—1 ,
U(n) = () S;Z H(n,s)B(s)w”(s+1)
n—1
Then, the inequality (3.20), implies that
lim inf[U(n) + V(n)] < . (3.21)

n—oo

The rest of the proof is similar to that of Theorem 2 of [6], and hence the details are omitted.
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have lim,, .o z(n) = 0. This completes
the proof. O

Theorem 3.4. Assume that all conditions of Theorem 3.3 are satisfied except condition (3.16). Also let

. ‘ 1 n—1
nlgr;o mfm S;O H(n,s)Q(s) < oo (3.22)
and
Tim in fH(%N) ;V [H(n, $)Q(s) — ip(s +1)r(s)h3(n, 5)} > y(N) (3.23)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. The proof is similar to that of Theorem 3.3 and hence the details are omitted. O

Now, let us define
H(n,s)=(n—s)" n>s>0,

where § > 1 is a constant. Then H(n,n) = 0, for n > 0 and H(n,s) > 0 for n > s > 0. Clearly AsH(n,s) <0
for n > s >0 and

h(n,s) =[(n—s)" —(n—s—1)%(n—s)"P? < g(n—s)P=2/2
for n > s > 0. We see that (3.15) holds,

. H(n,s) . (n—s)f
lim ———= = =1
Jim (o) Jim 3

Hence, by Theorems 3.3 and 3.4, we have the following two corollaries.
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Corollary 3.3. Let 8> 1 be a constant, and suppose that

n—1

1

nh_)rréo sup_ Z Bp(s + 1)r(s)(n — 5)° 72 < cc.
S=ngo

If there is a sequence {¢(n)} satisfying (3.17) and

i oy 3 (10 5)7Q(0) = pts + D) ] 2 v

then every solution of equation (1.1) is oscillatory or converges to zero.
Proof. The proof follows from Theorem 3.3 and hence the details are omitted.

Corollary 3.4. Let 8> 1 be a constant, and suppose that

n—1

lim mfn% Z (n —5)PQ(s) < oco.

If there is a sequence {¢(n)} satisfying (3.17) and

Jminf ot _ZN [0~ 51°Q(s) — 2 pls + Dr(s)n — 9)72] = w(a)

then every solution of equation (1.1) is oscillatory or converges to zero.
Proof. The proof follows from Theorem 3.4 and hence the details are omitted.

We conclude this paper with the following example.

4 An example

Consider the difference equation

A(nAQ(a:(n) +§:;x(n+s - 1))) —I—Z (4n—|— gs)x(n—ks —1)=0.

s=1 s=1

(3.24)

(3.25)

(3.26)

(3.27)

(4.1)

Here r(n) = n, p(n,s) = %, q(n,s) =4n + %s, c=7=1,a=1,b=2, c=1and d = 2. It is easy to see
that all conditions of Theorem 3.1 are satisfied. Hence every solution of equation (4.1) is oscillatory. In fact

{z,} = {(—=1)"} is one such oscillatory solution of equation (4.1).
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Abstract

In the present paper we introduce difference entire sequence spaces of fuzzy numbers defined by a sequence of Orlicz

functions. We also make an effort to study some topological properties and inclusion relations between these spaces.
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1 Introduction and Preliminaries

Fuzzy set theory, compared to other mathematical theories, is perhaps the most easily adaptable theory to
practice. The main reason is that a fuzzy set has the property of relativity, variability and inexactness in the
definition of its elements. Instead of defining an entity in calculus by assuming that its role is exactly known,
we can use fuzzy sets to define the same entity by allowing possible deviations and inexactness in its role.
This representation suits well the uncertainties encountered in practical life, which make fuzzy sets a valuable
mathematical tool. The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [16]
and subsequently several authors have discussed various aspects of the theory and applications of fuzzy sets
such as fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy
mathematical programming. Matloka [11] introduced bounded and convergent sequences of fuzzy numbers and
studied some of their properties. For more details about sequence spaces of fuzzy numbers see ([1], [4], [7], [12],
[13], [14], [15]) and references therein.

The notion of difference sequence spaces was introduced by Kizmaz [8], who studied the difference sequence
spaces oo (A), c(A) and ¢g(A). The notion was further generalized by Et and Colak [6] by introducing the
spaces loo(A™), ¢(A™) and ¢o(A™). Let w be the space of all complex or real sequences x = (z1) and let r, s
be non-negative integers, then for Z = I, ¢, cg we have sequence spaces

Z(AT) = {o = (&x) € w: (Alay) € 2},

where ATz = (ATzy) = (AT 1z — AT 12y 1) and A%z = x4, for all k € N, which is equivalent to the following
binomial representation
T - v r
Aszz:k = Zo(fl) ( v ) Tk+sv-
Taking s = 1, we get the spaces which were introduced and studied by Et and Colak [6]. Taking r = s =1, we
get the spaces which were introduced and studied by Kizmaz [8].

An Orlicz function M : [0,00) — [0,00) is a continuous, non-decreasing and convex function such that
M(0) =0, M(x) >0 for z >0 and M(z) — oo as x — 0.

*Corresponding author.
E-mail addresses: sunilksharmad42@yahoo.co.in (Sunil K. Sharma) and kuldipraj68@gmail.com (Kuldip Raj).
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Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following sequence space,

(o]
KM:{xEU):ZM(@> <oo}
k=1 P
which is called as an Orlicz sequence space. Also £) is a Banach space with the norm

. N (el
||x|_1nf{p>0.;M( )31}.

p

Also, it was shown in [9] that every Orlicz sequence space ¢3; contains a subspace isomorphic to £,(p > 1).
An Orlicz function M satisfies Ag—condition if and only if for any constant L > 1 there exists a constant K (L)
such that M (Lu) < K(L)M (u) for all values of 4 > 0. An Orlicz function M can always be represented in the
following integral form

where 7 is known as the kernel of M, is right differentiable for ¢ > 0,7(0) = 0,7n(¢) > 0, n is non-decreasing
and 7(t) — oo as t — oo.

Let D be the set of all bounded intervals A = [A, A] on the real line R. For A, B € D, define A < B if and
only if A< B and A < B, d(A, B) = max{A — B, A — B}.
Then it can be easily see that d defines a metric on D and (D, d) is complete metric space (see [5]).

A fuzzy number is fuzzy subset of the real line R which is bounded, convex and normal. Let L(R) denote
the set of all fuzzy numbers which are upper semi continuous and have compact support, i.e. if X € L(R) then
for any a € [0,1], X© is compact where

o _ t: X(t)>a, if 0<a<l,
St X(t) >0, if a=0.

For each 0 < a < 1, the a-level set X¢ is a non-empty compact subset of R. The linear structure of L(R)
includes addition X + Y and scalar multiplication AX, (Aa scalar) in terms of a-level sets, by

(X +Y]* = [X]" + [Y]"

and
[AX]* = A[X],

for each 0 < a < 1.
Define a map d : L(R) x L(R) — R by

d(X,Y)= sup d(X“,Y).

0<a<1

For X,Y € L(R) define X <Y if and only if X* < Y*“ for any « € [0,1]. It is known that (L(R,d)) is a
complete metric space (see [11]).

A sequence X = (X}) of fuzzy numbers is a function X from the set N of natural numbers into L(R). The
fuzzy number X,, denotes the value of the function at n € N and is called the nt" term of the sequence.

In this paper we define difference entire sequence spaces of fuzzy numbers by using regular matrices A =
(ank), (n,k=1,2,3,---). By the regularity of A we mean that the matrix which transform convergent sequence
into a convergent sequence leaving the limit (see [10]). We denote by w(F) the set of all sequences X = (X})
of fuzzy numbers.

Let X = (X}) be a sequence of fuzzy numbers, A = (anx) n,k = 1,2,3,--- be a non-negative regular matrix

and M = (Mj,) be a sequence of Orlicz functions. Now, we define the following sequence spaces in this paper :
Pm(F, A p, AY) =

- |ALX, [ P
X:(Xk):Zankd M, T,O — 0as k — oo, for some p >0
k
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and
Am(F, A p, AY) =

T i Pk
{X (Xk) :sup< g Ank [J(Mk<w,0>)] ) < 0o, for some p > 0}.
n p
k

If A =1, the unit matrix, we get the above spaces as follows :

_ ATX + Pk
{X:(Xk): {d(Mk(lsl)]C“,()))] — 0as k — oo, for some ,0>0}

_ ATX % Pk
{X = (X}) : sup [d(Mk <spk|,0>>] < 0o, for some p > 0}.

[(F,A,p,A}) =
[(IATX L Pk
{X = (Xg): Za”k {d('skk,())] — 0 as k — oo, for some p > 0}
p
k
and
A(F,A,p,AT) =

T i Pk
{X_(Xk) :sup< E ank{J<Ast|k,0>} ) < 0o, for some p>0}.
n & P

If we take p = (px) =1 V k, we get

r 1
{X = (Xg) : Zank {J(Mk ('ASifklk,O)ﬂ — 0as k — oo, for some p> O}
k

and
Am(F A AL =

{X:(Xk):s%p<zk:ank[d(Mk<W,O))]) < 0o, for some p>0}.

If A= (an) is a Cesaro matrix of order 1, i.e.

ak{ L k<nm,
=

0, k>n

then we get
FM(vaaAg) -

1o~ - ALX | * P

{X = (Xy) : fz {d(Mk(“kl}c,O))} — 0as k — oo, for some p > 0}

"= p
and
Am(F,p,AY) =

1 o[- AT X | ® Pr
{X:(Xk):supZ[d<Mk(|sk|k,O)>} < oo, for some p>0}.
n p

13
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The space I is defined as follows:
1 & .
F=<X=(Xp): — Xig|F - 0ask f 0p.
{ (X&) n};| k|¥ — 0as k — oo, for some p > }

The following inequality will be used throughout the paper. Let p = (px) be a sequence of positive real
numbers with 0 < py < supypr = H and let K = max{1,2771}. Then for sequences {ax} and {bs} in the
complex plane, we have

lak + bi|"* < K(lax["* + [bx[").

The main purpose of this paper is to study difference entire sequence spaces of fuzzy numbers defined by a
sequence of Orlicz functions. We also studied some topological properties and interesting inclusion relations
between the above defined sequence spaces.

2 Main Results

Proposition 2.1. If d is a translation invariant metric on L(R) then

(i) d(X +Y,0) < d(X,0) +d(Y,0),

(ii) d(AX,0) < |\d(X,0),]A > 1.
Proof. Tt is easy to prove so we omit the details. O
Theorem 2.2. If M = (My,) be a sequence of Orlicz functions, then Ty (F,p, AL) is a complete metric space
under the metric . )
1 AL(Xy — Yi)|® *
d(X,Y) = sup [Zd(Mk<M°,o>)] .
L P

Proof. Let X = (X3), Y = (Ya) € Tm(F,p,A%). Let {X™} be a Cauchy sequence in T'y((F,p, A7). Then
given any € > 0 there exists a positive integer N depending on € such that d(X ™), X(™) < ¢, for all n,m > N.

1 ATX(W)_AT'X(m)l Pk
sup{nZd(Mk< =k ; 8-k |k,0>)] <€ Vm,n> N.
() L1

Hence

Consequently {X ,gn)} is a Cauchy sequence in the metric space L(R). But L(R) is complete. So, X ,g") — X
as n — o0o. Hence there exists a positive integer ng such that

no Arx(")_Arx(m) Pk
[iZd(MkC e T | om <e V>,

k=1

1< - ATX(0) _ AT X, |® Pk
(B ) <
k=1

el

In particular, we have

Now
1 noo ATX i Pk 1 L ATX _ATX(WO)% Pk
R (F50)] = R (B0
n p n p
k=1 k=1
1 n B ‘AQX](CHD”% Pk
+[n2d(Mk< 0
k=1
<e+0 as n— o
Thus

n r i Pk
<1ZJ<M;€(W,O>)> < € as n — o0.
n P

k=1
This implies that (Xj) € Ta(F,p, A%). Hence I'y(F,p, A?) is a complete metric space. This completes the
proof. O
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Theorem 2.3. Let M = (My,) be a sequence of Orlicz functions and p = (px) be a bounded sequence of positive
real numbers, the space T p(F, p, AT) is a linear over the field of complex numbers C.

Proof. Let X = (Xg), Y = (Yi) € Tpm(F,p,A%) and «, 8 € C. Then there exist some positive numbers p; and

p2 such that
1 ATX e
Z[( (l 7k|k >>:| —0 as k— o0
n P1

k=1
and .
"1 ATY,|® *
Z[( (' k| O))} — 0 as k — oo.
o1 P2

pt P3
t1- ATaXy|t  |ATAY|® P
L P3 P3
" 1= F|AT X |* F|ATQY|® Pr
<37 L a(n (lethi2entt | et )]
1 L P3 P3
n 1T AT X 1 ATaY, 1 Pk
oyl d(Mk(lall Xk |BlALa k|k70>)]
1 L P3 P3
1 ATX|F | AlaYy|* P
o3 fa{on (20 1ot )
=1L P P2
<ics (o (B0 )| e s i (25 ))]”
- On p1 o p2
— 0 as k — oo.

T P Pk
Hence Z [ ( <|A (i + V)| ,0))] — 0 as k — oo. Hence I'y((F, p, A]) is a linear space. This
P3

completes the proof. O

Theorem 2.4. Let M = (My,) be a sequence of Orlicz functions and p = (px) be a bounded sequence of positive
real numbers. Then the space T'p(F, A, p, AL) is complete with respect to the paranorm defined by

200 =sp (o i (P55 )] ")’

where H = max {1,sup,(px/H)} and d is translation metric.

Proof. Clearly, g(0) =0, g(—x) = g(x). It can also be seen easily that g(z+y) < g(z)+g(y ) for X = (Xy),Y =
(Y3) in T aq(F, A, p, AT), since d is translation invariant. Now for any scalar A, we have |A|® < max{1,sup |A|},
so that g(Az) < max{1,sup|A|}, A fixed implies Az — 0. Now, let A — 0, X fixed for sup |A| < 1, we have

_ AT X, E PR H
|:me|:d<Mk(|spk|k,0))] } <€ for N > N(e).
Also for 1 < n < N, since
_ AT’X Pk %
[ o i (550 )] <

S enli(n ()] <o

=m

there exists m such that
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Taking A small enough, we have
e _ AT X% PR H
{ Z Ak {d<Mk <|Sk|k,0>)] } < 2¢ for all k.
P
k=m

Since g(AX) — 0 as A — 0. Therefore g is a paranorm on I'y((F, 4, p, AT).
To show the completeness, let (X)) be a Cauchy sequence in T y((F, A, p, A7). Then for a given ¢ > 0 there
is r € N such that

{Z Ank [d(Mk<|Ag(X(i)p X(j))ﬁ ,0>>]pk] " <e forall 4,5 >r. (2.1)
Since d is a translation, so equation (2.1) implies that
{Zank [d(MkCAg(X’gi)p_ Xlgj))ﬁ 70))]]%} " <€ forall i,j > r and each n. (2.2)
Hence

~ AT(X® _ x 0y +
{d(Mk< s (X 5 k )k70)>} < e forall 4,5 >r.

Therefore (X () is a Cauchy sequence in L(R). Since L(R) is complete, lim;_, X,z = X}. Fixing ro > r and
letting j — oo, we obtain (2.2) that

. ATXD — X%
[Zank {d(Mk< (X" = Xl* o))” < forall o>, (2.3)
P
since d is a translation invariant. Hence
i AT _ x| P H
| S (R 0)) ] <

ie. X0 — X in Ty(F, A,p,AT). Tt is easy to see that X € Ty(F, A,p,A7). Hence I'r((F, A, p, A7) is
complete. This completes the proof. O

Theorem 2.5. Let A = (ani) (n,k = 1,2,3,---) be an infinite matriz with complex entries. Then A €
T (F, A, p, AT) if and only if given € > 0 there exists N = N(€) > 0 such that |ani| < €*N* (n,k=1,2,3,---).

> B ATX L Pk
Proof. Let X = (X)) €T and let Y,, = < E ankd<Mk ('Sklk,())> >, (n=1,2,3,---). Then (v,,) e T
p

k=1
if and only if given any ¢ > 0 there exists N = N(¢) > 0 such that |a,x| < € N* by using Theorem 4 of [3].
Thus A € T'p(F, A, p, A%) if and only if the condition holds. O

Theorem 2.6. If A = (ani) transforms T into Ty (F, A, p, AT) then lim, o0 (ank)q™ = 0 for all integers ¢ > 0
and each fived k = 1,2,3,---, where X = (X) be a sequence of fuzzy numbers and d is translation invariant.

o B ATX i Pk
Proof. LetY, = [Zankd(Mk (w,0)> ] (n=1,2,3,---). Let (X) € Tand (Y;,) € Tp(F, A, p, AL).
P
k=1
Take (X;) = 6 = (0,0,0,---,1,0,0,---), 1 in the ith place and zero’s elsewhere, then (Xj;) € T'. Hence
(oo}

Z |anklg" < oo for every positive ¢. In particular nlin;o (ank)q"™ = 0 for all positive integers ¢ and each fixed

k=1
k=1,2,3,---. This completes the proof. O

Theorem 2.7. If A = (ani) transforms T a(F, A, p, AL) into T', then lim, o0 (ank)g"™ = 0 for all integers g > 0
and each fived k = 1,2,3,---, where X = (X) be a sequence of fuzzy numbers and d is translation invariant.
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Proof. Let

Let

S ATALLN
Sn = d| My ,0 erl.
k=1 P

1SS B |ATX]§|% p B ATX I% Pk
Then Y;, = (tn — 8n) = | Y ankd| My ST,O and d{ My ( =2E=,0 € T. Hence (Y;,) € T.
k=1

Therefore (ank)g™ — 0 as n — oo Vk. This completes the proof. O

Theorem 2.8. If A = (ani) transforms Ty (F, A, p, A7) into Ty (F, A, p, A7), then lim,_ o (ank)q™ = 0 for
all integers ¢ > 0 and each fized k = 1,2,3,---, where X = (X}) be a sequence of fuzzy numbers and d is
translation invariant.

Proof. The proof of the Theorem follows from Theorem 2.6 and Theorem 2.7. O
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Abstract

The aim of this paper is to introduce new classes of mappings namely Q—open mappings, somewhat §) open functions

and hardly Q-open mappings by utilizing (-closed sets. Also investigate some of their properties.
Keywords: Q-closed sets, { dense sets, {)-open mappings, somewhat € open mappings, hardly {-open mappings.
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1 Introduction

In 1969, Karl R. et al.[6] introduced the concept of Somewhat continuous and somewhat open function
and investigated their properties.These functions are nothing but Frolik functions such that the condition onto
was just dropped. These notions are also related to the idea of weakly equivalent topologies which was first
introduced by Yougslova [11]. In this paper we study the concept of somewhat Q) continuous and somewhat €
open function and investigated their properties by giving suitable examples on it. More over,we introduce and
study two more kinds of open mappings via O-closed sets. Also we investigate their properties.

2 Preliminaries

Throughout this paper (X, 7) (or briefly X) represent a topological space with no separation axioms assumed
unless otherwise explicitly stated. For a subset A of (X, 7) , we denote the closure of A, the interior of A and
the complement of A as cl(A),int(A) and A€ respectively. The following notations are used in this paper. The
family of all open (resp.d-open,Q-open) sets on X are denoted by O(X) (resp.0O(X),Q0(X)). The family of
all Q-closed sets on X are denoted by QC/(X).

e O X,2)={Ue X 2e€UecO0X)}

¢ JOX,2)={U e X/ze€U€dO(X)}

e VO(X,2)={U e X /zeclUecQO(X)}

Let us sketch some existing definitions,which are useful in the sequel as follows.

Definition 2.1. [5] A subset A of Xis called §-closed in a topological space (X,7) if A = dcl(A), where
dcl(A) ={x € X : int(cl(U))NA#£0,U € O(X,z)}. The complement of §-closed set in (X, T) is called §-open
set in (X, 7). From [5],lemma 3, dcl(A) = N{F € §C(X): A C F} and from corollary 4, dcl(A) is a §-closed
for a subset A in a topological space (X, T).

Definition 2.2. A subset A of a topological space (X, T) is called

*Corresponding author.
E-mail addresses: mlthivagar@yahoo.co.in (M. Lellis Thivagar) and rsanbuchelvi@gmail.com (M. Anbuchelvi).
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(i) semiopen set in (X, 1) if A C cl(int(A)).
(ii) Q-closed set [7] if dcl(A) C U whenever A C U and U is semi open in (X, 7).
The complement of Q-closed set is called Q—open.
Definition 2.3. A function f: (X,7) — (Y,0) is called
(i) somewhat open [6] if U € T and U # 0, then there exists V € o such that V # 0 and U C f(U).

(i1) somewhat b open [3] if U € 7 and U # 0, then there exists a b-open set V € o such that V # 0 and
U C f(U).

(i1i) somewhat sg open [2] if U € 7 and U # ), then there exists a sg-open set V € o such that V # 0 and
UcC fU).

(iv) perfectly continuous [10] if the inverse image of open set in'Y is clopen set in X.
(v) completely continuous [1] if the inverse image of open set in'Y is reqular open set in X.
(vi) super continuous [9] if the inverse image of open set in'Y is & open set in X.

(vii) somewhat continuous [6] if U € o and f~*(U) # 0, then there exists a non empty setV € T such that
vV C ).

