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Oscillation criteria for third order neutral difference equations with

distributed delay

R. Arula and G. Ayyappanb,∗

a,bDepartment of Mathematics, Kandaswami Kandar’s College, Velur - 638 182, Tamil Nadu, India.

Abstract

In this paper we study the oscillatory behavior of third order neutral difference equation of the form

∆
(
r(n)∆2z(n)

)
+

d∑
s=c

q(n, s)f(x(n + s− σ)) = 0, n ≥ n0 ≥ 0, (0.1)

where z(n) = x(n) +
∑b

s=a p(n, s)x(n + s− τ). We establish some sufficient conditions which ensure that every solution

of the equation (0.1) oscillates or converges to zero by using a generalized Ricaati transformation and Philos - type

technique. An example is given to illustrate the main result.

Keywords: Third order, oscillation, neutral difference equations, Philos - type.

2010 MSC: 39A10. c©2012 MJM. All rights reserved.

1 Introduction

In this paper we consider the oscillatory behavior of third order neutral difference equation of the form

∆
(
r(n)∆2z(n)

)
+

d∑
s=c

q(n, s)f(x(n+ s− σ) = 0, n ∈ N0 (1.1)

where

z(n) = x(n) +
b∑

s=a

p(n, s)x(n+ s− τ), (1.2)

∆ is the forward difference operator defined by ∆x(n) = x(n+ 1)− x(n), N0 = {n0, n0 + 1, n0 + 2, . . .}, n0

is a nonnegative integer, and a, b, c, d ∈ N0 subject to the following conditions:

(C1) {r(n)} is a positive real sequence with
∑∞

n=n0

1
r(n) = ∞;

(C2) {q(n, s)} and {p(n, s)} are nonnegative real sequences with 0 ≤ p(n) ≡
∑b

s=a p(n, s) ≤ P < 1;

(C3) f : R → R is a continuous function such that f(u)
u ≥ L > 0, for u 6= 0.

By a solution of equation (1.1) we mean a real sequence {x(n)} and satisfying equation (1.1) for all n ∈ N0.
We consider only those solution {x(n)} of equation (1.1) which satisfy sup{|x(n)| : n ≥ N} > 0 for all N ∈ N0.
A solution of equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative
and nonoscillatory otherwise.

In recent years there is a great interest in studying the oscillatory behavior of third order difference equa-
tions, see for example [1–5, 7–14] and the references cited therein. Motivated by this observation, in this paper
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we obtain some sufficient conditions for the oscillation of all solution of equation (1.1).

In Section 2, we present some preliminary lemmas and in Section 3, we establish some sufficient conditions
which ensure that all solutions of equation (1.1) are either oscillatory or converges to zero. An example is given
to illustrate the main result.

2 Preliminary Lemmas

In this section, we present some lemmas which will be useful to prove our main results.

Lemma 2.1. Let {x(n)} be a positive solution of equation (1.1) and {z(n)} be defined as in (1.2). Then {z(n)}
satisfies only of the following two cases eventually

(I) z(n) > 0, ∆z(n) > 0, ∆2z(n) > 0;

(II) z(n) > 0, ∆z(n) < 0, ∆2z(n) > 0.

Proof. Assume that {x(n)} is a positive solution of equation (1.1). By definition of {z(n)} we have z(n) >
x(n) > 0 for all n ≥ n0. From the equation (1.1), we have

∆(r(n)∆2z(n)) = −
d∑

s=c

q(n, s)f(x(n+ s− σ) < 0.

Thus r(n)∆2z(n) is a nonincreasing function and therefore eventually of one sign. So ∆2z(n) is either eventually
positive or eventually negative for n ≥ n1 ≥ n0. If ∆2z(n) < 0, then there is constant M > 0 such that

r(n)∆2z(n) ≤ −M < 0, n ≥ n1.

Summing the last inequality from n1 to n− 1, we obtain

∆z(n) ≤ ∆z(n1)−M
n−1∑
s=n1

1
r(s)

.

Letting n→∞, then using condition (C1), we have ∆z(n) → −∞, and therefore ∆z(n) < 0. Since ∆2z(n) < 0
and ∆z(n) < 0, we have z(n) < 0, which is a contradiction to our assumption. This proves that ∆2z(n) > 0
and we have only Case (I) or (II) for {z(n)}. This completes the proof.

Lemma 2.2. Let {x(n)} be a positive solution of equation (1.1), and let the corresponding function {z(n)}
satisfies the Case (II) of Lemma 2.1. If

∞∑
n=n0

∞∑
s=n

[ 1
r(s)

∞∑
t=s

d∑
j=c

q(t, j)
]

= ∞, (2.1)

then limn→∞ x(n) = limn→∞ z(n) = 0.