(viii) somewhat b continuous [3] if U € o and f=*(U) # 0, then there exists a non empty b-open setV in (X, 1)
such that V. C f=Y(U).

(iz) somewhat sg continuous [2] if U € o and f~Y(U) # 0, then there exists a non empty sg-open setV in
(X, 7) such that V C f~Y(U).

Definition 2.4. A space (X, 1) is said to be Ts [4] if every dg-open set is 6-open set in X.

Definition 2.5. A space (X, 7) is said to be Ty if for every two different point x and y, there exists open sets
U andV such that x € U,y ¢ U and y € V,x ¢ V. Also every proper set is contained in a proper open set.

Theorem 2.6. [8] A space (X, T) is ,Tg-space if and only if every closed set is Q-closed in (X, 7).

Theorem 2.7. [8] A space (X, T) is semi-Ty if and only if every Q-open set is open in (X, 7).
3 (-open mappings

Definition 3.1. A map f: (X,7) — (Y,0) is said to be Q-open function if the image of every open set in X
is Q-open set in Y.

Example 3.2. Let X =Y = {a,b,c},7 = {0,{a},{a,b},{a,c}, X}, = {0,{a},{b},{a,b},Y}. Define
f:(X,7) = (Y,0) by f(a) = a, f(b) = a, f(c) =b. Then f is Q-open function.

Remark 3.3. The notion of Q-open function and open mappings are independent from the following examples.

Example 3.4. Let X =Y = {a,b,c},7 = {0,{a},{b},{a,b},,X}, 0 = {0,{a,b},Y}. Define f: (X,7) —
(Y,0) by f(a) =a, f(b) = b, f(¢) = c. Then f is Q-open but not open function.

Example 3.5. Let X =Y = {a,b,c},7 ={0,{a}, {b,c}, X}, 0 ={0,{a},{a,b},Y}. Define f: (X,7) — (Y,0)
by f(a) = a, f(b) = a, f(c) =b. Then f is open but not Q-open function.

Let us characterize Q—open function in the following theorems.

Theorem 3.6. A function f: (X,7) — (Y,0) is Q-open function if and only if for any subset A of Y and
for any closed set F in X such that f~*(A) C F, there exists a Q-closed set F* in'Y such that A C F* and
Y FYHCF.
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Proof. Necessity- Let A be any subset in Y and F be any closed set in X such that f~'(4) C F. Then
(X \ F) is open in X. By hypothesis, f((X \ F)) is Q-open in Y and hence Y \ f((X \ F)) is Q-closed in
Y. Since f71(A) C F,(X\ F) C (X \ f71(A) = f~1(Y \ A). Therefore, f(X \ F) C (Y \ A) and hence
AC(Y\ F(X\F)). Now f~HY\ f(X\F)) = (X \ f~Lf(X\ F)) C F. If we take F' = (Y'\ f(X \ F)),then
F'is a Q-closed set in Y such that f~1(F!) C F.

Sufficiency- Suppose that U is any open set in X. Then (X \ U) is closed in X and f=1(Y'\ f(U)) C (X \U)
By hypothesis, there exists Q-closed set F in Y such that (Y \ f(U)) C F and f~'(F) C (X \ U). Therefore,
(Y\F) C f(U)and U C (X\ f~YF)) = f~Y(Y \ F). Therefore,(Y \ F) C f(U) C (Y \ F) and hence
(Y\ F) = f(U). Thus f(U) is Q-open set in Y. O

Theorem 3.7. A function f: (X,7) — (Y, 0) is Q-open function if and only if for any subset B of Y ,f~1(Qcl(B)) C
c(f~H(B)).

Proof. Necessity- For any subset B of Y, f~1(B) C ¢l(f~!(B)). By theorem 3.6,there exists a {)-closed set
A in Y such that B C A and f~1(A) C ¢l(f~1(B)). By|7] the definition of Q closure, Qcl(B) C A. Then
S (QeU(B)) € f~1(A) C cl(F1(B)). Thus, f-(Qcl(B)) C cl(f~(B)).

Sufficiency- Let A be any set in Y and F be any closed set in X such that f~'(A4) C F. If F* = Qcl(A),then
[7] theorem 5.3, F'* is Q-closed set in Y containing A. By hypothesis, f~1(F') = f~1(Qcl(A)) C cl(f~1(A)) C
cl(F) C F. By theorem 3.6, f is Q-open function. O

Theorem 3.8. For any function f: (X,7) — (Y, 0), the following statements are true.

(i) [ is Q-open mapping.
(i) f(8int(A)) C Qint(f(A)) for any subset A in X.

(iii) For everyx € X and for every d-open set U in X containing x,there exists a Q—open set W in'Y containing
f(z) such that W C f(U).

Proof. (i) = (ii) Suppose that A is any subset of X.Then dint(A) is open in X and dint(A) C A. By hypoth-
esis, f(8int(A)) is Q-open set in Y and f(dint(A)) C f(A). By the definition of Q interior,Qint(f(A)) is the
largest Q2-open set contained in f(A). Therefore, f(dint(A)) C dint(f(A)).

(13) = (4i1) Let + € X and U be any d-open set in X containing x. Then there exists d-open set V in X
such that z € V C U. By hypothesis, f(V) = f(8int(V)) C Qint(f(V)). Then f(V) is Q-open in Y containing
f(z) such that f(V) C f(U). If we take W = f(V),then W satisfies our requirement.

(7i1) = (i) Suppose that U is any d-open set in X and y is any point in f(U). By hypothesis, there exists an
Q-open set W, in Y containing y such that W, C f(U).Therefore, f(U) = U{W,, : y € f(U)}. By [7] theorem
4.16,f(U) is Q-open set in Y. O

Theorem 3.9. A surjective function f: (X,7) — (Y,0) is Q-open function if and only if f~1:Y — X is
Q-continuous.

Proof. Necessity- If U is any open set in X then by hypothesis, (f~1)~1(U) = f(U) is Q-open in Y .Hence
f~11Y — X is Q-continuous.

Sufficiency- If U is any open set in X, then by hypothesis,f(U) = (f~1)"1(U) is Q-open in Y. Hence
f:(X,7) — (Y,0) is Q-open function. O

Remark 3.10. In general, composition of any two Q—open functions is not a Q-open function from the following
example.

Example 3.11. X =Y = {a,b,c,d} and Z = {a,b,c},7 = {0,{b,c},{a,b,c}, {b,c,d}, X},

o = {0,{a},{b,c,d},Y},n = {0,{a},{b},{a,b},Z}. Then QO(Y) = P(X),Q0(Z) =n. If f: (X,7) —
(Y, 0) is defined by f(a) = a, f(b) = ¢, f(¢) = d, f(d) = a. Then f is Q-open function. If g: (Y,0) — (Z,n) is
defined by g(a) = a,g(b) = a,g(c) = b,g(d) = ¢. Then g is Q-open function.But go f: (X,7) — (Z,n) defined
by (9o f)(z) = g(f(x)) for all z € X is not Q-open function because (g o f)({b,c}) = {b, ¢} not belongs to
Q0(2).
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Theorem 3.12. If f: (X,7) — (Y,0) is open function and g: (Y,0) — (Z,n) is Q-open function, then
gof:(X,7)— (Z,n) is Q-open function.

Proof. Tt follows from their definitions. O
Theorems on Composition

Theorem 3.13. Let (Y,0) be a semi-Ty-space. If f: (X,7) — (Y,0) and g: (Y,0) — (Z,n) are Q-open
functions, then go f: (X,7) — (Z,n) is Q-open function.

Proof. Tt follows from their definitions. O

Theorem 3.14. If f: (X,7) — (Y,0) and g: (Y,0) — (Z,n) are any two functions such that go f: (X,7) —
(Z,n) is Q-open function then,

(i) f is Q-open mapping if g is Q-irresolute and injective.
(ii) g is Q-open mapping if f is continuous and surjective.

Proof. (i) If U is any open set in X, g(f(U)) is Q- open in Z. Since g is Q-irresolute, g~ (g(f(U))) is Q-open
in Y. Since g is injective, g~ (g(f(U))) = f(U) is Q-open in Y. Thus f is Q-open mapping.

(i) If U is any open set in Y, then f~1(U) is open set in X. Since go f: (X,7) — (Z,n) is Q-open function,
g(f(f~1(U))) is Q-open in Z. Since f is surjective, g(f(f~1(U))) = g(U) is Q-open in Z.
O

4 Somewhat (-open, Hardly ()-open mappings

Definition 4.1. A subset A of a space X is said to be Q-dense in X if ch(A) = X. Or, there is no Q-closed
between A and X .

Example 4.2. Let X = {a,b,c},7 = {0,{a}, X}. Then Q-dense sets in X are {{a},{a,b},{a,c}}.

Definition 4.3. A function f: (X,7) — (Y,0) is said to be somewhat Q-open if for each non empty set
U € O(X), there exists a non empty set Ve QO(Y) such that V C f(U).

Example 4.4. Let X =Y = {a,b,c},7 = {0,{a,b}, X} and o = {0, {b},{c}.{b,c},Y}. Define f: (X,7) —
(Y,0) by f(a) =b, f(b) =c, f(c) = a. Then f is somewhat Q-open mapping.

Theorem 4.5. Every somewhat Q-open mapping is somewhat b-(resp.sg-) open mapping.

Proof. Assume that f: (X,7) — (Y,0) is somewhat Q-open mapping and suppose that U is any non empty
set in X. By hypothesis,there exists a non empty set V' € QO(Y) such that V C f(U). By [7] remark 3.13, V
is b-(resp.sg-)open set in Y. Hence f is somewhat b open mapping. O

Remark 4.6. The following example shows that the reversible implication is not true in general.

Example 4.7. Let X =Y = {a,b,c},7 = {0,{a,b}, X} and 0 = {0, {a},{b},{a,b},Y}. Define f: (X,7) —
(Y,0) by f(a) =0, f(b) =c¢, f(c) = a. Then f is somewhat b-(resp.sg-) open mapping but not somewhat Q-open
mapping.

Remark 4.8. The notions, somewhat open (resp.somewhat semi open )mapping and somewhat fl—open mapping

are independent from the following examples.

Question: Is there any example on a mapping which is somewhat open but not somewhat Q-open?

Ea bct, 7 = {0,{a}, {b},{a,b}, X}, and 0 = {0,{a},{b,c},Y}. Define

f(b) = ¢, f(c) = a.Then f is somewhat Q-open mapping but not somewhat

Example 4.9. Let X = =
f(X,7) = (Y,0) by f(a ) =b,

open mapping.

Theorem 4.10. If (Y,0) is semi—T%, then every somewhat Q-open mapping f: (X,7) — (Y,0) is somewhat
open mapping.
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Proof. Let U € O(X) be any non empty set in X. By hypothesis,there exists a non empty set V € QO(Y)
such that V' C f(U). Since in a semi-Ty space, every Q-open set is open,V € O(Y). Hence f is somewhat
open mapping. O

Theorem 4.11. If (Y, 0) is T, then every somewhat open mapping f: (X, 7) — (Y,0) is somewhat Q-open
mapping.

Proof. Let U € O(X) be any non empty set in X. By hypothesis,there exists a non empty set V' € O(Y") such
that V' C f(U).Since in a T, space,every open set is Q-open, V € QO(Y'). Hence f is somewhat (-open
mapping. O

Let us prove a characterization of somewhat €2 open mapping.

Theorem 4.12. A mapping f: (X,7) — (Y, 0) is somewhat Q2 open if and only if inverse image of a Q-dense
set in'Y is dense in X.

Proof. Necessity- Suppose that D is (-dense set in Y and suppose f~!(D) is not dense in X. Therefore,
there exists a proper closed set F in X such that f~*(D) C F C X. Then X \ F is a non empty open set in
X. By hypothesis, there exists a non empty set V € QO(Y) such that V C f(X \ F)or Y\ f(X\F) CY\V.
Moreover, X \ FF C X\ f~Y(D) = f~1(Y'\ D) implies that f(X\F) CY\D. Then DCY\ f(X\F)CY\V.
We have some proper (-closed set Y \V in Y such that D C Y\ V CY a contradiction to D is (-dense set
in Y. Therefore,f (D) is dense in X.

Sufficiency- If f is not somewhat Q-open mapping,for every non empty open set U in X, no non empty
Q-open set in Y is such that V' C f(U). Then no proper €2 closed set Y\ V is such that Y\ f(U) CY\V C Y.
Therefore, Y \ f(U) is Q-dense in Y. By hypothesis, f~1(Y \ f(U)) is dense in X or X \ (f~1(f(U)) is dense
in X. Therefore,cl(X \ (f~*(f(U))) = X. Moreover, U C (f~*(f(U)) implies that X \ (f~*(f(U)) € X \ U.
Then X = cl(X \ (f~1(f(U))) Cc(X\U) = X\ \ int(U) and hence int(U) = 0, a contradiction to U is a non
empty set in X. O

Theorem 4.13. Suppose that f: (X,7) — (Y,0) is a bijective mapping. [ is somewhat Q-open mapping if
and only if for every closed set F' in X such that f(F) # Y, there exists a proper set D € QC(X) such that
f(F)CD.

Proof. Necessity- Suppose that F' is any closed set in X such that f(F') # Y. Then X\ F is a non empty open
set in X .By hypothesis, there exists a non empty set V€ QO(Y) such that V C f(X\F)or Y\ f(X\F) CY\V.
Since f is bijective,f(F) C Y \ V. If we define, D =Y \ V then D # 0, D € QC(Y) such that f(F) C D.

Sufficiency- Suppose that U is any non empty open set in X.Then X \ U is a proper closed set in X. If
F(X\U) =Y then it is easily seen that U = (), a contradiction.Therefore, f(X \ U) # Y. By hypothesis,there
exists a proper {)-closed set D in Y such that f(X \ U) C D. That is,Y \ D C Y \ f(X \ U) = f(U), where
Y\D#0,Y\DEe QO(Y).Thus f is somewhat Q-open mapping. O

Theorem 4.14. Suppose that A is any open set in a topological space (X, 7). If f: (X, 7) — (Y, 0) is somewhat
Q-open mapping, then f |a: (A, 7 |a) — (Y,0) is also somewhat Q2-open mapping on the subspace (A, 7 |a).

Proof. Suppose that U € 7 |4,U # 0. Since U is open in (A,7 |4) and A is open in X,U is open in X. By
hypothesis,there exists a non empty Q-open set V' in Y such that V' C f(U). Therefore,f |4 is somewhat
Q—open mapping. O

Theorem 4.15. Suppose that (X, 7) and (Y,0) are any two topological spaces and suppose X = AU B, where
A and B are open in X. If f: (X,7) — (Y,0) is any function such that f |4 and f |g are somewhat 2-open
mappings,then [ is a somewhat Q—open mapping.

Proof. Let U be any open set in X. Then U N A and U N B are open sets in the subspaces (A, 7 |4) and
(A, 7 |B) respectively. Since X = AU B, either ANU # @ or BNU # 0 or both ANU # 0 and BNU # .
case(i) HUN A # 0.

Since f |4 is somewhat Q-open mapping,there exists a non empty V € QO(Y) such that V C f(UNA) C f(U).
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It follows that f is somewhat Q-open mapping.

case(ii) If U N B # 0.

Since f |p is somewhat Q-open mapping, there exists a non empty V € QO(Y) such that V' C f(UNB) C f(U).
It follows that f is somewhat (-open mapping.

case(iil) If both U N A # () and U N B # . Tt follows from case(i) or case(ii). O

Remark 4.16. Composition of two somewhat Q—open mappings is not always somewhat Q—open mapping from
the following example.

Example 4.17. X =Y = {a,b,¢,d} and Z = {a,b,c},7 = {0, {b,c},{a,b,c},{b,c,d}, X}, o0 = {0,{a}, {b,c,d},Y},
n = {0,{a},{b},{a,b}, Z}. Then QO(Y) = P(X),Q0(Z) = n. If f: (X,7) — (Y,0) is defined by f(a) =
a, f(b) = ¢, f(c) = d,f(d) = a. Then f is somewhat Q-open function. If g: (Y,0) — (Z,n) is defined by
g(a) = a,g(b) = a,g(c) = b,g(d) = c. Then g is somewhat Q-open function.But go f: (X,7) — (Z,n) defined
by (go f)(z) = g(f(x)) for all z € X is not a somewhat Q-open function because (g o f)({b,c}) = {b,c} does

not contain any Q-open set in Z.

The following theorem states the condition under which the composition of two somewhat Q—open mappings
is again a somewhat {2-open mappings.
Theorem 4.18. If f: (X,7) — (Y,0) is an open mapping and g: (Y,0) — (Z,n) is a somewhat Q-open
mapping,then go f: (X,7) = (Z,n) is a somewhat 2-open mapping.
Proof. Suppose U € O(X) is any non empty set in X. Since f is an open mapping, f(U) is an open set in Y.

Since g is somewhat (2-open mapping, there exists a non empty set V e QO(Z) such that V C ¢g(f(U)) = gof(U).
Hence g o f is somewhat 2-open mapping. O

Definition 4.19. A function f: (X,7) — (Y,0) is said to be hardly Q-open if for each Q dense set A in'Y
that is contained in a proper Q—open setinY, f71(A) is Q-dense in X.

Example 4.20. Let X =Y = {a,b,c},7 = 0 = {0, {a}, X}. Then Q dense sets in X are {{a},{a,b},{a,c},X}.Define
f:(X,7) = (Y,0) by f(a) =a, f(b) =a and f(c) =c. Then f is hardly Q-open mapping.

Theorem 4.21. Let Y be a Ty space. A function f: (X,7) — (Y, 0) is hardly open function if and only if for
each Q-dense set A in'Y, f~1(A) is Q-dense in X.

Proof. Since in a T space,every set is properly contained in a proper open set,it follows. O
Theorem 4.22. [/] A topological space is T% if and only if {x} is either d-open or closed.

Theorem 4.23. IfY is a Ts space,then f: (X,7) — (Y, 0) is hardly Q-open function if and only if for each
Q-dense set D in'Y, YD) is Q-dense in X.

Proof. Necessity- Assume that f is hardly Q-open function and D is any Q-dense set in Y. Let y € YV \ D
be an arbitrary point. Since D is Q-dense in Y,Qcl(D) = Y. That is,Y \ Qcl(D) = 0. By [7] theorem 5.3
(vii),Y \ 6cl(D) = 0 or dint(Y \ D) = (). Therefore,{y} is not a § open in a Ts space Y .By the theorem 4.22,
{y} is a closed set in Y and hence Y \ {y} is a proper open set in Y. Therefore,D is contained in a proper open
set Y\ {y}. By hypothesis,f (D) is -dense in X.

Sufficiency- From the given hypothesis, f is hardly Q—open function. O

Theorem 4.24. f: (X,7) — (Y,0) is hardly Q-open function if and only if Qint(f~'(A)) = 0 for each subset
A in'Y such that Qint(A) =0 and A contains a nonempty closed set.

Proof. Necessity- Assume that f is hardly Q-open function and A C Y such that Qint(A) = 0 and F, a
nonempty closed set in ¥ such that F C A. Then, Qcl(Y\A) = Y\Qint(A) =Y. Since F C A, Y\ACY \ F #
Y. Therefore, Y\ Ais a ()-dense in Y which is contained in a proper open set Y \ F. By hypothesis,f =1 (Y \ A)
is Q-dense in X. Therefore, X = Qecl(f~1(Y \ A)) = X \ Qint(f~(A4)). Thus, X \ Qint(f~'(A)) = X and
hence Qint(f~1(A)) = 0.

Sufficiency- Suppose that D is any Q-dense in Y such that it is contained in a proper open set U.
Since U # (,Y \ U is a non empty closed set contained in Y \ D. By hypothesis, Qint(f=1(Y \ D)) =
(0. Then, X \ Qcl(f~1(D)) = 0 and hence Qcl(f~1(D)) = X. Thus,f~1(D) is Q dense in X. O
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Theorem 4.25. Let f: (X,7) — (Y,0) be any function. If Qint(f(A)) # 0 for every subset A of X having
the property that Qint(A) # () and there exists a non empty closed set F in X such that f~1(F) C A,then f is
hardly Q-open function.

Proof. Suppose that D is any (2-dense in Y which is contained in a proper open set U. Since U # (), Y \NU #0
and hence Y \ U is a non empty closed set contained in Y \ D.If we define A = f~'(Y'\ D),F =Y \ U, then
fY(F) C A. Moreover, Qint(f(A)) = Qint(f(f~1(Y'\D))) C Qint(Y \ D) = 0. By hypothesis, we should have
Qint(A) = 0. That is, Qint(f~1(Y \ D)) = 0. Therefore,X \ Qcl(f~*(D)) = 0 and hence Qcl(f~*(D)) = X.
Thus, f~*(D) is  dense in X. Therefore, f is hardly Q-open function. O

Theorem 4.26. If f: (X,7) — (Y, 0) is hardly Q-open function, then Qint(f(A)) # 0 for every subset A of
X having the property that Qint(A) # 0 and f(A) contains a non empty closed set.

Proof. Suppose that A is any set in X such that Qint(A) # () and F is any non empty closed set in Y such that
F C f(A). If Qint(f(A)) = 0,then Y\ f(A) is Q-dense in Y such that Y\ f(A) is contained in a proper open set
Y \ F. Since f is hardly Q-open function, f~*(Y"\ f(A)) is Q dense in X. That is, Qcl(f~1(Y'\ f(A))) = X or
X\ Qint(f~1(f(A))) = X. Then, Qint(f~*(f(A))) = 0 and hence Qint(A) = 0, a contradiction. Therefore,our
assumption is wrong and thus Qint(f(A)) # 0. O

Theorem 4.27. If f: (X,7) — (Y, 0) is surjective,then the following statements are true.
(i) f is hardly Q-open function.

(ii) Qint(f(A)) # 0 for every subset A of X having the property that Qint(A) # 0 and there exists a non
empty closed set F in'Y such that FF C f(A)

(iii) th(f(A)) % () for every subset A of X having the property that Qimﬁ(A) £ () and there exists a non
empty closed set F in'Y such that f~1(F) C A

Proof. (i) = (ii) It’s nothing but the theorem 4.10.
(ii) = (ii7) Since f is surjective,f~1(F) C f~1(f(A)) = A. Hence it holds.

(#31) = (i) It follows from the theorem 4.9.

5 Somewhat Q-Continuous functions

Definition 5.1. A function f: (X,7) — (Y, 0) is said to be somewhat Q-continuous if for each non empty set
UeO() and f~Y(U) # 0, there exists a non empty set V € QO(X) such that V C f~1(U).

Example 5.2. Let X =Y = {a,b,c},7 = {0,{b,c}, X} and 0 = {0,{a},Y}. Define f: (X,7) — (Y,0) by
f(a)=0b, f(b) = a, f(c) = a. Then f is somewhat Q-continuous.

Theorem 5.3. Fvery somewhat Q-continuous is somewhat b (resp.sg)continuous

Proof. Assume that f: (X,7) — (Y, 0) is somewhat Q-continuous and suppose that U is any non empty set in
Y such that f~1(U) # (). By hypothesis,there exists a non empty set V € QO(Y) such that V C f~Y(U). By
[7] figure-1,V is b (resp.sg)open set in Y.Hence f is somewhat b continuous. O

Remark 5.4. The following example shows that the reversible implication is not true in general.

Example 5.5. Let X =Y = {a,b,¢,d}, 7 = {0,{a}, {b}, {a,b}, X} and 0 = {0,{a},Y}. Define f: (X,7) —
(Y,o) by f(a) = ¢, f(b) = a, f(c) = a, f(d) = a. Then f is both somewhat b continuous and somewhat sg
continuous but not somewhat Q-continuous.

Remark 5.6. The notions, somewhat continuous and somewhat Q2-continuous are independent from the fol-
lowing examples.



M. Lellis Thivagar et al. / A new classes ... 25

Example 5.7. Let X =Y = {a,b,c},7 = {0,{a},{b,c},X} and ¢ = {0,{a},Y}. If f: (X,7) = (Y,0) is
defined by f(a) = b, f(b) = a, f(c) = ¢ then f is somewhat Q-continuous but not somewhat continuous.

Question 2:Is there any example on a mapping which is somewhat continuous but not somewhat{2-continuous?
Example 5.8. There is no example on another one.

Theorem 5.9. If (Y,0) is semi-Ty, then every somewhat QO-continuous f: (X,7) — (Y,0) is somewhat
continuous.

Proof. Let U € O(X) be any non empty set in X. By hypothesis,there exists a non empty set V' € QO(Y)
such that V' C f(U). Since in a semi—T% space, every {2-open set is open,V € O(Y).Hence f is somewhat
continuous. U

Let us prove a characterization of somewhat {2-continuous.

Theorem 5.10. Let (X,7) and (Y,0) be any two topological spaces. Then the following are equivalent state-
ments.

(i) f is somewhat Q-continuous.

(ii) If F is a closed subset of Y such that f~1(F) # X, then there exists a proper set G € QC’(X), such that
f~YF) Caq.

(iii) Image of a Q-dense set in X is dense in'Y .

Proof. (i) = (ii). Suppose that F is any closed set in Y such that f~1(F) # X. Then Y \ F is a non empty
open set in Y such that f=1(F¢) = (f~1(F))¢ # 0. By hypothesis, there exists a non empty set V € QO(X)
such that V C f~Y(F¢) = (f~1(F))¢. Then,f Y (F) C V¢. If we define, G = V¢, then G # 0, G € QC(X) such
that f(F) C G.

(ii) = (i). Suppose that U is any non empty open set in Y such that f~*(U) # 0. Then Y \ U is a proper
closed set in Y such that f~1(U¢) = (f~1(U))¢ # X. By hypothesis,there exists a proper set G € QC(X) such
that f~1(U¢) = (f~Y(U))¢ € G. Then,G¢ # 0,G¢ € QO(X) and G¢ C f~1(U). Therefore, f is somewhat
Q-continuous.

(ii) = (iii). Suppose that D is any Q-dense set in X and assume that f(D) is not dense in Y. Then, there
exists a proper closed set F in Y such that f(D) C F CY. Since F #Y, f~1(F) # f~1(Y) # X. By hypothe-
sis,there exists a proper set G € QC(X) such that f~'(F) C G. Therefore, D C I Lf(D) C f~Y(F) C G. We
have a proper Q-closed set G in X such that D C G C X ,a contradiction to D is Q-dense in X. Therefore J(D)
is dense in Y.

(iii) = (ii). If (i7) not holds, then there exists a closed set F' in Y such that f~!(F) # Xand there is no
proper set G € QC(X), such that f~1(F) C G C X. Then, f~1(F) is Q-dense in X and hence by hypothesis,
F(f~H(F)) is Q-dense in Y. Moreover, F vis dense in Y ,a contraction to the choice of F. O

Remark 5.11. The following example reveals that composition of two somewhat O-continuous functions is not
always the somewhat Q2-continuous.

Example 5.12. X =Y = Z = {a,b,c},7 = {0,{a,b}, X}, o0 = {0,{a},{b,c}, Y}, n = {0,{a}, {b}, {a, b}, Z}.
If f: (X,7) — (Y,0) is defined by f(a) = a, f(b) = b, f(c) = ¢ and g: (Y,0) — ( n) is defined by g(a) =
b,g(b) = ¢,g(c) = a. Then fand g are somewhat Q-continuous functions. But go f: (X,7) — (Z,n) defined by
(go f)(x) = g(f(x)) for all z € X is not a somewhat Q-continuous because (go f)({a}) = {c} is not containing
any non empty Q—open set in X.

Composition Theorems

Theorem 5.13. Suppose that (X, 7),(Y,0) and (Z,n) are three topological spaces.

(i) If f: (X,7) — (Y,0) is a somewhat Q-continuous function and g: (Y,0) — (Z,n) is surjective continuous,
then go f: (X,7) — (Z,n) is a somewhat 2-continuous mapping.
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(ii) If f: (X,7) — (Y,0) is a somewhat Q-continuous function and g: (Y,0) — (Z,n) is surjective super
continuous, then go f: (X, 7) — (Z,n) is a somewhat Q2-continuous.

(iii) If f: (X,7) — (Y,0) is a somewhat Q-continuous function and g: (Y,0) — (Z,n) is surjective completely
continuous, then go f: (X,7) — (Z,n) is a somewhat Q-continuous.

() If f: (X,7) — (Y,0) is a somewhat Q-continuous function and g: (Y,0) — (Z,1) is surjective perfectly
continuous, then go f: (X,7) — (Z,n) is a somewhat Q-continuous.

Proof. (i) Suppose that U is any open set in Z such that (go f)~*(U) # (.Since g is surjective continuous,
g 1(U) is a non empty open set in Y. Since f is a somewhat Q-continuous,there exists a non empty
Q-open set Vin X such that V C (go f)~!(U). Therefore, g o f is somewhat Q-continuous.

(ii) Suppose that U is any open set in Z such that (gof)~!(U) # ). Since g is surjective super continuous,g~!(U)
is a non empty d-open and hence open set in Y. Since f is a somewhat Q-continuous, there exists a non
empty (-open set V in X such that V C (go f)~1(U). Therefore, g o f is somewhat Q-continuous.

e oThe proofs of (iii) and (iv) are similar to (ii).
O

Theorem 5.14. Suppose that A is any open pre closed and Q-dense set in a topological space (X,7). If
f:(X,7) = (Y,0) is somewhat Q-continuous, then f | A: (A, 7 |a) — (Y,0) is also somewhat Q-continuous
on the subspace (A, 7| A).

Proof. Suppose that U € O(Y) such that (f | A)~Y(U) # AIf f~}(U) = X,then fT{(U)NA=XNA=Aa
contradiction to (f | A)"Y(U) # A. Therefore, f~1(U) # X. By hypothesis,there exists a non empty set
V € QO(X) such that V C f~Y(U). Then, VNAC f~Y({U)NA = (f | A)~Y(U). Since A is Q-dense set in
X,ANV # (. By[7] theorem 6.8, ANV is Q-open in the subspace (4,7 | A). Therefore,f | A is somewhat
Q-continuous on the subspace (4,7 | A). O

Theorem 5.15. Suppose that (X, 7) and (Y,0) are any two topological spaces and suppose X = AU B, where
A and B are both § open and pre closed in X. If f: (X,7) — (Y,0) is any function such that f | A and f | B
are somewhat Q-continuous functions,then f is a somewhat Q-continuous.

Proof. Let U be any open set in Y such that f=*(U) # (. If both (f |4)"Y(U) = f~YU)NA,(f |z)~1(U) =
f~YU)NB are empty, then f~1(U) = (), a contradiction.Therefore, the possible cases are either f~1(U)NA # ()
or f7TH(U)NB # 0 or both f~1(U)N A and f~}(U) N B are nonempty. It is enough to prove only for the case
either f~1(U)NA# 0 or f~1(U)N B # 0.Then automatically second one follows.

Suppose that either f=2(U)N A # @ or f~2(U)NB # 0. If f~1(U)N A # 0, by hypothesis,there exists a
non empty Q-open set V € (A, 7 |4) such that V C f~1(U)N A C f~1(U). By[7] theorem 6.9,V is Q-open in
X . Therefore. f is a somewhat Q-continuous. O

Definition 5.16. Let 7 and o are two topologies on a set X. Then T s said to be equivalent (respﬂ—equivalent)
to o if for every non empty U € T there exists an non empty open (resp.Q-open) set V in (X, o) such that
V C U and if for every non empty U € o there exists an non empty open (resp.SQ-open) set V in (X, 7) such
that V CU.

Theorem 5.17. Let 7 be a topology on X which is Q-equivalent to a topology T on X. If f: (X,7) — (Y, 0)
is a somewhat continuous, then f : (X,7*) — (Y,0) is somewhat Q-continuous.

Proof. Suppose that U is any open set in (X, o) such that f~1(U) # 0. Since f is somewhat continuous, there
exists a non empty open set V in (X, 7) such that V C f~1(U). Since 7* Q-equivalent to 7, there exists Q-open
set V4 in (X, 7*) such that V; C f~1(U). Hence f is somewhat {)-continuous. O

Theorem 5.18. Let o* be a topology on Y which is equivalent to a topology o on'Y. If f: (X,7) — (Y,0) is
a somewhat Q-continuous surjective function, then f: (X,7) — (Y,0*) is somewhat Q-continuous.

Proof. Suppose that U is any open set in (Y, 0*) such that f=1(U) # (). Since o* is equivalent to o, there exists
a non empty open set V in (Y, o) such that V. C U. Since f: (X, 7) — (Y, o) is surjective, f~ (V) # 0.Since
f:(X,7) — (Y,0) is somewhat Q-continuous, there exists a non empty -open set G in (X,7) such that
G C f~Y(V). Hence f: (X,7) — (Y,0*) is somewhat Q-continuous. O
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6 Q-irresolvable spaces

In this section we establish the definition of {)-resolvable spaces and it’s properties.

Definition 6.1. A space (X, 7) is said to be Q-resolvable Jif there exists a subset A of X such that both A and
A¢ are Q2-dense in X.Otherwise it is known as Q-irresolvable space.

Example 6.2. Ezample 3.2 is Q-irresolvable space.
Let us prove a characterization of Q-resolvable space.
Theorem 6.3. A space (X,7) is Q-resolvable if and only if it has a pair of disjoint Q) dense sets in X.

Proof. Necessity- Suppose that X is (:-resolvable. Therefore,there exists a subset A of X such that both A
and A€ are Q-dense in X.If we define B = A€, then we get a pair of disjoint 2-dense sets in X.

Sufficiency- By hypothesis,we can choose a disjoint pair of (-dense sets namely A and B in X. Then
Qcl(A) = Qcl(B) = X such that A C B or B C A°. If A C B¢, then by [7] theorem 5.3 (ii), Qcl(A) C Qel(B°).
Then X C Qcl(B¢) and hence X = Qcl(B¢). Therefore,we have a subset B in X such that B and B¢ are both
Q-dense in X.If B C A¢, then Qcl(B) C Qcl(A°). Then X C Qcl(B¢) and hence X = Qcl(B¢). Therefore,we
have a subset A in X such that A and A® are both (-dense in X. Therefore, X is Q-resolvable. O

Theorem 6.4. A space (X,7) is Q-irresolvable if and only if Qint(A) # 0 for every Q-dense set A in X.

Proof. Necessity- Suppose that A is any Q-dense set in X By hypothesis,ch(AC) # X and hence (Qint(A))C #*
()c. Therefore, Qint(A) # (.

Sufficiency- Suppose that X is Q-resolvable. Then,there exists a subset A of X such that both A and A°¢
are {)-dense in X. Then Qcl(A¢) = X and hence [Qint(A)]¢ = [#]¢. Therefore, Qint(A) = 0,a contradiction. [

Theorem 6.5. If X = AUB, where A and B are such that Qint(A) = 0, Qint(B) = (. Then X is Q-resolvable.

Proof. Given that X = AU B, A and B are such that Qint(A) = 0,Qint(B) = 0. Therefore,Qcl(A°) =
X,Qcl(B¢) = X .Moreover,X \ (AUB) =0, or [X \ A]N[X \ B] = 0. Then X \ A C [X \ B]°. Therefore,
Qcl(A°) C Qcl(B) and hence X C Qcl(B). Thus we get a subset B in X such that both B and B¢ are {)-dense
in X.Therefore, X is Q-resolvable. O

Remark 6.6. The above theorem can be extended to any ﬁmte number. That is, if X = Ul T A; for any finite
number of empty Q) interior sets A1, As, ... Ay, then X is Q-resolvable.

Theorem 6.7. If f: (X,7) — (Y,0) is a somewhat Q—open mapping on a irresolvable space X, then Y is Q
irresolvable space.

Proof. Suppose that A is any non empty 2 dense set in Y. Assume that Q(int(A)) = 0. Then Qcl(Y \ A) =

Since f is somewhat Q-open by theorem 4.13,f~2(Y \ A) is dense in X. Then,cl(f~*(Y \ 4)) = X and hence
c(X \ f71(A)) = X. Thus,int(f~1(A)) = 0.Again by hypothesis, f~!(A) is a dense set in X with a empty
interior, a contradiction to X is irresolvable. Therefore, our assumption is wrong and hence Q(mt(A)) # (. By
theorem 6.4,Y is a €2 irresolvable space. O

Theorem 6.8. Let Y be irresolvable space.If f: (X,7) — (Y,0) is a somewhat Q-continuous bijective map-
ping,then X is Q irresolvable space.

Proof. Suppose that A is any non empty 2 dense set in X. Assume that Q(int(A)) = 0. Then Qcl(X \ A) =

Since f is somewhat Q-continuous by theorem 5.10 (ii), f(X\ A) is dense in Y. Then,cl(f(X\ A)) =Y. Since f
is bijective, cl(Y'\ f(A4)) =Y. Thus, int(f(A)) = 0. Again by hypothesis, f(A) is a dense set in Y with a empty
interior, a contradiction to Y is irresolvable. Therefore, our assumption is wrong and hence Q(mt(A)) # (. By
theorem 6.4, X is a ) irresolvable space. O
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Abstract

A radio labeling of a graph G is a function f from the vertex set V(G) to the set of non-negative integers such
that |f(u) — f(v)| > diam(G) + 1 — da(u,v), where diam(G) and dg(u,v) are diameter and distance between u and v
in graph G respectively. The radio number rn(G) of G is the smallest number & such that G has radio labeling with
max{f(v) : v € V(G)} = k. We investigate radio number for strong product of P; and P,.

Keywords: Interference, channel assignment, radio labeling, radio number, strong product.

2010 MSC: 05C15, 05C78. @2012 MJM. All rights reserved.

1 Introduction

In 1980, Hale[5] initiated the problem to determine the minimum number of channels in a given network
which is now popular as a channel assignment problem. He classified transmitter as very close and close trans-
mitter according to the interference between them. He called very close transmitters if a pair of transmitters
has major interference and called close transmitters if a pair of transmitters has minor interference. Hale[5]
gave the graphical representation for the channel assignment problem wherein he represented transmitters by
vertices and interference between a pair of transmitters by edges. Two transmitters are joined by an edge if
major interference occurs between them and minor interference is taken as vertices at distance two in a graph.

In 1991, Roberts[10] suggested a solution for channel assignment problem and proposed that a pair of
transmitters having minor interference must receive different channels and a pair of transmitters having major
interference must receive channels that are at least two apart. Motivated through this Griggs and Yeh[4]
introduced the distance two labeling which is defined as follows:

A distance two labeling (or L(2,1)-labeling) of a graph G = (V(G), E(G)) is a function f from vertex set
V(G) to the set of nonnegative integers such that the following conditions are satisfied:

(1) 1£(u) = ()] > 2 if d(u,v) = L.
(2) 1£(u) = f(v)] > 1 if d(u,v) = 2.

The difference between the largest and the smallest label assigned by f is called the span of f and the
minimum span over all L(2,1)-labeling of G is called the A-number of G, denoted by A(G). The L(2,1)-
labeling has been explored in past two decades by many researchers like Yeh[17, 18], Georges and Mauro|[3],
Sakai[11], Chang and Kuo[1], Wang[15], Vaidya and Bantva[12] and Vaidya et al.[13].

But as time passed, practically it has been observed that the interference among transmitters might go
beyond two levels. Radio labeling extends the number of interference level considered in L(2,1)-labeling from
two to the largest possible - the diameter of G. The diameter of G is denoted by diam(G) or simply by d is
the maximum distance among all pairs of vertices in G. Motivated through the problem of channel assignment
of FM radio stations Chartrand et. al[2] introduced the concept of radio labeling of graph as follows.

*Corresponding author.
E-mail addresses: samirkvaidya@yahoo.co.in (S. K. Vaidya) and devsi.bantva@gmail.com (D. D. Bantva).
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A radio labeling of a graph G is an injective function f : V(G) — {0,1,2,...} such that the following is
satisfied for all u, v € V(G):

|[f(u) = f(v)] > diam(G) + 1 — dg(u,v).

The radio number denoted by rn(G) is the minimum span of a radio labeling for G. Note that when
diam(Q) is two then radio labeling and distance two labeling are identical. The radio labeling is studied in the
past decade by many researchers like Liu[6], Liu and Xie[7, 8], Liu and Zhu[9] and Vaidya and Vihol[14].

In this paper, we completely determine the radio number of strong product of P, with P,,. Through out this
discussion, the order of P, X P, is p and we consider n > 3 as P, X P, is simply K for which L(2,1)-labeling
and radio labeling coincide. Moreover terms not defined here are used in the sense of West[16].

2 Main results

The strong product G X H of G and H is the graph in which the vertex (u,v) is adjacent to the vertex
(u',v") if and only if u = u" and vv' € E(H), or v = v and uwu’ € E(G), or wu' € E(G) and vv’ € E(H).

For P, X Pyj 41, let vy and vé) be the centers. Let v, v, ... ,upr be the vertices on the left side and vy,
VR2, ... ,URE be the vertices on the right side with respect to center vy and vlLl, Vg, oo ,U/Lk be the vertices on
the left side and v;,-ﬂ, v}n, ,v;%k be the vertices on the right side with respect to center ’U(l).

For P, X Py, let v and vy, ’UILO and U;:zo be the centers. Let vr1, vre, ... ,vrk—1) be the vertices on the
left side and vg1, vR2, ... ,URk—1) be the vertices on the right side with respect to centers vy and vge and
Vp1s Vpgy oo ,’u'L(k_l) be the vertices on the left side and v;ﬂ, v;%Q, ,v;%(k_l) be the vertices on the right side
with respect to centers UILO and ”;%0~

Let for Py ) Pogy1, V(P2 R Payiq) = Vi U VR UV, U Vp

VL = {1}0, VL1, VL2, -.- ,'ULk}
VR = {1}07 VR1y VR2, .- 7URk}
Vl,, = {UE)a U/LD U,LZ’ ?’UlLk}
VI,% = {v(l)v U;zlﬂ U;%Z’ ,U;%}

Let for Py )/ Pog, V(Py R Poy) = Vi, U VR UV, U Vp

Vi = {vro, vL1, VL2, - SUL(k—1)}
Vr = {vRro, VR1, VR2, - ;UR(k—1)}
Vl,, = {U,LO’ U/Ll’ Ulev a”/L(lcq)}
VI% = {U;%m v;ﬂ, ”;22’ ,v;%(k_l)}

In P, X P,, we say two vertices u and v are on opposite side if u € V, or VL/ and v € Vi or VI;.

We define the level function on V(P X P,,) to the set of whole numbers W from a center vertex w by
L(u) = {d(u,w) : w is a center vertex }, for any u € V(P2 ¥ P,).

In P, X P,, the maximum level is k if n = 2k + 1 and k — 1 if n = 2k.

Observation 2.1. For P, X P,

4k+2 if n=2k+1

(1) [V(RXP,) = {4k if n=2k
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(2) d(u,v) < { Lu)+L(v)+1 if n=2k

(3) If uj, uip1 € V(PaXP,), 1 <i<p—1 are on opposite side and d(u;, wir1) = d(uijt1,wir2) or d(u;, wit1)
= d(ui+1,ui+2) + 1 then d(ui,ui+2) =1.

Theorem 2.2. Let P, X P, be a strong product of Py and P, and k = | %] then

22k +1)+1  if n=2k+1
rn(P B Py {2k(2k—1)+1 if =2k
Moreover, the equality holds if and only if there exist a radio labeling f with ordering {u1, ug, ... ,up} of
vertices of Po ® P, such that f(u1) =0 < f(u2) < f(us) < ... < f(up), where all the following holds (for all

1<i<p-1):
(1) u; and u;+1 are on opposite side,
(2) {u1, up} = {w1, we} where wy, wy are center vertex.

Proof. Let f be an optimal radio labeling for P, K P,,, where f(u1) =0 < f(u2) < f(u3) < ... < f(up). Then
fuig1) — f(ug) > (d+1) - d(ug, ui1), for all 1 <4 < p—1. Summing these p — 1 inequalities we get

p—1
rn(Py® Py) = flup) > (p— 1)(d+1) - Y d(us, uif1) (2.1)
i=1
Case - 1 : n is odd.
For P> X Py 41, we have
p—1
Zd (i wir1) < O [L(u;) + Luit1)]
=1
=2 Y L(u) - L(u1) - L(uy)
ueV(QG)
=2 > L (2.2)
ueV(QG)

Substituting (2.2) in (2.1), we get

rn(Pa R P,) = flup) > (p—1)(d+1)-2 Y L(u)

ueV(Q)

For P, X Pypy1, p =4k +2,d =2k and Y L(u) = 2k(k + 1)
uweV(QG)

rn(Pa W P,) = f(up) > (dk+2—-1)(2k + 1) - 4(k(k + 1))
= (4k+1)(2k+1) - 4k(k+1)

= 8k? + 4k + 2k + 1 - 4k? - 4k

=4k + 2k + 1

=2k(2k+1) +1

Case - 2 : n is even.

For P, X Py, we have

p—1

p—1
Zd uzauz+1 Z uz +L Uz+1)+1]
i=1 i=1
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—2 3" Lw)- L(w) - L(w,) + (p—1)

ueV(G)

=2 > L)+ (p-1) (2.3)

ueV(G)
Substituting (2.3) in (2.1), we get
rn(Pa®P,) = fuy) > (p—1)(d+1)-2 Y L(u)- (p—1)

ueV(G)

For P& Py, p = 4k, d = 2k —1and Y L(u) = 2k(k — 1)
veV(G)

rn(Py R P,) = f(up) > (4k — 1)(2k — 1 4+ 1) - 4(k(k — 1)) - (4k — 1)
= 8k? - 2k - 4k* + 1

—4k% -2k + 1

= 2k(2k—1) + 1

Thus, from Case - 1 and Case - 2, we have

22k +1)+1  if n=2k+1

>
(P X P,) > { 2k(2k —1)+1  if n=2k

O

Theorem 2.3. Let f be an assignment of distinct non-negative integers to V(Py ® P,,) and {u1, ua, us ,...,
up} be the ordering of V(Py W P,) such that f(u;) < f(uit1) defined by f(ui) = 0 and f(ujy1) = f(us) +d +
1 —d(us,uir1). Then f is a radio labeling if for any 1 < i < p—2 and k = | §] the following holds.

(1) d(ui,uir1) < k+1if n is odd,

(2) d(ui,uir1) < k+1 and d(u;, uir1) # d(uirr,uir2) if n is even.

Proof. Let f(u1) = 0 and f(uit1) = f(u) +d+1—d(us,uiqr), forany 1 <i<p—1land k= |5].

Foreachi=1,2,..,p—1,let f; = f(ui+1) — f(u;). Now we want to prove that f is a radio labeling if (1)
and (2) holds. i.e. for any @ # j, | f(u;) — f(w)] > d+ 1 — d(us, u;)

Case - 1 : n is odd.
If n = 2k + 1 then d = 2k and let (1) holds.
Let j > ¢ then f(u;) — f(w;) = fi+ fix1 + ...+ fi—1
= (=) (d+1) - d(uwi, wit1) - d(wiv1, uiv2) - . - d(uj—1,u;)
> (G —-i)(d+1)—(G—i)(k+1)asd(ujuit1) <k+1
=(—i)@k+2) - (G—i(k+1)
= (i) 2k+2—k—1)
=@ -ik+1)

2 d+ 1 — d(u“uj)
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Case - 2 : n is even.
If n = 2k then d = 2k — 1 and let (2) holds.
Let j > ¢ then f(u;) — f(wi) = fi+ fix1 + ...+ fi—1
= —)(d+1) - dlug, uiy1) - d(witr, i) - . - d(uj—1,u;)
If j — i = even then
> (= )(d+1) = FHk+1) - 5 (k)
= (G = )(2k) = (G —)(k) = 5
= (- i)k) -5
>d+1—d(u,u;)

If j — i = odd then

> (= i)(d+1) = S (k+ 1) = 5 (k)

>d+1—d(u,u,)

Thus, in both the cases f is a radio labeling and hence the result. O
Theorem 2.4. Let P, X P, be a strong product of Py and P, and k = | %] then

rn(Py K P,) { 2k(2k+1)+1 if n=2k+1

2k(2k—1)+1 if n=2k
Proof. Here we consider following two cases.
Case - 1 : n is odd.

For P2 &P2k+1, define f : V(PQ &P2k+1) — {0,1,2, ,2k(2k+ ].) + ].} by f(ui+1) = f(ul) + d +1- L(’U,Z)
- L(u;4+1) as per ordering of vertices shown in Table 1:

Table 1
k +1 c+1 ) f+1 : k
¥ } ¥ } ¥ N L T N 1
Vo Vek Vi ?Ver 2V, 7 Vg (k-1)
k+1 k+1 J +1 ¥ I k
}1?12 >1}Rfk—l) }1’12 > e }VRI
k+1 k+1 ' k+1 y k
LN T L T LN T L T
’}Lk f1fR1 IWU( 1110

Case - 2 : n is even.
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For Py X Pyy, define f : V(P X Poy,) — {0,1,2, ... 2k(2k—1)+1} by f(uit1) = f(ui) + d - L(u;) - L(uigq)
as per ordering of vertices shown in Table 2:

Table 2
k ) k+1 . k ’ k+1 ' k
Vio > VRk-1) >Viy ?Vr(k-2) >Vis ?>Vr(k-3)

k+1 fexl k 1 L k s

> > vL(’k—l) >Vro >Vio >1"R(fc—1)
k+1 k ' 35 k g fe+1

>Vi1 ? "R(k—?) — Vo 4”’3(;:—3) — -
fe+1 2 Ik 2

> Vi(k-1) >Vro

Thus in Case - 1 and Case - 2, it is possible to assign labeling to the vertices of P, X P,, with span equal to
the lower bound satisfying the condition of Theorem 2.3. Hence f is a radio labeling. O

Theorem 2.5. Let P, X P, be a strong product of P> and P, and k = 5| then

2k(2k+1)+1  if n=2k+1

m(P,XP,) = { 2h(2k — 1) + 1 if n=2k

Proof. The proof follows from Theorem 2.2 and Theorem 2.4. O

Example 2.1. In Figure 1, ordering of the vertices and optimal radio labeling of P> X Py is shown.
Vo — VR4 — VL1 — 0;34 - UlLl — UR3 — VL2 — U;gg — UILQ — VUR2 — VL3 —

Vpy — Upg — URL — ULa — Vg, — Vg, — Vo= rn(Py X Py)

Example 2.2. In Figure 2, ordering of the vertices and optimal radio labeling of Py X Pyg is shown.

’
Vo — VR4 — Vp1 — VR3 — VL2 — UR2 — VL3 — UR1 — VL4 — VRO — VUpg —

! ’ ’ ’ ! ’ !’ ! !
Uy — Vg — Upg — Upg — Upy — VUpg — Upy — Upy — Upe= Tn(F X Pyp)

Figure 1. rn(P, X Py) = 73
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Figure 2. rn(P, X Pyy) = 91

Concluding Remarks

The assignment of channels is of great importance for the establishment of transmitter network which is

free of interference. The radio labeling is an intelligent move in this direction because the level of interference
is maximum at diametrical distance. We take up this problem in the context of strong product of P, and P,
and determine radio number for the same. To derive similar results for other graph families is an open area of
research.

4
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Abstract

In this paper a theorem on degree of approximation of a function f € Lip(a, r) by product summability (E, q)(N, pn)

of conjugate series of Fourier series associated with f has been proved.
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series, conjugate of the Fourier series, Lebesgue integral.
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1 Introduction

Let " a, be a given infinite series with the sequence of partial sums {s,}. Let {p,} be a sequence of
positive real numbers such that

Pn:va—>oo,asn—>oo,(P,i=p,i=0,i20). (1.1)
v=0

The sequence-to-sequence transformation

1 n
tn = F vasvv (12)

" v=0

defines the sequence {t,} of the (N,p,)-mean of the sequence {s,} generated by the sequence of coefficient

{pn}. I

t, — s, as n — o0, (1.3)

then the series Y a,, is said to be (IV,p,) summable to s.
»Pn

The conditions for regularity of (N, p,)-summability are easily seen to be [1]

())P, — 00, as n — oo,

1.4
(ii)Z?zopiﬁC\PnL as mn — oo. ( )

The sequence-to-sequence transformation, [1]

T e 3 (1) (15)

v=0

*Corresponding author.
E-mail addresses:mahendramisra@2007.gmail.com (Mahendra Misra), iraady@gmail.com (B. P. Padhy), dbisoyi2@gmail.com (Dat-
taram Bisoyi) and umakanta_misra@yahoo.com (U. K. Misra).
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defines the sequence {T,} of the (E, ¢q) mean of the sequence {s,}. If
T, — s, as n — oo, (1.6)

then the series Xa,, is said to be (F,q) summable to s. Clearly (E,q) method is regular. Further, the (E,q)
transformation of the (N, p,) transform of {s,} is defined by

1 n
= Zn_ n—kT
R “(k>q ’

1 no (PN k) 1
= WEkZO (k)q k{PkEﬁ_Opvsv} (17)
If
Tn — 8, S N — 00, (1.8)

then 3" a, is said to be (E, q)(N, p,)-summable to s.
Let f(t) be a periodic function with period 27 and L-integrable over (—m, 7). The Fourier series associated
with f at any point x is defined by

flx) ~ % + Z(ancos nx + by sin nx) = Z Ap(x), (1.9)

n=1 n=0

and the conjugate series of the Fourier Series (1.9) is

Z(bncos nTr — a,sin nx) = Z B, (x). (1.10)
n=1 n=0
Let 5,(f : ) be the n-th partial sum of (1.10). The Lo.-norm of a function f: R — R is defined by

[ f lloo= sup{|f(z)] : x € R} (L.11)

nfm<A%umw)auzL (1.12)

The degree of approximation of a function f: R — R by a trigonometric polynomial P, (x) of degree n under
norm || - || is defined by [5]

and the L,-norm is defined by

| Po = f lloc= sup{lpn(z) — f(2)| : = € R} (1.13)
and the degree of approximation E,(f) a function f € L, is given by
En(f) :Hlljinllpn_fuv- (1'14)

A function f is said to satisfy Lipschitz condition (here after we write f € Lip «) if
[f(z+1) = f(z)| = O(Jt]*),0 < < 1. (1.15)
and f(x)eLip(a,r), for 0 < x < 27, if

27 %
</ |f(a:+t)f(x)rdx> =0(t|]*),0 <a<1,7r>1,t>0. (1.16)
0

For a given positive increasing function £(t), the function f(z) € Lip (£(¢),r), if
1

(/0 "1t — f(x)rdx) —0(E(),r > 1,¢> 0. (1.17)

We use the following notation throughout this paper:

U0 = UG+ 1)~ fe - 1), (118)

1 n 1 k cosé—cos(v—i—%)t
_ n

Y PRVET W s G A
0= rara (e E S
Further, the method (E, ¢)(N, P,) is assumed to be regular.

and
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2 Known Theorems

Dealing with the degree of approximation by the product Misra et. al. [2] proved the following theorem
using (E, q)(N, p,)-mean of Conjugate Series of Fourier series:

Theorem 2.1. If f is 2r-periodic function of class Lipa, then degree of approzimation by the product (E, q)(N,py)
summability mean of the conjugate series (1.10) of the Fourier Series (1.9) is given by ||7n— floo = O ﬁ
0 < a< 1, where 7, is as defined in (1.7).

Very recently Paikray et. al [3] established a theorem on degree of approximation by the product mean
(E,q)(N, p,) of the Conjugate Series of fourier Series of a function of class Lip(c, ). They proved:

Theorem 2.2. If f is a 2r-Periodic function of class Lip(a,r), then degree of approzimation by the product
(E,q)(N,p,) summability means on on he Conjugate Series (1.10) of the Fourier series (1.9) is given by
T = flloo = O<(1)+1),0 <a<l1,r>1, where, is as defined in (1.7).

n+1)*T T

3 Main Theorem
In this paper, we have proved a theorem on degree of approximation by the product mean (E,q)(N,p,) of
the conjugate series of the Fourier series of a function of class Lip(£(t),r). We prove:

Theorem 3.3. Let £(t) be a positive increasing function and f a 2m- periodic function of the class Lip(&(t),r),r >
1,t > 0. Then degree of approzimation by the product (E,q)(N,p,) summability means on the Conjugate Series

(1.10) of the Fourier series (1.9) is given by || T — f ||co= O((n+ 1)r §( )),r > 1, where 7, is as defined
in (1.7).

+1

4 Required Lemmas

We require the following Lemmas to prove the theorem.

Lemma 4.1.

_ 1
K. (t) =0 0<t< .
Rl = O(m) 0 < 1<
Proof. For 0 <t < +1’ we have sin nt < n sin t then
TR YOPNES wi S D,
Ruft) = ——— 5 . }
" (1 + q)» = k P = v sm%
1 " /n cos & — cos vt - cos £ +sinvt - sin
< n—k 2 2
“a(l4q)n kZ:O k)7 ,va 51n§ }‘

int
sin

¢ 2 ¢
cos3 (281n Uz)
Po ( +sinvt)}

INA
e
+ | =
=2
NE

o~
Il
=}

/\/\@/\/‘\

e
Il
=]

N— N— N— U N— N—
Q:
N‘
— — /—’H
3| =
M»

" k
1 t t

< n—k) _— v O(Qsinvsinv)—i—vsint)}
<o 2 k) Pk;p( 202

1 “ (n 1 ¢
< q"*k‘ _ P, (O(v) + O(v }

2 7 2 o(0() +00)

L )k O) &
< n—k v
= w1+ g)m ,;) KR ;op
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This proves the lemma. O

Lemma 4.2.

|K,.(t)| =0 <>f07" 1S <t<m.

.Then

t
T

Proof. For —= <t <, by Jordan’s lemma, we have sin ( >

t

1 k COS 5 — COS <U+;>t
7 2 j

N
Sin. =
v=0 S 2

k
cos§ —cosv2 COS 5 2 —|—smv2 sin = 2
Pov i

sin =

Jr
< s 5 () 2
< e 2 )

_— —Pu COS — Sin” v— SINvUv— - S1ln —
Wy 2 2 g %My

- (A

q

—miqm > S} = st oo ({7 )
- 1—|—q”t O<Z>q

Il
Q
N
| =
N———

This proves the lemma. O

5 Proof of Theorem 3.1

Using Riemann-Lebesgue theorem, we have for the n-th partial sum 5, (f : ) of the conjugate Fourier series
(1.10) of f(xz), following Titchmarch [4]

the (N, py,) transform of 3, (f : ) using (1.2) is given by

- P,

denoting the (E, q)(N,p,) transform of s, (f : ) by 7,,, we have

1 - n o 1 k Cosé sm<v—|—%>t
==~ | 00X (})a k{m;pv . b

k=0

™

¢(t)K (t)dt

([ oo

=11+ 1, say. (51)

Now
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2 = " Lk cosg—cos<u+;)t
D ! B P dt
|14] (14 q)" /0 1/)()2(]6)(] {Pk UZ:;JP QSin% }

T _

/ l/J(t)Kn(t)dt‘

O\ N [N o .
/ (5@)) dt) ( /0 (€K (1) dt> , using Holder’s inequality

=0((n+1)7 <n+1> . (5.2)

Next

=

> dt)T < / (f(t)Kn(t))Sdt) " using Holder’s inequality

(
/ﬂ é»(LL’&))SCh:)S, using Lemma 4.1
sy

Since £(t) is a positive increasing function, so is £(1/y)/(1/y). Using second mean value theorem we get

1 n+1dy % 1
:O<(n+1)€<n+1>></5 y2) , for some ;S(Sgn—kl

O((n+1)$§<ni1>

|70 — () | :o((n+1)ig<1>),for P>

n+1

Then from (5.2) and (5.3), we have

7= 160) o= _sup_ 1 = @) =0t 0¥ g ) )or = 1.

—r<x<T n+1

This completes the proof of the theorem.
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Abstract

This paper is concerned with the existence and uniqueness of mild solutions for a class of impulsive fractional
semilinear differential equations with nonlocal condition in a Banach space by using the concepts of almost sectorial
operators. The results are established by the application of the Banach fixed point theorem and Krasnoselskii’s fixed
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1 Introduction

Sectorial operators, that is, linear operators A defined in Banach spaces, whose spectrum lies in a sector

Sw={Ae€ C/{0} | |argA| < w} U{0} for some 0<w < g
and whose resolvent satisfies an estimate
A=A < CNTY ¥V AeC\Sy, (1.1)

have been studied extensively during the last 40 years, both in abstract settings and for their applications
to partial differential equations. Many important elliptic differential operators belong to the class of sectorial
operators, especially when they are considered in the Lebesgue spaces or in spaces of continuous functions (see
[1] and [[2], chapter 3]). However, if we look at spaces of more regular functions such as the spaces of Holder
continuous functions, we find that these elliptic operators do no longer satisfy the estimate and therefore
are not sectorial as was pointed out by Von Wahl (see [[3], Ex.3.1.33], see []).

Neverthless, for these operators estimates such as

C

A-A) < ——
1= A7 < g

)\EZ:{)\EC:\arg()\—w)|<v} (1.2)

w,v

where v € (0,1), w € Rand v € (3, ), can be obtained, (seefd]) which allows to define an associated ”analytic
semigroup” by means of the Dunford Integral

1
Tt) = — [ eMO\—A)"tdA, t>0 (1.3)
271 Ty

where I'y = {Ry e} U {R;e "}

*Corresponding author.
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In the literature, a linear operator A : D(A) C X — X which satisfy the condition is called almost
sectorial and the operator family {T(t), T0)=1,t> 0} is said the ”semigroup of growth ~” generated by A.
The operator family T'(t);>0 has properties similar at those of analytic semigroup which allow to study some
classes of partial differential equations via the usual methods of semigroup theory. Concerning almost sectorial
operators, semigroups of growth v and applications to partial differential equations, we refer the reader to
[4, 5, [ [7, B] and the references there in.

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a com-
plex medium, polymer rheology, etc., involves derivatives of fractional order. Fractional differential equations
also serve as an excellent tool for the description of hereditary properties of various materials and processes.
Though the concepts and the calculus of fractional derivative are few centuries old, it is realized only recently
that these derivatives form an excellent framework for modeling real world problems.

In the consequence, fractional differential equations have been of great interest. For details, see the mono-
graphs of Kilbas et al.[9], Lakshimkantham et al.[I0], Miller and Ross [11], Podlubny [I2] and the papers in
[13, 14, [15] [16] and the references therein.

On the otherhand, the theory of impulsive differential equations has undergone rapid development over
the years and played a very imortant role in modern applied mathematical models of real processes arising in
phenomena studied in physics, population dynamics, chemical technology, biotechnology and economics. See,
the monographs of Bainov and Simeonov [I7], Benchohra et al.|I8], Lakshmikantham et al.[19], Samoilenko and
Perestyuk[20], A. Anguraj et al.[2T], 22] and the references therein. However impulsive fractional differential
equations have been studied by the authors, see for instance [23], 24} [25].

We have also seen articles dealing with nonlocal conditions. That is a classical initial condition z(0) = x¢
is extended to the following nonlocal condition z(0) + ¢g(x(.)) = zo, where x(.) is a solution and g is a mapping
defined on some function space into X. Such nonlocal conditions were first used by K. Deng, in [26]. In his
paper, Deng indicated that the diffusion phenomenon of a small amount of gas in a transparent tube can give a
better result than using the usual local condition. For the importance of nonlocal conditions in different fields,
we refer the reader to [27], 28] 29| B0] and the references contained therein.

Very recently, Rong-Nian Wang et al.[31], studied the classical and mild solutions of abstract fractional
cauchy problems using almost sectorial operators and in [32], A.N. Carvalho et al. established the existence
of mild solutions for cauchy problem for non-autonomous evolution equation, in which the operator in the
linear part depends on time t and for each t, it is almost sectorial. To the best of our knowledge, much less
is known about the nonlocal impulsive fractional differential equations with almost sectorial operators. Using
the concepts of the above mentioned papers, we proved the existence and uniqueness of mild solutions of the
nonlocal impulsive fractional differential equations with almost sectorial operators.

Here, we consider the semilinear impulsive fractional differential equations with nonlocal conditions in the
following form.

cDex(t) = Ax(t) + f(t,x(t)), t€I=][0,T], t+#ty
Azli—y, = In(x(t,)), t=1tr, kE=1,2,..,m. (1.4)
z(0) + g(z) = o
where °D® is the standard Caputo’s fractional derivative of order o, 0 < o <1 and A: D(A) C X — X is an
almost sectorial operator on a Banach space X. Here, 0 < t; < to < ... <&, =T, I, € C(X,X), k=1,2,...,m.

Let Az|i—y, = z(t]) — x(t), x(t{) and x(t; ) represent the right and left limits of z(¢) at t = t;, respectively.
The nonlocal condition

n
g(z) = Z ciz(si)
i=1
where ¢;, 1 = 1,2,...n, are given constants and 0 < s1 < s3... < s, < T

2 Preliminaries

In this section, we recall some notations, properties of T'(¢) and the definition of a mild solution of (1.4]) by
investigating the Classical solutions of the system (|1.4]).
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Proposition 2.1. ([3, [6]). Let A be the almost sectorial operator satisfying the conditions and .
Then the following properties are satisfied.

(i) The operator A is closed, T(t+s) = T(t)T(s) and AT(t)x = T(t)Az,V t,s € [0,00) and each © € D(A).
(it) LT(t) = AT(t).
(iii) There exists a constant Co > 0 such that ||A"T(t)|| < C,t=(*7) (¢ > 0).

Now, we state the necessary notions and facts on fractional calculus.

Definition 2.1. ([9/) The Riemann-Liouville fractional integral operator of order q > o with the lower limit
to for a function f is defined as

qu(t)—l_‘(lq)/t(ts)qlf(s)ds, t >t

provided the right-hand side is pointwise defined on [ty,00), where I' is the gamma function.

Definition 2.2. ([9/) The Riemann-Liouville (R-L) derivative of order ¢ > 0 with the lower limit ty for a
function f : [tg,00) — R can be written as

1 an (!

DIf(t) = 77/ (t— )"V f(s)ds, t>ty, n—1<gq<n.
I'(n—q)dtm J,

Definition 2.3. ([9]). The Caputo fractional derivative of order q > 0 with the lower limit to for a function

f i [to,00) = R can be written as

1 t
‘Dif(t) = / (t —s) =V F)($ds = =D (1) t>ty, n—1<qg<n.

['(n—q) to

Denote E, g the generalized Mittag-Leffler function defined by

>0 Zk 1 )\a—ﬁe)\
E = R
(%) 1;:0 Tk +73)  2mi /p FCa— a\, o,8>0, z€C

where p is a contour which starts and ends at —oo.

Throughout this section we let A be an almost sectorial operator with semigroup of growth =y, where
0 < v < 1. In the sequel, we will define two families of operators based on the generalized Mittag-Leffler-type
functions and the resolvent operators associated with A. They will be two families of linear and bounded op-
erators.

Next, we consider the definition of mild solution of (|1.4)).

Consider, the following cauchy problem,

cDx(t) = Az(t) + f(t,z(t)), 0<a<1, (2.5)
2(0)+g(z) =20 X '
where f is an abstract function defined on [0, co) and with values in X, A is almost sectorial operator.
Using Mittag-Leffler function, the Classical solution of the system ([2.5) is given by,
t
z(t) = [zo — g(2)] Ea,1 (At7) +/ (t = 8)* " Boa(A(t — 5)*) (s, 2(s))ds. (2.6)
0

Denote the operators P, (t) = t* 1 E, o(At*) and S, (t) = E,1(At%). Then x(t) can be expressed as

x(t) = Sa(t)[xo — g(z)] + /0 P,(t —s)f(s,x(s))ds. (2.7)
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where S, (t) and P,(t) can be expressed as

1
Sa(t) = 2—m/ AT — A) 7.
1
P _ Aty _A —1 .
o (t) 3w Jo, € (A )~tdA

where I'y = {RJreie} U {RJre*w}, is oriented counter-clockwise.

Lemma 2.1. For each fizedt > 0, S, (t) and P,(t) are linear and bounded operators on X. Moreover, there
exist constants Cs = C(a,y) >0, Cp = C(a,7y) > 0 such that for allt > 0,

1S ()]| < Cst ™7, ||Pa(t)]] = Cptet==1 where 0 <~y < 1.

Proof. Since, t >0, 0 <~ <1, there exists a constant C' > 0 such that
C

e el

From [32], observe that 2m fr t(X — A)~td\ converge in the uniform operator topology for all t > 0 and by

, we have that

A=)~ <

1 a— o -
1Sa ()| < HTm/F AN - A) 1)
0
1 —COS oa— o -
S PN = A) [ A
6
i —cosO| Aty |a—1 c
< o € Al |)\|a(1_7)d‘)‘|
C =
< o= / 6_6050‘“‘|M|a7_1d/.}/
Ty
< Oyt
Also, we have
1 _
1Pl = g [ 0= 2|
0
1 —COS8 (0% -
< 5] P = A) T[N
1 —cosf| At c
< g/ e ST
a(l—y)—1
< 7Ct( » /e*C059|M||u|*a(1*7)du
- 27
Ty
< O, e(l=v)-1

O

Lemma 2.2. ([51]) Fort > 0, Su(t) and P,(t) are continuous in the uniform operator topology. Moreover,
for every r > 0, the continuity is uniform on [r,c0).

Theorem 2.1. If f satisfies the uniform Holder condition with exponent 3 € (0,1] and A is an almost sectorial
operator, then any solution of the Cauchy problem s a fized point of the operator given below

Sa(t)lwo — g(2)] + [, Pa (s, w(S))d& t € [0,11];
Sa(t—tl)( ( )+ iz )+ft s) f(s,z(s))ds, t € (t1,ta);

Salt = tm) (z(ty) + In( )—l—ft w(t—8) f(s,z(s))ds, t € (tm,T).
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In fact, from(2.7)) it is easy to see that Theorem holds, so the proof is omitted.

Now let us consider the set of functions PC(I,X) = {x I - Xz e C((th, thy1],X), k=1,2,...,m and
there exist (t)) and z(t;), k=1,2,..m with z(t;) = z(ty)}
endowed with the norm ||z||pc = sup,c; ||2(t)]|.
From Theorem, we can define the mild solution of the system as follows:

Definition 2.4. A function x : I — X is called a mild solution of a system ( , if x € PC(I,X) and satisfies
the following equation,

Sa(t)lwo — g(@)] + [ Palt — s) f(s,2(s))ds, te[0,ta];

Sa(t —t)(x(ty) + Li(z(t7))) + j;fl P.(t —5) f(s,x(s))ds, t € (t1,ta);
x(t) =

Salt = tm) (x(ty,) + Im( )+ft W (t —5) f(s,2(s))ds, t € (tm, T).

Remark 2.1. It is easy to verify that a classical solution of s a mild solution of the same system.

3 Existence Results

In this section, we give the main results on the existence of mild solutions of the system (1.4).
To establish our results, we introduce the following hypotheses.

(Hy) f:1xX — Xis continuous and there exists a constant M > 0 such that

||f(t,$)—f(t,y)” < M||(E—y”, v tGI,x,yEX
LfEO[ <k,

where kp is a constant.

(Hg) g: PC(I,X) — X is continuous and there exists a constant b such that

llg(x) =gl < bllz—yllpc, V tel,z,ye PC(,X)
lg(0)]] < ko,

where ko is a constant.

(Hs) for each k =1,2,...,m, there exists py > 0 such that

Mk (x) = Tk (y)l
17k (0)]

pk”x_va Vm,yeX

<
S k?ﬂ

where k3 is a constant.

(H4) For each z € X, there exists a constant » > 0 such that
r > max {CST_OW [llzoll +7(pi + b+ 1) + ko + k3)] + Cp(Mr + kl)Tw(1 i }

1<i<m (1-7)
Theorem 3.2. Under the assumptions (Hy) — (H3), the system has a unique mild solution € PC(I,X)
if

o Ta(l—)
N = max {CST [b+1+pi] + CpMm} <1 (3.8)

Proof. Define I : PC(I,X) — PC(I,X) by
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Sa(t)[wo — g(@)] + [} Palt — 5) f(s,2(s))ds, tel0,t];
St —t1) (z(t7) + L (z(t7))) + ffl P,(t —s) f(s,z(s))ds, t € (t1,ta);

St = tm) (z(ty) + Im(z(t,))) + fttm P,(t—s) f(s,x(s))ds, t € (tm,T).

Clearly, the fixed points of the operator I' are the solutions of the problem . We shall use the Banach
contracton principle to prove that I" has a fixed point.
We shall show that I' is a contraction.
Let x,y € PC(I,X). Then for each ¢ € [0,1] and by the lemma (2.1)), we have

ITz(t) =Ty@)] < [ISa(®)]] ||9($)*9(y)||+/0 | Pa(t = s)[| [1f(s,2(s)) = f(s,y(s))l|ds

t
< Gt bl -yl 4Gy [ (6= 92 Mlfa(s) - y(o)llds
0
Ta(l—)
< —ay —
< [errve M, ] e —llee

For t € (tl,tz],
ITa(t) =Tyl < [1Sat — t)I[llz(ty) =yl + [T (2(t7)) = Lyt

+ / 1Pt — $)I| |1 (s, 2(5)) — F(5u(5)lds

< Cult— 1) e(]) — gD + prlla(t) -y
+C, | (870D Mla(s) — y(s)]lds
< [em o4 )+ M 6 T oyl
a(l—7)
Similarly, for all t € (¢; + t;41],
IPa() = Ty®ll < [C T (pi4 1)+ M Gy T fla i
a(l—7)

and for t € (tm, T,

a(l—7y)
() - Ty < | .

Cs T7(pm + 1)+ M Cy m} llz — yllpc

Thus, for all ¢ € [0, T,

To(1-7)

_ < —ay . - _
o) =Pyl < max {0770+ pi 4 1) + M Gy S} lle = wllre
< Nz -yllre

Thus, by the equation (3.8)), I" is a contraction mapping. As a consequence of Banach fixed point theorem,
we deduce that I' has a unique fixed point z¢p € PC(I,X) which is a solution of the problem (1.4]). O

Our next result is based on Krasnoselskii’s fixed point theorem.

Lemma 3.3. (Krasnoselskii’s Fized point theorem)([T4)]). Let X be a Banach space, let E be a bounded closed
convex subset of X and let 'y, T'y be maps of E into X such that Tyx + Doy € E for every pair x,y € E. If T’y
s a contraction and 'y is completely continuous, then the equation I'yx + I'sx = = has a solution on E.
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Theorem 3.3. Assume that the hypothesis (Hy) — (Hy) are satisfied, then the system has atleast one mild
solution on I.

Proof. Define operator I' : PC(I,X) — PC(I,X), as in Theorem by

S ( )[’J)O - + fo (s,x(s))ds, te [Oatl];
Sa<t—t1>( <1>+11< <1>>)+f; Pult—s) f(s,2(9))ds,  t€ (tn,tal;

Sa(t = tm) (z(tn) + I )—i—ft w(t— ) f(s,2(s))ds, t € (tm,T).

Define B, as B, = {x € PC(I,X) : ||z|lpc < r}. Then, B, is a closed, bounded and convex subset of
PC(I1,X). On B,, we define the operators I'; and T’y as follows.

Sa(t)[x() - g(x)]v te [O7t1];
Sa(t —t1)(x(ty) + Li(z(t7))), t € (t1,ta);
le(t> =
Sa(t = tm) (z(tn) + In(z(t))), t € (tm,T).
and
fo (t—s) f(s,z(s))ds, t€0,t1];
[ Pa(t—s) f(s,2(s))ds, t € (t1,to);
F2$(t) =

fttm Po(t —s) f(s,z(s))ds, t e (tm,T).

Now, we show that I'y + I's has a fixed point in B,.. The proof is divided into three steps.
Step 1: I'ix + I'yy € B,., for every pair z,y € B,.
Consider for any z,y € B, and for t € [0, 1], we have

ITva(t) + Tay@)]| - < [[Sa®I] [lzoll + llg(x) — g(0)]] + llg(O)II]

+/0 [ Pa(t = )| [I[f(s:4(s)) = f(s,0)[| + 1| (s, 0)[]ds

t
< ot [faoll + bl + o] + G [ (6= 570 (|l + ks
0

Te(l=7)
S CS 1_'704’Y [||x0||+bT+k2]+C’p (Mr+k1) m

For ¢ € (t1,t2], we have

[Trz(t) + Tay (Bl < HSa(t—tl)ll[Hw(tI)ll+H11($(t1_))||]+/t [ Pa(t = )| [1f(s,y(s))l|ds

t
Cs (t—t)™ [r+ (mr+k3)] +Cp [ (t—s)*I71 (Mr + ky)ds

t1

IN

Te(l—7)
a(l—7)

IN

Co T™ [r(1+ p1) + k3] + Cp (M7 + k1)
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Similarly, we have
Te(l—7)

|[T1z(t) + Lay(t)]| al=~)’

IN

Cy T [’/’(1 + pi) + k‘3] + Cp (M’I“ + kl) V te (ti7ti+1]

and
a(l—7y)

I3z(e) + Tay()ll < Co T2 [t pm) - hs] + Cp (Mr ot k) s

, V te (tm,T]

Thus, for all ¢ € [0,T] and by (Hy), we have

Ta(l—7) }

ITy(t) + Toy(t)]] < max {C’S T~ [|lwo|| + (1 + pi + b) + k2 + k3| + Cp (Mr + k1) al—7)

1<i<m
< r

which means that I'yz + I'sy € B, for any z,y € B,.

Step 2: I'7 is contraction on B,.
Let x,y € B,. By (Hz) and (Hj3) , for each t € [0, 4],

< (ISa@®ll lg(z) — g(y)l|
< Cst™ b [z —y|
< b OST™ ||z —yl|

[IT12(t) — Try(t)]]

For t € (tl,tg],

[T (t) = Tay(8)]| 1St = e[| [Il2(ty) =yt + 111 (x(t) — Ty ()]

CT™ [+ pallle =yl

INIA

Similarly, for all ¢ € (¢;,t;41],
ITiz(t) —Twy@®)l < Cs T (pi+1) |lz —yl|

and therefore for all t € (t,,,T],

ITz(t) = Twy@)l < Cs T (pm + 1) [lz =yl

Thus, for all ¢ € [0, T7,

IPia(t) =Tyl < max {C T+ pi+ 1)} [l =y

1<i<m
Nljz =yl

A

Thus, from equation (3.8)), I'; is contraction on B;..
Step 3: Now, we show that I's is a completely continuous operator.
For that consider, for any ¢ € [0,;], we have

T2z ()] < /OHPa(t_S)H||f(3az(5))||d5

t

< Cp/ (t =) 7 (M || + ka)ds
0

Te(l=7)

S CP(MT+]<51) m

Similarly, for all t € (¢;,t;11],

P2zl < Cp(Mr + k1) —
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Thus, from the above inequalities, {ng tx € BT} is uniformly bounded for every ¢ € [0, T].

Next, we will prove that {ng rx € BT} is equicontinuous.

Let, s1, 82 € [0,%1], with $1 < s2, then Vs1, s2, we have

S1

l[W&@—gmemmm—A|Rmrﬂnwmumw8

IN

[[(T2z)(s2) — (Faz)(s1)]|

IN

Cp[/osl [(32 _ S)a(l—’Y)—l ~ (51— S)a(l—'y)—l] 11 (s, 2(s))]|ds
/ 2(82 — s)a(lfv)*l ||f(8,$(s))||d$}

+
s1
Cp (Mr + k1) [ a(1-7) a(lw)}
1y |52 -5
a(l—9)
Similarly, Vs1, s2 € (¢, tit1], with $1 < s, 4 =1,2,...,m, we have
Cp (M’I“ + kl)
p T T F1) {( S
a(l—7)
Thus, from the above inequalities, we have limg, 5, ||(T'22)(s2) — (T'2z)(s1)|| = 0. So, I's is equicontinuous.
Moreover, it is clear that from the lemma (2.2)), T's is continuous. So, I'; is a completely continuous operator.
Therefore, Krasnoselskii’s fixed point theorem shows that I' = I'y + I'; has a fixed point on B, and hence

[[(T2x)(s2) — (Faz)(s1)|] < — ;)2 — (5 — ti)“(l‘”]

the system ([1.4) has a solution on I. O
4 Example

Let A = (—iA +0)z, D(A) = W13(R2) (a sobolev space)

be as in example 6.3(]31]), in which the authors demonstrate that A is an almost sectorial operator for some
0 <w < % and v = ¢. We denote the semigroup associated with A by T(t) and ||T(t)]] < Cot~5, where Cj is
a constant.

Let X = L3(R?), we consider the following problem.

“Dia(t) = Aw(t) + (s Tty t€1=10.1], t#}

1y _ _l=(z )l _1
8r) = R 2

x(0) + %x(%) =z(1)

where
_ cost | (t)]
f6a®) = G To @)
_ Ed
he) = i
o) = alz)

By direct computations, we see that

I£ta@) - S0l = || | - 20 < et - )
Ih) - L@l < gl

lo@@) —g@l < glla—yl

So,it is clear that the functions f, g and I}, satisfy the assumptions (Hi), (Hz) and (Hz) with M = 3= b =
%, and p; = %5 . Then, choosing for instance a = % and T = 1, we have from the equation 1 ,

1 112
+C,

5l T O <!

N:CS[£+
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for the suitable values of the constants Cs and C),. Moreover the assumption (Hy) is also satisfied. Thus, all
the assumptions of Theorem and Theorem [3.3] are satisfied and hence by the conclusion of the Theorems
and , the nonlocal impulsive fractional problem (1.4)) has a unique solution on [0,1].
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Application of random fixed point theorems in solving nonlinear
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Abstract

In the present paper, we apply random analogue Kannan fixed point theorem [I0] to analyze the existence of a
solution of a nonlinear stochastic integral equation of the Hammerstein type of the form

2(tiw) = h(t;w) + / K(t, 510) f(s, 2(5:0))da(s)

where t € S, a o-finite measure space with certain properties, w € €2, the supporting set of a probability measure space

(Q, 8, 1) and the integral is a Bochner integral.
Keywords: random fixed point, Kannan operator, stochastic integral equation.
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1 Introduction

The importance of random fixed point theory lies in its vast applicability in probabilistic functional analysis
and various probabilistic models. The introduction of randomness however leads to several new questions of
measurability of solutions, probabilistic and statistical aspects of random solutions. It is well known that
random fixed point theorems are stochastic generalization of classical fixed point theorems what we call as
determinstic results. Random fixed point theorems for random contraction mappings on separable complete
metric spaces were first proved by Spacek [I8] and Hans (see [6]-[7]). The survey article by Bharucha-Reid
[4] in 1976 attracted the attention of several mathematicians and gave wings to this theory. Itoh [§] extended
Spacek’s and Hang’s theorems to multivalued contraction mappings. Random fixed point theorems with an
application to Random differential equations in Banach spaces are obtained by Itoh [§]. Sehgal and Waters
[I7] had obtained several random fixed point theorems including random analogue of the classical results due
to Rothe [I3]. In recent past, several fixed point theorems including Kannan type [I0] Chatterjeea [5] and
Zamfirescu type [20] have been generalized in stochastic version (see for detail in Joshi and Bose [9], Saha et
al. ([I4), [19]).

On the otherhand, Padgett [I2] used the random analogue of Banach fixed point theorem [3] to analyze the
existence and uniqueness of random solution of a nonlinear stochastic integral equation of the Hammerstein
type of the form

x(t;w) = h(t;w) + /S k(t, s;w) f(s, z(s;w))du(s)

and proved several theorems. Achari [I] and Saha et al.[I6] continued to work on this application for more
generalized random nonlinear contraction operators.

*Corresponding author.
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In the following section, we study on application of two basic random fixed point theorems of importance,
one - is Kannan fixed point theorem [I0] and the other one is - Chatterjea fixed point theorem [5] to analyze
the existence of solution for such integral equation.

2 Preliminaries

Let (X, Bx) be a separable Banach space where Bx is a o-algebra of Borel subsets of X, and let (€2, 5, u)
denote a complete probability measure space with measure p, and 3 be a g-algebra of subsets of 2. For more
details one can see Joshi and Bose [9].

Theorem 2.1. (Joshi and Bose [9]) Let X be a separable Banach space and (2, 3, 1) be a complete probability
measure space. Let T : 0 x X — X be a continuous random operator satisfying

IT(w,21) = T(w,z2)[ < k(W) [lzr = T(w, 1) | + [lzz = T(w, z2) ]
+ha(w) [y = T(w, x2) | + |22 — T(w, 1) []]
+k’5 ||(E1 — {EQH (21)

for allw € Q and 1,22 € X, kij(w) > 0; 1 < i < 3. are real valued random variables with 2k, (w) + 2ko(w) +
ks(w) < 1 almost surely. Then there exists a unique random fized point of T'.

Remark 2.1. (I) In the above theorem, setting ko(w) = ks(w) = 0, one can find random analogue of kannan
fized point theorem [10] and in that case the operator T : Q x X — X takes the form:

1T (w,21) = T(w,2z2)[| < k(W) [llzr = T(w, z1) | + lz2 = T(w, z2) []] (2.2)

for allw € Q and x1,29 € X, k1(w) > 0 is real valued random variables with k1 (w) < % almost surely.

(IT) Setting k1(w) = k3(w) = 0, one can find random analogue of Chatterjea fized point theorem [B] and in
that case the operator T : Q x X — X takes the form:

1T (w, 21) = T(w,z2)| < ko(w) (21 = T(w, z2) || + [lz2 = T(w, 21) [] (2.3)
for allw € Q and 1,32 € X, ka(w) > 0 is real valued random variables with ka(w) < 3 almost surely.

Remark 2.2. Note that neither Kannan operator nor Chatterjea operator is continuous in general. So random
fized point theorems for these two operators are slightly different from their deterministic approach.

3 Application to a random nonlinear integral equation

We now show an application of stochastic version of Kannan fixed point theorem in solving nonlinear
stochastic integral equation of the Hammerstein type of the form:

z(t;w) = h(t;w) + /S k(t, s;w) f(s,z(s;w))duo(s) (3.4)

where

(1)S is a locally compact metric space with metric d on S x S, po is a complete o-finite measure defined on the
collection of Borel subsets of S

(ii) w € , where w is a supporting set of probability measure space (2, 3, 11);

(iii) #(¢;w) is the unknown vector-valued random variables for each ¢t € S.

(iv) h(t;w) is the stochastic free term defined for ¢ € S;

(v) k(t,s;w) is the stochastic kernel defuned for ¢ and s in S and

(vi) f(t,x) is vector-valued function of t € S and =

and the integral in equation (3.4) is a Bochner integral.

We will further assume that S is the union of a countable family of compact sets {C,,} having the properties
that C1 C C C ... and that for any other compact set S there is a C; which contains it (see [2]).
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Definition 3.1. We define the space C(S, L2(Q2, B, 1)) to be the space of all continuous functions from S into
Lo(Q, B, u) with the topology of uniform convergence on compacta i.e. for each fized t € S, x(t;w) is a vector
valued random variable such that

ot 0,0 = [ lo(t) due) < oc

It may be noted that C(S, L2(Q, 5, 1)) is locally convex space (see [19]) whose topology is defined by a countable
family of seminorms given by

[zl = sup lz(t )l 0,6, 7 = 12

Moreover C(S, La(R2, B, 1)) is complete relative to this topology since Lo(S2, B, 1) is complete.

We further define BC' = BC(S, L2(€2, 8, 1)) to be the Banach space of all bounded continuous functions
from S into Ly (2, 8, 1) with norm

2t ) e = sup [l @)l 0,00

The space BC C C' is the space of all second order vector-valued stochastic process defined on S which are
bounded and continuous in mean square.

We will consider the function h(t;w) and f(¢,2(t;w)) to be in the space C(S, L2(€2, 5, 1)) with respect to the
stochastic kernel. We assume that for each pair (¢, s), k(, s;w) € Lo (2, 8, ) and denote the norm by

IR (t 5:0) | = [(t 550l gy = 1= 55 s (L 5:69).

Also we will suppose that k(t, s;w) is such that [||k(¢, s;w)|[[ . lz(s;w)[ 1, s, I8 Ho-integrable with respect to
s for each t € S and z(s;w) in C(S, L2(€, B, 1)) and there exists a real valued function G defined pg-a.e. on S,
so that G(5) [|z(s;w)l| 1, (5, IS Ho-integarable and for each pair (¢,5) € 5 x 5,

k(w5 w) = k(s ww)ll] 2 (w, @)l Ly 0,6, < G [2(w,0)l L, 0,60

po-a.e. Further, for allmost all s € S, k(t, s;w) will be continuous in ¢ from S into Ly (€2, 5, 1).
We now define the random integral operator T' on C(S, L2(£2, 3, 1)) by

(T)(t:w) = /S K(t, 5 0)2(s;0)djos) (3.5)

where the integral is a Bochner integral. Moreover, we have that for each ¢t € S, (Tx)(t;w) € L2(Q, 8, 1) and
that (T'z)(t;w) is continuous in mean square by Lebesgue’s dominated convergence theorem. So (Tx)(t;w) €

C(Sv LQ(Qa ﬁ? /1’))

Definition 3.2. (see [1], [T1]) Let B and D be Banach spaces. The pair (B, D) is said to be admissible with
respect to a random operator T(w) if T(w)(B) C D.

Lemma 3.1. (see [12]) The linear operator T defined by (3.5) is continuous from C(S, La(S2, B, 1)) into itself.

Lemma 3.2. (see [12], [T1]) If T is a continuous linear operator from C(S, La(S2, B, 1)) into itself and B, D C
C(S, La(Q, B, 1)) are Banach spaces stronger than C(S, La2(Q2, 5, 1)) such that (B, D) is admissible with respect
to T, then T 1is continuous from B into D.

Remark 3.3. (see [12]) The operator T defined by (3.5) is a bounded linear operator from B into D.
It is to be noted that by a random solution of the equation (3.4) we will mean a function x(t;w) in C(S, La(£2, B, 1))
which satisfies the equation (3.4) p-a.e.

We are now in a state to prove the following theorem.

Theorem 3.2. We consider the stochastic integral equation (3.4) subject to the following conditions:
(a) B and D are Banach spaces stronger than C(S, La(Q, 8, 1)) such that (B, D) is admissible with respect to
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the integral operator defined by (3.5);
(b) z(t;w) — f(t,z(t;w)) is an operator from the set

Qp) = {z(t;w) : z(t;w) € D, |lz(t;w)| p < p}

into the space B satisfying

[t (tw) = ftza(tw))llp < Aw) [[lea(tw) = f (21t w) b
+llwa(t;w) = f(E z2(t;w)) ] (3.6)

for z1(t;w), z2(t;w) € Q(p), where 0 < A(w) < § is a real valued random variable almost surely,
(¢) h(t;w) € D.

Then there exists a unique random solution of (3.4) in Q(p), provided

AMw) (1+c(w)) < % and

14+ Aw)

Hh(t;w)HD + 1— )\(w)

W) IF(£0)| 5 < p (1 - i(cj)i((z)))

where c(w) is the norm of T(w).

Proof. Define the operator U(w) from Q(p) into D by

Ua)(t0) = Wti0) + [ Kt 520) (5,255
Now

1Uz)(& W)l p 1At @)l p + c(w) [1f(E 2t @)l 5
1A )l p + c(w) [1F(E0) [ p + e(w) [[f (&, 2(t;w)) = F(E0)]

Then from the condition (3.6) of this theorem

IN A

5t 2(E0) ~ [0l < A@)laltsw) — St 2G|+ 10:0))
< M@ (ot )l + 15 2 + 0],
< @) et p+ 1t 2(t:)) — FEO + 21 :0) )
implies
I a(ti) ~ FG0p < T2+ (GO (3.7

Therefore by (3.7), we have

[Ty < I+ e 1O,
rolo) [ (204 2D,

4 e 760l

= [[rtw)lp +

< p

Hence (Uz)(t;w) € Q(p). Then for x1(t;w), z2(t;w) € Q(p), we have by condition (b)

[(Uz1)(t;w) = (Uza)(t; )l p

[S K(t, 0)[f (5, 21 (1)) — £ (5 22(550))]dtos)
() | F (621 () — £t 2a(t: )] 5

@A) a1 () — f (122 ()]

latw) — fltwa(t0)] )

D

IN N

since c(w)A(w) < 3, U(w) is a Kannan contraction on Q(p). Hence, by Theorem 2.1 and Remark 2.1(I), there
exists a unique x*(t,w) € Q(p), which is a fixed point of U, that is 2*(¢,w) is the unique random solution of
the equation (3.4). O
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A similar theorem can be obtained using random analogue of Chatterjea fixed point theorem [5].

Theorem 3.3. Assume that the stochastic integral equation (3.4) subject to the following conditions:
(a') Same as (a) of Theorem 3.2;
(b)) z(t;w) — f(t,z(t;w)) is an operator from the set

Qlp) ={z(t;w) : 2(t;w) € D, |z(t;w)llp < p}
into the space B satisfying
1f(t 21 (tw) =tz (Gw)lp <0 Aw) [l (G w) = f (& 2z2(t0)l b
+ |2t w) = f(t, 21t w))llp] (3.8)

for 1 (t;w), z2(t;w) € Q(p), where 0 < A(w) < 3 is a real valued random variable almost surely,
(¢) h(t;w) e D.

Then there exists a unique random solution of (3.4) in Q(p), provided

Mw) (1 +c(w)) < & and

1+ A(w)

[A(t; W)l p + Toaw)©

@ I/ &0 5 < p (1 _ ww))

1—Aw)

where c(w) is the norm of T'(w).

Proof. The proof is similar to that of Theorem 3.2. So we avoid repeatation. O
The following example illustrates the strength of our main result-Theorem 3.2.

Example 3.1. Consider the following nonlinear stochastic integral equation:

w69 = | s e

Comparing with (3.4), we see that

1 1
ht,w) =0,k(t,s;w) = —e 7% f(s,2(s;w)) = ———
(16) = 0.kt 50) = 3¢~ f(o,2(559) = 15 7o
Then one can check that equation (3.6) is satisfied with A(w) = 1.
Comparing with integral operator equation (3.5), we see that the norm of T(w) is c(w) = % satisfying

Mw)(1 4 c(w)) < . So, all the conditions of Theorem 3.2 are satisfied and hence there exists a random fized
point of the integral operator T satisfying (3.5).

Acknowledgement: The authors are thankful to the referee for his precise remarks.

References

[1] J. Achari, On a pair of random generalized non-linear contractions, Int. J. Math. Math. Sci., 6(3),
(1983), 467-475.

[2] R.F. Arens, A topology for spaces of transformations, Annals of Math., 47(2), (1946), 480-495.

[3] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales,
Fund. Math. 3, (1922), 133-181 (French).

[4] A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82(5),
(1976), 641-657.

[5] S.K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25, (1972), 727-730.

[6] O. Hang, Reduzierende zuféllige transformationen, Czechoslovak Math. Journal, 7(82), (1957), 154~
158, (German), with Russian summary.



[7]

8]

(9]

[15]

[16]

[17]

[18]

[19]

[20]

Debashis Dey and Mantu Saha / Application of random fixed point ... 59

O. Hans, Random operator equations, Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob.,
University of California Press, California, Vol.II, part I, (1961), 185-202.

S. Itoh, Random fixed-point theorems with an application to random differential equations in Banach
spaces, J. Math. Anal. Appl., 67(2), (1979), 261-273.

M.C. Joshi and R.K. Bose, Some topics in non linear functional analysis, Wiley Eastern Ltd., (1984).
R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc. , 60, (1968), 71-76.

A.C.H. Lee and W.J. Padgett, On random nonlinear contraction, Math. Systems Theory, ii, (1977),
77-84.

W.J. Padgett, On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer.
Math. Soc., 38 (1), (1973).

E. Rothe, Zut Theorie der topologische ordnung und der vektorfelder in Banachschen Raumen, Com-
posito Math., 5, (1937), 177-197.

M. Saha , On some random fixed point of mappings over a Banach space with a probability measure,
Proc. Nat. Acad. Sci., India, 76(A)III, (2006), 219-224.

M. Saha and L. Debnath, Random fixed point of mappings over a Hilbert space with a probability
measure, Adv. Stud. Contemp. Math., 18(1), (2009), 97-104.

M. Saha and D. Dey, Some Random fixed point theorems for (6, L)-weak contractions, Hacettepe
Journal of Mathematics and Statistics, 41(6), (2012), 795-812.

V.M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer.
Math. Soc., 90 (1), (1984), 425-429.

A. Spacek, Zufillige Gleichungen, Czechoslovak Mathematical Journal, 5(80), (1955), 462-466, (Ger-
man), with Russian summary.

K. Yosida, Functional analysis, Academic press, New york, Springer-Verlag, Berlin, (1965).

T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math.(Basel), 23, (1972), 292-298.

Received: November 11, 2012; Accepted: March 20, 2013

UNIVERSITY PRESS



Malaya Journal of Matematik 2(1)(2013) 60-67

Malaya MIM

970
)
L8275
Journal of an international journal of mathematical sciences with ‘fY“,,
Matematik computer applications... e
———————————————————— Matematik
www.malayajournal.org |S§N : 55"152;7;6

Existence of positive periodic solutions for nonlinear neutral

dynamic equations with variable delay on a time scale

Abdelouaheb Ardjouni®*and Ahcene Djoudi®

“'bDepartment of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12 Annaba, Algeria.

Abstract

Let T be a periodic time scale. The purpose of this paper is to use Krasnoselskii’s fixed point theorem to prove the
existence of positive periodic solutions on time scale of the nonlinear neutral dynamic equation with variable delay

(@(t) =g tz(t—7®))" =rM)z(t)~f(tz{t—7(1).

We invert this equation to construct a sum of a contraction and a compact map which is suitable for applying the
Krasnoselskii’s theorem. The results obtained here extend the works of Raffoul [I7] and Ardjouni and Djoudi [3].

Keywords: Positive periodic solutions, nonlinear neutral dynamic equations, fixed point theorem, time scales.
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1 Introduction

Let T be a periodic time scale such that 0 € T. In this paper, we are interested in the analysis of qualitative
theory of positive periodic solutions of dynamic equations. Motivated by the papers [1]-[6], [9]-[I7] and the
references therein, we consider the following nonlinear neutral dynamic equation with variable delay

(@) =g (ta(t—7@)))" =r)z(t) - ftat-7(). (L.1)

Throughout this paper we assume that 7 : T — R and that id — 7 : T — T is strictly increasing so that the
function x (¢t — 7 (¢)) is well defined over T. Our purpose here is to use the Krasnoselskii’s fixed point theorem
to show the existence of positive periodic solutions on time scales for equation . To reach our desired end
we have to transform into an integral equation written as a sum of two mapping; one is a contraction
and the other is compact. After that, we use Krasnoselskii’s fixed point theorem, to show the existence of a
positive periodic solution for equation . In the special case T = R, in [3] we show that has a positive
periodic solution by using Krasnoselskii’s fixed point theorem.

The organization of this paper is as follows. In Section 2, we present some preliminary material that we
will need through the remainder of the paper. We will state some facts about the exponential function on a
time scale as well as the Krasnoselskii’s fixed point theorem. For details on Krasnoselskii’s theorem we refer
the reader to [I§]. In Section 3, we present our main results on existence of positive periodic solutions of .
The results presented in this paper extend the main results in [3] [17].

2 Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The study of dynamic equations on
time scales is a fairly new subject, and research in this area is rapidly growing (see [1], [2], [4]-[8], [14], [15] and

*Corresponding author.
E-mail addresses:abd_ardjouni@yahoo.fr (Abdelouaheb Ardjouni) and adjoudi@yahoo.com (Ahcene Djoudi).
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papers therein). The theory of dynamic equations unifies the theories of differential equations and difference
equations. We suppose that the reader is familiar with the basic concepts concerning the calculus on time scales
for dynamic equations. Otherwise one can find in Bohner and Peterson books [7] and [§] most of the material
needed to read this paper. We start by giving some definitions necessary for our work. The notion of periodic
time scales is introduced in Atici et al. [5] and Kaufmann and Raffoul [I4]. The following two definitions are
borrowed from [5] and [I4].

Definition 2.1. We say that a time scale T is periodic if there exist a w > 0 such that ift € T thent+w € T.
For T # R, the smallest positive w is called the period of the time scale.

Below are examples of periodic time scales taken from [I4].

Example 2.1. The following time scales are periodic.
']I‘:U [2(i —1)h,2ih], h > 0 has period w = 2h.
(2) T= hZ has period w = h.

3) T
(4)T {t—k—qm'kEZmeNo} where, 0 < g < 1 has period w = 1.

Remark 2.1 ([14]). All periodic time scales are unbounded above and below.

Definition 2.2. Let T # R be a periodic time scales with the period w. We say that the function f: T — R is
periodic with period T if there exists a natural number n such that T =nw, f(t £ T) = f(t) for allt € T and
T is the smallest number such that f(t £T) = f(t). If T =R, we say that f is periodic with period T' > 0 if
T is the smallest positive number such that f (t +T) = f(t) for allt € T.

Remark 2.2 ([14]). If T is a periodic time scale with period p, then o (t £ nw) = o (t) £ nw. Consequently,
the graininess function p satisfies u(t £ nw) = o (t £ nw) — (t £nw) = o (t) —t = p(t) and so, is a periodic
Sfunction with period w.

Our first two theorems concern the composition of two functions. The first theorem is the chain rule on
time scales ([7], Theorem 1.93).

Theorem 2.1 (Chain Rule). Assume v : T — R is strictly increasing and T := v (T) is a time scale. Let
w:T —R. Ifv2(t) and w® (v (1)) e:mstforté?l‘k then

(wo V)A = (wﬁ o Z/> Ve,

In the sequel we will need to differentiate and integrate functions of the form f (¢t — r (¢t)) = f (v (¢)) where,
v(t) :=t—r(t). Our second theorem is the substitution rule ([7], Theorem 1.98).

Theorem 2.2 (Substitution). Assume v : T — R is strictly increasing and T := v (T) is a time scale. If
f: T — R is rd-continuous function and v is differentiable with rd-continuous derivative, then for a,b € T,

/ fFv® () At = /U(b) (Fov™Y) (s) As.

v(a)

A function p : T — R is said to be regressive provided 1 + p(t)p(t) # 0 for all + € T*. The set of all
regressive rd-continuous function f : T — R is denoted by R while the set RT = {f e R: 1+ u(t) f(t) >0
forall t € T}.

Let p e R and pu (t) # 0 for all ¢ € T. The exponential function on T is defined by

e (15) = [ tu}Z)Log(l () 55) (22)

It is well known that if p € R™, then ¢, (t,s) > 0 for all ¢ € T. Also, the exponential function y () = e, (¢, s)
is the solution to the initial value problem y* = p (t)y, y (s) = 1. Other properties of the exponential function
are given in the following lemma.
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Lemma 2.1 ([7]). Let p,q € R. Then
(i) eo (t,s) =1 and ey (t,t) = 1;
(1) € (0 (1) ) = (1 () p (1)) e (1, 5)
() —— p(®)

= egp (t,8), where Op (t) = —W;

1
_ = t):
ep (S,t e@p (57 ) ’

(v) ey (t,s)ep(s,7) =ep(t,7);

(vi) e (. 8) = pep (., 5) and ( ! )A __»r(@®

ep (., 8) e (,s)

Theorem 2.3 ([6], Theorem 2.1). Let T be a periodic time scale with period w > 0. If p € Crq(T) is a
periodic function with the period T = nw, then

b+T b
/ p(u)Au:/ pu)Au, e, (b+T,a+T)=-¢e,(b,a) ifpeR,
a+T a

and ey, (t+ T,t) is independent of t € T whenever p € R.

Lemma 2.2 ([1]). Ifp € RT, then

¢
0<ep(ts) <exp (/p(u)Au), vt e T.

Corollary 2.1 ([1]). Ifp € R and p(t) <0 for allt € T, then for all s € T with s <t we have

0<ep(ts) <exp </:p(u)Au> < 1.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables us to prove the existence
of positive periodic solutions to (1.1). For its proof we refer the reader to [18].

Theorem 2.4 (Krasnoselskii). Let D be a closed convex nonempty subset of a Banach space (B, ||.||) . Suppose
that A and B map D into B such that

(i) x,y € D, implies Ax + By € D,

(i7) A is compact and continuous,

(#4i) B is a contraction mapping.
Then there exists z € D with z = Az + Bz.

3 Existence of positive periodic solutions

We will state and prove our main result in this section. After we provide an example to illustrate our
results. Let T'> 0, T € T be fixed and if T # R, T'= np for some n € N. By the notation [a,b] we mean

[a, b)) ={t€T:a <t <b},

unless otherwise specified. The intervals [a, b), (a,b] and (a,b) are defined similarly.
Define Pr = {¢p:T—R|pecCand ¢ (t+7T)=p(t)} where C is the space of continuous real-valued
functions on T. Then (Pr, ||-||) is a Banach space with the supremum norm

lpll = sup le ()] = sup [p (8)]
teT t€[0,T]

We will need the following lemma whose proof can be found in [I4].
Lemma 3.3. Let © € Cp. Then ||z°]| = ||z o 0| exists and ||z7|| = ||z .

In this paper we assume that 7 € R™ is continuous and for all ¢t € T,

r+T)=r{), id—7)t+T)=>Gd—1) (), (3.3)
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where id is the identity function on T. Also, we assume

/TT (s) As > 0. (3.4)

We also assume that the functions ¢ (¢, ) and f (¢,z) are continuous in their respective arguments and periodic
in t with period T, that is,
g(t+T,$):g(t,$), f(t+T,l‘):f(t,l'). (35)

The following lemma is fundamental to our results.

Lemma 3.4. Suppose f hold. If x € Py, then x is a solution of equation if and only if

w(t) =gtz —7(1))
t+T

+ G(t,s)[f(s,2(s =7(s) —r(s)g(s,2(s —7(s)))] Ds, (3.6)

t

where

__ e (to(s)
G (t,s) = o G+ T.0) (3.7)

Proof. Let x € Pr be a solution of . First we write this equation as
(@) =gtz (t—7E))" —rt) (@) —gtz(t—7()
=—ftzt—7@)+rt)gtzt—7()).
Multiply both sides of the above equation by eg, (o (t),0) we get
@t~ gt (=7 @) ~r ) (@(t) g a7 H) } eer (0 (0),0)
={-ftzt—7()+r(t)g(t,z(t—7(1)))}eer (o(t),0).
Since e, (t,0)° = —r (t) ear (o (), 0) we find
[(z(t) =g @tz —7(1)))
={-ftzt—7()) +r

Taking the integral from ¢ to ¢ + T, we obtain

€or (t70 }A
@) gtz —7)}eer (o(t),0).

t+T A
/t (@ (3) — g (5,2 (5 — 7 (5)))) eer (5,0)]° As

t+T
= /t {=f(s,2(s=7(s)+r(s)g(s,2(s —7(s))}ecr (0(s),0) As.
As a consequence, we arrive at
(x(t+T)—g@t+T,z2(t+T—7(t+T))))eer(t+T,0)
— (@) —g@tz(t—7(t)) esr(t0)
t+T
= /t {=f(s,2(s=7(s) +7(s)g(s,2(s =7 ()} ear (0 (s),0) As.
Dividing both sides of the above equation by e, (t,0) and using the fact that z (t + T) = z (), (3.3), and

cer (0(s),0)
€or (t, 0)

Cor (t +T, O)

= r(E+T,1),
e (1,0) eor (t+T,t)

=er (t,0(s)),
we obtain
z(t)—g(t,z(t—7(t)

+T e o(s
:/t 1_;@(?(751)%,@ (F(s,m(s—7() =7 () g (s, (s — 7 (5)))} As.

Since each step is reversible, the converse follows easily. This completes the proof. O
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To simplify notation, we let

exp (— fozT I (u)| Au) exp (fOQT ] Au)
K 110 B N ) B
It is easy to see that for all (¢,s) € [0,27] x [0,27],
m < G(t,s) <M, (3.8)
and from Lemma and Theorem we have for all t,s € R,
GU+T,s+T)=GC(Ls). (3.9)

To apply Theorem [2.4] we need to define a Banach space B, a closed convex subset D of B and construct
two mappings, one is a contraction and the other is compact. So, we let (B,|||) = (Pr,||-||) and D =
{p€B: L << K}, where L is non-negative constant and K is positive constant. We express equation (3.6)
as

o (t) = (By) (t) + (Ap) (t) = (Hep) (1),
where A, B: D — B are defined by

t+T
(Ap) (t) = / Gt s){f(s,0(s=7(s) =7 (s)g(s,0(s =7 (5)))} As, (3.10)
t
and
(Be) (t) =g (t, ot —7(1))). (3.11)
In this section, we obtain the existence of a positive periodic solution of ([L.1)) by considering the two cases;

g(t,z) > 0and g (t,z) <Oforallt € R, x € D. We assume that function g (¢, x) is locally Lipschitz continuous
in x. That is, there exists a positive constant k such that

lg (t,x) — g (t,y)| < kl|lz—y|, forall t € [0,T], z,y € D. (3.12)

In the case g (t,x) > 0, we assume that there exist a non-negative constant k; and positive constant kg such
that

kiz < g(t,x) < kox, for all t € [0,T], x € D, (3.13)
ke < 1, (3.14)
and for all t € [0,T], x € D
L(1—Fk) K (1 — ko)
—= < — < — =" 1
L) < ) g < PO (315

Lemma 3.5. For A defined in , Suppose that the conditions f and f hold. Then

A:D — B is compact.
Proof. We first show that A : D — B. Clearly, if ¢ is continuous, then Ay is. Evaluating (3.10) at ¢ + T" gives

t4+2T

(Ap) (t+T) = /HT Gt+T,s){f(s,0(s =7(s))) =7 (s)g(s,0(s =7 ()} Ds.
Use Theorem [2.2] with u = s — T' to get
(Ap) (t+T) = t+TG(t+T7u+T){f(u—l—T,gD(u—l-T—T(u—i-T)))

—r(u+T)gu+Tpu+T—1(u+T)))}Au

From , and , we obtain
t+T
(Ap) (t+T) = /t G(tu) {f (u,o(u—7(w)) —r(u)g(ue(u—T(u))}As
= (Ap) (1) .
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That is, A: D — B.
We show that A (D) is uniformly bounded. For ¢ € [0,T] and for ¢ € D, we have

t+7T
[(Ag) (1) < /t G(t,s)[f(s,0(s=7(s) —r(s)g(s,0(s —7(5)))] As
gMT% =K (1—ky).

by (3.8)) and (3.15)). Thus from the estimation of |(Ayp) (t)| we arrive
[Apl < K (1= ko).

This shows that A (D) is uniformly bounded.

It remains to show that .4 (D) is equicontinuous. Let ¢, € D, where n is a positive integer. Next we
calculate (Agan)A (t) and show that it is uniformly bounded. By making use of and we obtain by
taking the derivative in that

(Apn)® (8) = [G (8t +T) = G (S (tpn (1 =7 (1)) =7 (8) g (tipn (t = 7 (1))}

+7(t) (Apa)” (1)
Consequently, by invoking (3.8]), (3.15) and Lemma we obtain

K (1—ks)

|(Apa)® ()] < === + Il K (1= ko) < D,

for some positive constant D. Hence the sequence (Ay,,) is equicontinuous. The Ascoli-Arzela theorem implies
that a subsequence (Ayy,,) of (Ap,) converges uniformly to a continuous T-periodic function. Thus A is
continuous and A (D) is contained in a compact subset of B. O

Lemma 3.6. Suppose that holds. If B is given by with
k<1, (3.16)
then B : D — B is a contraction.

Proof. Let B be defined by (3.4). Obviously, By is continuous and it is easy to show that (By)(t+T) =
(Byp) (t). So, for any ¢, 1 € D, we have

[(Bp) (t) — (By) (t)| < g (t,p(t =7 (1)) — g (t, 9 (t —7(t)))]
<kle—1l.

Then ||By — By|| < kll¢ — ¢||. Thus B: D — B is a contraction by ([3.16]). O

Theorem 3.5. Suppose f and f hold. Then equation has a positive T-periodic

solution x in the subset D.

Proof. By Lemma[3.5 the operator A : D — B is compact and continuous. Also, from Lemma[3.6] the operator
B :D — B is a contraction. Moreover, if ¢, € D, we see that

(By) (1) + (Ap) (t)
=gt —7(1)

t+T
+ /t G(ts){f (s,0(s =7(s5)) =7 (s)g(s,0(s=7(5))} Ds

t+T
S@K+Ml’ {50 (s—7(5) =7 (5) g (5,0 (5 — 7 ()} s

K (1—ks)

=K.
MT

<kK+MT
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On the other hand,

t+T
+ /t G(ts){f(s,0(s =7(s))) =7 (s)g (s, (s =7 (s)))} Ds

t+T
> ’“1L+m/t (50 (s —7(5))) =7 () g (5,0 (5 — 7 (5)))} As

L(1-k)
mT

> kL +mT =L

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus there exists a fixed point x € D
such that x = Ax + Bx. By Lemma this fixed point is a solution of (|1.1)) and the proof is complete. O

Remark 3.3. When T =R, Theorem[3.5 reduces to Theorem 3.1 of [3].

In the case g (t,z) < 0, we substitute conditions (3.13)—(3.15) with the following conditions respectively.
We assume that there exist a negative constant ks and a non-positive constant ky such that

ksx < g(t,x) < kqx, for all t € [0,T], x € D, (3.17)
ks < 1, (3.18)
and for all t € [0,T], z € D
L —ksK K — k4L
— < - < —. Nl
AR e —r e < EE (3.19)

Theorem 3.6. Suppose 7, and 7 hold. Then equation has a positive T-

periodic solution x in the subset .
The proof follows along the lines of Theorem |3.5] and hence we omit it.

Remark 3.4. When T =R, Theorem[3.6 reduces to Theorem 3.2 of [3].
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Transient solution of an MX!/G/1 queuing model with feedback,
random breakdowns and Bernoulli schedule server vacation having

general vacation time distribution
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Abstract

This paper analyze an M [X] /G/1 queue with feedback, random server breakdowns and Bernoulli schedule server
vacation with general(arbitrary) distribution. Customers arrive in batches with compound Poisson process and are
served one by one with first come first served basis. Both the service time and vacation time follow general (arbitrary)
distribution. After completion of a service the may go for a vacation with probability for continue staying in the system
to serve a next customer, if any with probability 1 — 6. With probability p, the customer feedback to the tail of original
queue for repeating the service until the service be successful. With probability 1 — p = ¢, the customer departs the
system if service be successful. The system may breakdown at random following Poisson process, whereas the repair time
follows exponential distribution. We obtain the time dependent probability generating function in terms of their Laplace
transforms and the corresponding steady state results explicitly. Also we derive the system performance measures like

average number of customers in the queue and the average waiting time in closed form.

Keywords: M[X]/G/l queue, Poisson arrival, probability generating function, Bernoulli schedule, steady state, mean queue size,

mean waiting time.

2010 MSC: 60K25, 60K30. (©2012 MJM. All rights reserved.

1 Introduction

Due to a lot of significance in the decision making process, the research on queuing theory has been
extensively increased. Queuing theory has made a revolution in industry and logistics sector apart from its
immense applications in many other areas like air traffic, bio-sciences, population studies, health sectors,
manufacturing and production sections etc. According to the prevailing demands or situations in real life
scenario, queuing models have been encountered enormously, in research perspective.

Most recently research studies on queues with server breakdown have been attracted, as an important
area of queuing theory and have been studied extensively and successfully due to their various applications
in production, communication systems. Mostly in the queuing literature, the server may be considered as an
reliable one,such that service station never fails. But in real situations mostly the servers are unreliable, we
often encounter the cases where service stations may fail which can be repaired. Similarly, many phenomena
always occur in the area of computer communication networks and flexible manufacturing system etc. Since the
performance of such a system may be heavily affected by server breakdowns, followed by a repair immediately,
such systems with a repairable service stations are well worth investigating from the queuing theory point of
view as well as reliability point of view.

*Corresponding author.
E-mail addresses: ayyappanpec@hotmail.com (G. Ayyappan) and subramaniyanshyamala@gmail.com (S.Shyamala).



G. Ayyappan et al. / Transient solution of ... 69

Recently, there have been several contributions in considering non-Markovian single server queuing system,
in which the server may experience with break downs and repairs, such system with repairable server has been
studied as queuing models by many authors including Avi-Itzhak and Naor [2], Graver [6], Takine and Sengupta
[21], Wang [24], Tang [22] Assani and Artalejo [I] etc.

Another feature in queuing theory is the study of queuing models with vacations. when the system is empty,
the server becomes idle and this idle time may be utilized by the server for being engaged for other purposes.
Thus, the non-availability of the server in the system is known as vacation. During the last three or four
decades, queuing theorists are interested in the study of queuing models with vacations immensely, because
of their applicability and theoretical structures in real life situations such as manufacturing and production
systems, computer and communication systems, service and distribution systems, etc.

The most remarkable works have been done in recent past by some researchers on vacation models including
Choudhary [3], Keilson and servi [9], Krishna Kumar [I3], Levy and Yechiali [10], Wang [24], Madan [I5], [I6],
17, 18, [19], Thangaraj [23] etc. The details about vacation queues can be found in the survey of Doshi [5].

Transient state measures, which are very important to track down the functioning of the system at any
instant of time. In this paper we present an analysis of the transient state behavior of a queuing system
where breakdowns may occur at random, and once the system breaks down, it enters a repair process and the
customer whose service is interrupted goes back to the head of the queue. At the same time the server may
go on vacation. The vacations follow a Bernoulli distribution, that is, after a service completion, the server
may go for a vacation with probability p (0 < p < 1) or may continue to serve the next customer, if any, with
probability 1 — p. The service time and the vacation time are generally distributed, while the repair time is
exponentially distributed. The customers arrive in batches to the system and served one by one on a “first
come - first served” basis.

The rest of the paper has been organized as follows: in section 2, the mathematical description of our model
has been found, in section 3, the transient solution of the system has been derived, in section 4, the steady
state analysis has been discussed.

2 Mathematical description of the queuing model

To describe the required queuing model, we assume the following.

e Let \¢;dt;i = 1,2,3...be the first order probability of arrival of i’ customers in batches in the system
during a short period of time(t,t+dt)where 0 < ¢; <1,5°°° ¢; = 1,A > 0 is the mean arrival rate of batches.

e There is a single server which provides service following a general(arbitrary) distribution with distribution
function B(v)and density function b(v). Letu(z)dz be the conditional probability density function of service
completion during the interval (x,x+dx] given that the elapsed service time is x, so that

w(x) = bla)

=1-5G (2.1)

and therefore

v
- / p(x)
b(v) = u(v)e Jo dx (2.2)

e After completion of service, if the customer is not satisfied with the service for certain reason or if customer
received unsuccessful service, the customer may immediately join the tail of the original queue as a feedback
customer for receiving another regular service with probability p(0 < p < 1). Otherwise the customer may
depart forever from the system with probability ¢(= 1 — p). The service discipline for feedback and newly
customers are first come first served. Also service time for a feedback customer is independent of its previous
service times.

e As soon as a service is completed , the server may take a vacation of random length with probability 6
(or) he may stay in the system providing service with probability 1 — 6, where 0 < 0 < 1.

e The vacation time of the server follows a general (arbitrary)with distribution function V(s)and the density
function v(s). Let v(x)dx be the conditional probability of a completion of a vacation during the interval
(z, 2z + dz] given that the elapsed vacation time is x so that

v(x)

v(z) = =V (2.3)
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and therefore

- SV x)dx
v(s) =v(s)e /0 ) (2.4)

e The system may breakdown at random and the breakdowns are assumed to occur according to a Poisson

stream with mean breakdown rate a > 0. Further we assume that once the system breakdown, the customer

whose service is interrupted comes back to the head of queue.

e Once the system breaks down it enters a repair process immediately. The repair times are exponentially
distributed with mean repair rate 3 > 0.

e Various stochastic processes involved in the queuing system are assumed to be independent of each other.

3 Definitions and Equations governing the system

We let,

(i)

(iii)

(iv)

P,(z,t) = Probability that at time ’t’ the server is active providing service and there are 'n’ (n > 0)
customers in the queue excluding the one being served and the elapsed service time for this customer is x.
Consequently p,(t) denotes the probability that at time ’t’ there are 'n’ customers in the queue excluding
the one customer in service irrespective of the value of x.

V.(z,t) = Probability that at time ’t’, the server is on vacation with elapsed vacation time x, and there
are 'n’ (n > 0) customers waiting in the queue for service. Consequently V,,(t) denotes the probability
that at time 't’ there are 'n’ customers in the queue and the server is on vacation irrespective of the value
of x.

R, (t) = Probability that at time t, the server is inactive due to breakdown and the system is under repair
while there are’n’ (n > 0) customers in the queue.

Q(t)= Probability that at time ’t’ there are no customers in the system and the server is idle but available
in the system.

The model is then, governed by he following set of differential-difference equations.

%Pn(a:,t) + %Pn(x,t) + A+ p(z) + @) Pp(x,t) = A lz__; ciPn_i(z,t);n>1 (3.1)
QP( )+ 2P( t)+ (A + p(z) + @) Po(z,t) =0 (3.2)
ot o\T Oz o\, T «)lo(T, - .
%Vn(w,t) + %Vn(x,t) + A+ v(x)Va(z,t) = A ; ¢iVa—i(z,t);m > 1 (3.3)
O Y, t) + 2 Vo, ) + O+ v(@) Vol 1) = 0 (3.4)
ot ol Oz o\, v\x o\, = .
%RJ) ~(\+B)R +A§)5nlxt+a/ Py 1 (z,t)d (3.5)
SRo() = ~(\+ H)Ro(0) (36)
Q0 = 3@+ FRalt) + [ V(o wade + (10 [ RulaOnte)ds (3.7

The above equations are to be solved subject to the following boundary conditions

P,(0,1) [ / P, (z,t)u )dx—l—q/oo PnH(x,t),u(;v)dx}

+/ Vi (2, () + BRosr (1) + Aenr Q(E):in > 0 (3.9)
0
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Vi (0,1) = e/ooo Po(e, p(x)dan > 0 (3.9)
Assuming there are no customers in the system initially so that the server is idle.
Vo(0) =0;V,(0) =0;Q(0) =1; P,(0) =0,n =0,1,2, ... (3.10)
Generating functions of the queue length. The time dependent solution.

We define the probability generating functions
Py(x,z,t) =300 o 2" Pp(z,1)

Py(z,t) = ZZO:O 2" Py (t)
Vo(z, 2,t) = ZZOZO 2"V, (x,t)
Val(z,t) = 300 2" Valt)

Ry(z,t) = 3020 2" Ru(t)

C(z) = chz” (3.11)
n=1
which are convergent inside the circle given by |z| < 1 and define the Laplace transform of a function f(t)
as -
f(s) = / f(t)e *tat. (3.12)
0
Taking Laplace transforms of equations (3.1) to (3.9) and using the probability generating function defined
above.
9 _ ~ n—1 B
%Pn(x, $)+ (s+ M+ p(@) + a)Py(z,s) = A ; ¢iPn—i(z,s) (3.13)
0 = _

%Po(a:, $)+ (s+ A+ u(x) + a)Py(x,s) =0 (3.14)

n—1

0 - _ _

—Vo(z,8) + (s + A+ v(x))Va(z,s) = A Z ¢iVn—i(z,s) (3.15)

O i=1

0 - _
%%(x,s)—k(s—&—)\—i-u(x))%(x,s) =0 (3.16)
_ n—1 _ S
(s+A+B)R,(s) = A Z ciRn_i(s) + a/ P,_1(z,s)dx (3.17)
i=1 0

(s+ A+ B)Ro(s) =0 (3.18)

(s + NQ(s) = 1 + BRo(s) + / " Vol syw(a)de

+(1—-0)q /OOO Py(z, s)pu(z)dz (3.19)

for boundary conditions,
P05 = (=0 [ Putocsdutodte +q [ Pusslouto)ts]
0 0

+ /°° Vi1 (2, s)v(x)dz + BRu41(8) + Aent1Q(s);n >0 (3.20)
0
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Vi (0,5) = 9/ P (z, 8)u(z)dz;n >0 (3.21)
0
multiply equation (3.13) by 2™ and add (3.14) implies
%Pq(x, 2,8) + (s + A= AC(2) + p(z) + a)Py(z, 2,8) =0 (3.22)

performing similar operations to equations (3.15) to (3.18).

%Vq(%z,s) + (s + A= AC(2) + v(2))Vy(z,2,5) =0 (3.23)
(s+ A= AC(2) + B)Ry(2,8) = az /000 Py(z,z,s)dx (3.24)

For the boundary conditions, we multiply equation(3.20)by 2"*! sum over n from 0 to co and use gener-
ating function defined above, we get

P02, = (= 00z 0) [ Pyfo sl

—|—/Ooo Vq(x, z,s)v(x)dx + ﬂRq(z, 5) + (1 —sQ(s)) + MC(z) — 1DQ(s) (3.25)

Similarly multiply equation (3.21) by z™and sum over n from 0 to co and use generating function defined
above

Vy(0,2,8) = 9/000 Py(z, z,s)u(z)d (3.26)

Integrating equation(3.22) from 0 to x yields

—(s+A=AC(z)+a)z— / p,(t)dt
0

Py(w,2,5) = Py(0,2,8)e (3.27)

where P, (0, z, s) is given by equation(3.25). Again integrating equation (3.27) by parts with respect to x
yields

Py(z,5) = P,(0, 2, 5) F _(ff; _AA_O?S(j)(; O‘)] (3.28)
where
B(s+A=\C(2) +a) = / e (FATACEI+ )z B (1) (3.29)
0

is Laplace - Stieltjes transform of the service time B(x). Now multiplying both sides of equation (3.27) by u(z)
and integrating over x, we get

/ Py, 2, 8)u(x)dz = Py(0, 2, 8)B(s + A — AC() + ) (3.30)
0
Using equation (3.30) equation (3.26) becomes

Vy(0,2,8) = 0P,(0,2,8)B(s + A — AC(2) + ) (3.31)

Similarly integrate equation (3.23) from 0 to x, we get

x
—(s+A=AC(2))z— / v(t)dt
0

‘7(1(.%2’,8) = ‘74(07'2’ 8)6 (332)
substituting by the value of V,(0, z, s) from (3.31), in equation (3.33) we get
_ _ _ —(s+A=Az)z— / I/(t)dt
Vy(z, 2,8) = 0P,(0,2,5)B(s + A = A(C(2)) + a)e 0 (3.33)
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Again integrating equation (3.33) by parts with respect to x

- 5 _ B Nt o 1-V(s+A=XC(2))
Vy(z,8) = 0P,(0,2,8)B(s + A — AC(z) + )[ 12— N C(2) (3.34)
where -
V(is+ A= )C(2)) = / e~ (FAACED2 gy () (3.35)
0

is Laplace - Stieltjes transform of the vacation time V(x). Now multiplying both sides of equation(3.33) by
v(z) and integrating over x, we get

/oo Vy(z, 2, 8)v(z)de = 0P,(0,2,8)B(s + A — AC(2) + @)V (s + X — A\C(2)) (3.36)
0

Using equation (3.28), equation (3.24) becomes

_ azP,(0,2,8)[1 — B(s + A — AC(2) + a)]

Ralers) = L A T A T A= AC() + (3:37)
Now using (3.30), (3.36) and (3.37) in equation (3.25) and solving for P,(0, z, s) we get
0,2, = BN = 00D +(C(0) = 10 55
whete Dr = fi(2)fa(2){z — (1 — 0)(p2 + @) BIA ()] — 07 (s + A — A\C(2)) BLA ()]}
—afz{1 - B[fi()]}
fiz)=s+A=XAC(2)+ «
fo(2)=s+X=AC(2)+
substituting the value of (0, z, s) from equation (3.38)in to equations (3.26), (3.34) and (3.37)
Fye ) = B~ BLAGI0 = 0(0) £ X(C(() = Q) 539
0f1(2) f2(2)B[f1(2)][(1 — sQ(s MC((2)) = 1DQ(s 1-V(s+A-A0(z)
(o OB G0 - 5Q) +D<T (=) - DQUs)) [ -
o) = 1L BLAGI0 = 0(0) 1+ XC(E) = 1) G

where Dr is given in the above.

4 The steady state analysis

In this section we shall derive the steady state probability distribution for our queuing model. To define
the steady state probabilities, suppress the argument’t’” where ever it appears in the time dependent analysis.
By using well known Tauberian property,

multiplying both sides of equation (3.39),(3.40),(3.41) and applying equation(4.1) and simplifying, we get

Py(z) = 220 = BAGDINC(E) - 1Y .
V() = PEEEBIAEIVO - AC((2) - "

Dr
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_ 9Aaz[1 - Bl1(2)]][(C((2)) —1)Q]
Dr

where Dr and f1(z) and f2(z) are given by in previous section. LetW,(z) denotes the probability generating

function of queue size irrespective of the state of the system. Then adding (4.2),(4.3) and (4.4), we get

Ry(z) (4.4)

Wy(z) = Pg(2) + Vq(2) + Re(2) (4.5)
_ L2(0)1 = BlAR)AC((2)) = DQ] | 0f1(2)f2(2) Bl1(2)][V(A = AC((2)) — 1))@
W(2) Dr + Dr
ol = BAGIIC(E) - D (46)

In order to obtain Q, we use the normalization condition, as follows
wW,(1H)+Q=1 (4.7)

We see that at z=1, W,(2) is indeterminate of the form 0/0. We apply L’Hospital rule in equation (4.6)

AQE(I)(a + B)[1 - B(a)] + §aBB(a) E[V]

Wy(1) = (¢ + pf)aBB(a) — Ma + B)(1 — B(a))E(I) — 0raBB(a)E(I)E[V]

where B(0) =1,V (0) = 1,—V'(0) = E[V] the mean vacation time. Using equation (4.8) in equation (4.7)

AE(I) 1 1 11
- _ L ) 1A 4 4.9
o=1- 3\ B 5w O] )
and the the utilization factorp of the system is given by
AE(I) { 1 1 1 1 }
= - + — —=——40E(\V 4.10
p qg+p9 | fB(a) aB(a) [ « V) (4.10)

where p < 1 is the stability condition under which the steady state exists, equation(4.9) gives the probability
that the server is idle. Substitute Q from equation (4.9) in equation (4.6) W,(z) have been completely and
explicitly determined which is the the probability generating function of the queue size.

The average queue size and average waiting time

Let Lgdenote the mean number of customers in the queue under the steady state, then L, = d%
N(z)

D(z)
nator of the right hand side of equation (4.5) respectively, then we use

D'(HN"(1) — N'(1)D"(1)
2[D" (1))

Wy(2) |2=1,since

this formula gives 0/0 form, then we write W (z) = where N(z) and D(z) are the numerator and denomi-

L, =

(4.11)

where primes and double primes in equation (4.11) denote first and second derivation at z=1 respectively.
Carrying out the derivatives at z=1, we have

N'(1) = AE(DQ[(a + B8) — B(a)(BaBE(V) — a — B)] (4.12)

N"(1) = 20D { Gy = )+ Blo)[1 = siéy — 0aB(V) = 0BE(V)]

+100BE(V?) + B (a)(a + 5 — 9OéﬁE(V))}

FAQE(I(I - 1)) {(a+ ) + B(a)(0aBE(V) —a - B)} (4.13)
D'(1) = =AE(I)(a+ B) + B(a) {aB(q + pb) + \E(I)(a+ ) — 0aBE(V)} (4.14)
D"(1) = 2[AE(I)]? {(1 - ;“Eﬁ%) + B(a) [=(q+ pb) + 0aE(V) + 0BE(V) — 5080 E(V?)]

+B (@) [=(g + p0)(a + B) — 5 + aBOE(V)]}

+AE(I(I = 1)) {—(a+ B) + B(a)(a + 8 —0aBE(V))} (4.15)
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where E(V?) is the second moment of the vacation time and Q has been found in equation (4.9). Then if
we substitute the values of N'(1), N”(1),D’(1) and D" (1) from equations (4.12), (4.13), (4.14) and (4.15) in
to equation (4.11), we obtain Ly in a closed form.
Mean waiting time of a customer could be found, as follows

W, =-1 (4.16)

by using Little’s formula.

References

1]

2]

[10]

[11]

A. Aissani, and J.R. Artalejo, On the Single server retrial queue subject to breakdown, Queuwing
System, 30(1998), 309-321.

B. Avi-Itzhak, and P. Naor, One queuing problems with the service station subject to breakdown,
Operations Research, 11(1963), 303-320.

G. Choudhury, A batch arrival queue with a vacation time under single vacation policy, Computers
and Operations Research, 29(14)(2002), 1941-1955.

G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service, TOP,
11(1)(2003), 141-150.

B.T. Doshi, Queueing systems with vacations- a survey, Queueing Systems, 1(1986), 29-66.

D.P. Graver, A waiting line with interrupted service including priorities, Journal of Royal Stat. Society
B, 24(1960), 73-80.

D. Gross and C. Harris, Fundamentals of Queueing Theory, Third Edition, John Wiley and Sons,
Inc., New York,(1998).

J. C. Ke, Modified T vacation policy for an M/G/1 queueing system with an un-reliable server and
startup, Mathematical and Computer Modelling, 41(2005), 1267-1277.

J. Keilson and L.D.Servi, Oscillating random walk models for G1/G/1 vacation systems with Bernoulli
schedules, Journal of Applied Probability, 23(1986), 790-802.

Y. Levy, and U. Yechiali, Utilization of idle time in an M/G/1 queuing system, Management Science,
22(1975), 202-211.

J. Keilson, and L.D. Servi, Dynamic of the M /G/1 vacation model, Operation Research, 35(4)(1987),
July-August.

B. Krishna Kumar and D. Arivudainambi, Transient solution of an M /M /1 queue with catastrophes,
Computers and Mathematics with Applications, 40(2000), 1233-1240.

B. Krishnakumar, and D. Arivudainambi, An M/G/1/1 feedback queue with regular and optional
services, Int. J. Inform. Manage. Sci, 12(1)(2001), 67-73.

Y. Levi, and U. Yechilai, An M/M/s queue with server vacations, INFOR, 14(2)(1976), 153-163.
K.C. Madan, An M/G/1 queue with second optional service, Queuing Systems, 34(2000), 37-46.

K.C. Madan, and A. Baklizi, An M/G/1 queue with additional second stage and optional service,
International Journal of Information and Management Sciences, 13(1)(2002), 13-31.

K.C. Madan, and A.Z. Abu Al-Rub, On a single server queue with optional phase type server vacations
based on exhaustive deterministic service and a single vacation policy, Applied Mathematics and
Computation, 149(2004), 723-734.



76

[18]

[19]

[20]

[21]

[22]

23]

[24]

G. Ayyappan et al. / Transient solution of ...

K.C. Madan, W. Abu-Deyyeh, and M. Gharaibeh, On two parallel servers with random break-
downs,Soochow Journal of Mathematics, 29(4)(2003), 413-423.

F.A. Maraghi, K.C. Madan, and K. Darby-Dowman, Batch arrival queuing system with random break-
downs and Bernoulli schedule server vacations having general vacation time distribution, International
Journal of Information and Management Sciences, 20(1)(2009), 55-70.

P.R. Parthasarathy, and R. Sudhesh, Transient solution of a multi server Poisson queue with N-
policy, Computer and Mathematics with Applications, 55(2008), 550-562.

T. Takine, and B. Sengupta, A single server queue with service interruptions, Queuing Systems,
26(1997), 285-300.

Y.H. Tang, A single-server M/G/1 queuing system subject to breakdowns-some reliability and queuing
problem, Microelectronics and Reliability, 37(2)(1997), 315-321.

V. Thangaraj and S. Vanitha, M/G/1 Queue with Two-Stage Heterogeneous Service Compulsory
Server Vacation and Random Breakdowns, Int. J. Contemp. Math. Sciences, 5(7)(2010), 307 - 322.

K.H. Wang, Infinite source M/M/1 queue with breakdown, Journal of the Chinese Institute of In-
dustrial Engineers, 7(1990), 47-55.

Received: March 2, 2013; Accepted: April 17, 2013

UNIVERSITY PRESS



Malaya Journal of Matematik 2(1)(2013) 77-82

Malaya
y MIM
Journal of an international journal of mathematical sciences with
Matematik computer applications...

www.malayajournal.org

Orthonormal series expansion and finite spherical Hankel transform

of generalized functions

S.K. Panchal®*

“ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004, (M.S.) India.

Abstract

The finite spherical Hankel transformation is extended to generalized functions by using orthonormal series expansion
of generalized functions. A complete orthonormal family of spherical Bessel functions is derived and certain spaces of
testing functions and generalized functions are defined. The inversion and uniqueness theorems are obtained. The
operational transform formula is derived and is applied to solve the problem of the propagation of heat released from a

spherically symmetric point heat source.
Keywords: Finite spherical Hankel transform, orthonormal series expansion of generalized functions.

2010 MSC: 46F12, 44A15, 46F10, 41A58. (©2012 MJIM. All rights reserved.

1 Introduction

Several authors treated the problem of expanding the elements of a distribution space using different or-
thonormal systems. Zemanian [2], [5] constructed the testing function space A for suitable complete orthonor-
mal system {¥,} of eigenfunctions of the differential operator 7. The elements of the dual space A’ are
generalized functions, each of which can be expanded into a series of eigenfunctions ¥,,. As a special case of his
general theory he defined the finite Fourier, Hermite, Jacobi and finite Hankel transformations of generalized
functions where the inverse transformations are obtained by using orthonormal series expansions of generalized
functions.

Bhosale and More[3] and Panchal and More[4] extended certain finite integral transformations to generalized
functions by using the method of Zemanian. In this paper the variant of finite spherical Hankel transformation
introduced by Chen L.IH.[I] is extended it to certain space of generalized functions whose inverse is obtained
in terms of Fourier-spherical Bessel series.

2 Preliminary Results, Notations and Terminology

Let I={z/0 < 2 < a < oo} and Ny = N U{0}, where N is the set of natural numbers. Consider the self
adjoint differential operator
Lo = (z7'Dy2?*D,z™1)
denoting the conventional or generalized partial differential operators, where D, = %. Let J 1 () and jo(x)
be the Bessel function of the first kind of order 1/2, and spherical Bessel function of order zero respectively.
Consider the eigenfunction system {,(z)} -, corresponding to the differential operator Ly where t,(z) =
Cpzjo(Apz), Cp = m\/)‘f , and the corresponding eigenvalues \,,n = 1,2,3, ... are the positive roots

2
of jo(Az) = 0 arranged in ascending order of magnitude.We see that,

Lovn(z) = =X ¢hn(2). (2.1)

*Corresponding author.
E-mail address: drpanchalsk@gmail.com (S.K. Panchal).
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Let Lo(I) be the linear space of functions that are absolutely square integrable on I and < f, g > denote
the inner product defined by,

< £3>=(19) = [ f@as (2.2)
Thus,
111 =< £.7 >= (£.0) = [ If@)Pds (2.3
is the norm on Ly(I). Hence
1 m=n
W (), (@) = {0 otherwise @4)

and [} [¢n(2)|?de = 1 implies that ¢, () € La(I) for every n € Ny.

We define the finite spherical Hankel transform of f(x) € Lo(I) denoted by
SH[f(x)[(n) = Fsu(n) as,

Pon(n) = (£(@), vn(@) = [ f@)in(a)d. (25)
The following theorem provides the inversion of the transformation defined in (2.5)).

Theorem 2.1. Every f(x) € La(I) admits the Fourier-spherical Bessel series expansion

oo

F@) = (f(@), v (@))thn (@) (2.6)

n=1

where the series converges point-wise on I.

3 Testing Function Space S — H(I)

For n € Ny we denote by S — H(I) the space all complex valued smooth functions ¢(x) defined on I such
that for each non negative integers n and k.
i)
1
2

7 (6) = n(Lke) = { / [L§¢<x>]2dx} < oo (3.1)

ii
)
(L5, ¥n()) = (8, Lo¥n () (3:2)
Obviously Lo(I) C S — H(I). The space S — H(I) is a linear space and n* is a seminorm on S — H(I).
Moreover 1° is a norm on S — H(I). Thus n*, k € Ny is a countable multi-norm on S — H(I). Also S — H(I)
is complete and hence a Frechet space. Thus S — H(I) turns out to be a testing function space.

Lemma 3.1. Every ¢, (z) is a member of S — H(I).
Proof. For each k € Ny, from equations (2.1)) and (3.1)) we have

I e (@) < / L () P
< \)\n|2k/j|wn(x)|2dx

= A |?* < 0.
Next since A, are real then for m # n, we have
(Lotn (), Ym () = X5 (Y (@), Y ()

= 0 = A%, (¥n(2), Y (7)) = (tn (@), Ao ()

= (¢n(2), Lim (2))
and for m =n

(L§¢TL($)7¢TL(I)) = ()\’,::11/)7L(1‘)7w7l(x)) = (Yn(z), /\51¢7z(x)) = (%(33),13’5%(33))

Hence v, (z) € S-H(I) for all n € Np. O
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Lemma 3.2. Every ¢(x) € S — H(I) can be expanded into the series

oo

d(x) =D ($(x), v (@))thn () (3.3)

n=0
where the series converges in S — H(I).

Proof. Let ¢(x) € S — H(I) , then LE$(z) € Lo(I) and from theorem (2.1), we have

V()N (@)

§§L
Z &, Liton () tn ()
i¢

Z ¢ ¢n Lown( )

which implies that 7*[¢(z) — Zﬁ;o( o), Yn(2))n(x)] — 0 as N — oo independently. Thus the series in (3.3)
converges to ¢(z) in S — H(I). O

4 The Generalized Function Space S — H'(I)

The space of all continuous linear functions on S— H(I), denoted by S — H'(I) is called the dual of S— H(I)
and members of S — H'(I) are called generalized functions on I. The number that f € S— H'(I) assigns to ¢ €
S — H(I) is denoted by < f, ¢ >. Since the testing function space S — H(I) is complete, so also is S — H'(I)[5].
Let f(x) be a real valued continuous function locally integrable on I such that

/ @)z < oo,
I

then f generates a member of S — H'(I) through the definition

< f,p>= /If(:c)(b(x)dm (4.1)

Clearly defines a linear function f on S — H(I) and the continuity of f can be verified by using Schwarz’s
inequality. Such members of S—H'(T) are called regular generalized functions in S—H'(I). All other generalized
functions in S— H'(I) are called singular generalized functions. Now we define a generalized differential operator
Lo on S — H'(I) through the relationship

(f, Loo) =< f,Lod >=< Lo f,6 >= (Lo f, $) (4.2)

where fol is obtained from L( by reversing the order in which the differentiation and multiplication by smooth
functions occurring in Lg, replacing each D, by —D, and then taking the complex conjugate of the result.
But this is precisely the same expression for Ly [[5], sec 9.2, eq 4]. Thus Ly = Ty is defined as the generalized
differential operator on S — H'(I) through the equation

< L0f7 ¢ >=< f) L0¢ >, (43>

where f € S— H'(I),p € S— H(I).
Some properties of S — H(I) and S — H'(I)

I) 2(I) c S—H(I) C &(I) and since Z(I) is dense in &(I), S — H(I) is also dense in & (I). It follows &' (I)
is a subspace of S — H'(I). The convergence of a sequence in Z(I) implies its convergence in S — H(I).
The restriction of any f € S — H'(I) to 2(I) is in 2’'(I). Moreover the convergence in S — H'(I) implies
convergence in 2'(I).
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IT) For each f € S — H'(I) there exists a non negative integer r and a positive constant C' such that
<fo>|<C k
|<fig>]< Jnax 1 (¢)

for every ¢ € S — H(I). Here r and C depends on f but not on ¢.

IIT) The mapping ¢ — Lg¢ is continuous linear mapping of S — H(I) into itself. It follows that f — Lof is
also a continuous linear mapping of S — H'(I) whenever f is a regular generalized function in S — H'(I).

9 Finite Spherical Hankel transformation of generalized functions

We define the finite spherical Hankel transform of generalized function f € L — H'(I), denoted by SH[f] =
Fsu(n) as,

SHIf(x))(n) = Fsu(n) = (f(x), ¥n()) (5.1)

where ¢, (z) € S — H(I) for n € Ny. We see that SH is a linear and continuous mapping on S-H’(I), which
maps f € S — H'(I) into a function Fggy(n) defined on Ny. The following theorem provides the inversion of
the transformation defined in (5.1)).

Theorem 5.1. Let f € S-H’(I), then the series

> (@), tn(@)n (@) (5.2)

converges to f in S — H'(I).
Proof. From lemma 3.2 we have for every ¢ € S — H(I), the series Y . (¢, (z))¢n(x) converges to ¢ in
S — H(I), then for f € S— H'(I), we write

oo

n=0

Y (o)
n=0

oo

=D/ 9n(®)(Wn(2), ¢(2))
= > ((fsn(@)on(2), $())
n=0
n=0

Thus the series Y o (f, ¥n(x))tn(z) converges weakly to f in S-H’(I).

The above theorem lead to define the inverse of the finite spherical Hankel transformation of f € S — H'(I),
denoted by SH™*Fsi(n) = f(z), as

SH™ ' Fsn(n) = f(x) = Y Fsu(n)ia(z)
n=0

= (5.3)
= (@), @) ).
O

Theorem 5.2. (Uniqueness Theorem): Let f,g € S-H’(I) are such that
SH[f](n) = Fsu(n) = Gsu(n) = SH[gl(n) for every n € Ny, then f = g in the sense of equality in S — H'(I).
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Proof. Let p € S — H(I), and f,g € S — H'(I) then

<L¢>—<g,0> =< (fitn(@)n(@), b(z) >

n=0

= <D (9, ¥n(@)n(@), d(x) >
n=0

=< > Fou(n)pn(x), é(z) >
n=0

— <3 Gon(nn(e), o) >

n=0

=< Z[fSH<n) — Gsu(n)|n(x), o(x) >
n=0

=0

for all n € Ny. Hence f =g in S — H'(I). O

6 An Operational Calculus

Let f(x) € S—H'(I),¢¥n(z) € S—H(I) and since the differential operator Ly is a continuous linear mapping
of S — H'(I) into itself, then from equation (4.3)), we have

SHILG f1(n) =< Li f,vn(x) > =< f, Ltbn(x) >
=< [, =AY (z) >
=Nk < f () > (6.1)
= —A2SH[f](n)
= —\2Fsu(n).

We can use this fact to solve the distributional differential equations of the form
P(Lo)u=g (6.2)

where P is a polynomial and the given g and unknown u are the generalized functions in S-H’(I). Applying the
finite spherical Hankel transformation defined in (5.1)) to the differential equation (6.2]), we get

P(=)2)SH[u](n) = SH[g](n), n € Ny. (6.3)

If P(—)2) # 0 for all n € Ny, we divide (6.3) by P(—=A2) and apply inverse finite spherical Hankel transform
defined in (5.3)), and get

) = Y ) (6.4

n=0
where the series converges in S — H'(I). In view of Theorem (5.1) and (5.2) the solution u(z) in S — H'(I)
exists and is unique.

7 Application of finite spherical Hankel transform

The propagation of heat released from a spherically symmetric point heat source is governed by the heat
conduction equation of the form
_10%(aw) _ 1 0u
Ox? ot

X

(7.1)
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where k = K/pC, is the thermal diffusivity for conductivity K, p is density, and C, is the heat capacity,
respectively. We consider the folllowing initial and boundary conditions:

u(z,t) = f(x) when t=0 at z=0;
(7.2)
u(z,t) =0 at z=a, t>0.

We now find the generalized solution u(z,t) of this problem in the space S — H’(I). Multiplying equation ([7.1))

by 22, substituting « = 2~ 'v(z,t) and then multiplying by x~! we get
0? 0 ov
—1/.2 -1
— + 2x— =(1/k)=— 7.3
M@ o 2@ ) = (1/k) (73)

Now applying the finite spherical Hankel transform defined in (5.1) to (7.3) we get

dVsH
dt

+ M EVgy =0, (7.4)
where Vg is a finite spherical Hankel transform of v(x,¢). The solution of this equation is given by
Vs (An,t) = Cexp(—N\2kt) (7.5)
where the constant C can determined from the inial and boundary conditions given in . Hence we have
Vs (An,t) = Fsu(n)exp(—A2kt) (7.6)

where Fgp(n) is the finite spherical Hankel transform of f(¢). Applying inverse finite spherical Hankel transform
defined in (5.3)), we get

v(x) = Z Fsu(n)exp(—\2kt), (z) (7.7)
n=0

where the series converges in S — H'(I). In view of Theorem (5.1) and (5.2) the solution v(z) in S — H'(I)
exists and is unique. Thus u(x,t) = 27 1v(x,t) is the required solution.
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