Proof. Let {x(n)} be a positive solution of equation (1.1), and {z(n)} satisfies Case (II) of Lemma 2.1. Then
there exists ` ≥ 0 such that limn→∞ z(n) = `. We shall prove that ` = 0. Assume that ` > 0, then we have
`+ ε < z(n) < ` for all ε > 0 and n ≥ n1 ≥ n0. Choosing 0 < ε < `(1−P )

P . From (1.2), we have

x(n) = z(n)−
b∑

s=a

p(n, s)x(n+ s− τ)

> `−
b∑

s=a

p(n, s)z(n+ s− τ)

> `− P (`+ ε)

=
`− P (`+ ε)

`+ ε
(`+ ε)

> kz(n) (2.2)
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where k = `−P (`+ε)
`+ε . From the equation (1.1), we have

∆(r(n)∆2z(n)) = −
d∑

s=c

q(n, s)f(x(n+ s− σ)

≤ −
d∑

s=c

q(n, s)Lx(n+ s− σ).

Now using (2.2), we obtain

∆(r(n)∆2z(n)) ≤ −kL
d∑

s=c

q(n, s)z(n+ s− σ).

Summing the last inequality from n to ∞, we have

−r(n)∆2z(n) ≤ −kL
∞∑

t=n

d∑
s=c

q(t, s)z(t+ s− σ)

or

∆2z(n) ≥ kL`
1

r(n)

∞∑
t=n

d∑
s=c

q(t, s).

Summing again from n to ∞, we have

−∆z(n) ≥ kL`

∞∑
s=n

[ 1
r(s)

∞∑
t=s

d∑
j=c

q(t, j)
]
.

Summing the last inequality from n1 to ∞, we obtain

z(n1) ≥ kL`
∞∑

n=n1

∞∑
s=n

[ 1
r(s)

∞∑
t=s

d∑
j=c

q(t, j)
]

which contradicts condition (2.1). Thus ` = 0. Moreover, the inequality 0 < x(n) ≤ z(n) implies that
limn→∞ x(n) = 0. The proof is now complete.

Lemma 2.3. Assume that y(n) > 0, ∆y(n) ≥ 0, ∆2y(n) ≤ 0 for all n ≥ n0. Then for each α ∈ (0, 1) there
exists a N ∈ N0 such that

y(n− σ)
n− σ

≥ α
y(n+ 1)
n+ 1

for all n ≥ N. (2.3)

Proof. From the monotonicity property of {∆y(n)}, we have

y(n+ 1)− y(n− σ) =
n∑

s=n−σ

∆y(s) ≤ (σ + 1)∆y(n− σ)

or
y(n+ 1)
y(n− σ)

≤ 1 +
(σ + 1)∆y(n− σ)

y(n− σ)
. (2.4)

Also,
y(n− σ) ≥ y(n− σ)− y(n0) ≥ (n− σ − n0)∆y(n− σ).

So, for each α ∈ (0, 1), there is a N ∈ N0 such that

y(n− σ)
∆y(n− σ)

≥ α(n− σ), n ≥ N. (2.5)

Combining (2.4) and (2.5), we obtain

y(n+ 1)
y(n− σ)

≤ 1 +
(σ + 1)
α(n− σ)

≤ αn− ασ + σ + 1
α(n− σ)

or
y(n+ 1)
y(n− σ)

≤ (n+ 1)
α(n− σ)

.

This completes the proof.
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Lemma 2.4. Assume that z(n) > 0, ∆z(n) > 0, ∆2z(n) > 0, ∆3z(n) ≤ 0 for all n ≥ N . Then

z(n)
∆z(n)

≥ n−N

2
for all n ≥ N. (2.6)

Proof. From the monotonicity property of {∆2z(n)}, we have

∆z(n) = ∆z(N) +
n−1∑
s=N

∆2z(n) ≥ (n−N)∆2z(n).

Summing from N to n− 1, we obtain

z(n) ≥ z(N) +
n−1∑
s=N

(s−N)∆2z(s)

= z(N) + (n−N)∆z(n)− z(n+ 1) + z(N).

Hence z(n) ≥ (n−N)
2 ∆z(n), n ≥ N . This completes the proof.

3 Main Results

In this section, we obtain new oscillation criteria for the equation (1.1) by using the generalized Riccati
transformation and Philos type technique.

Theorem 3.1. Assume that condition (2.1) holds. If there exists a positive nondecreasing real sequence {ρ(n)}
such that

lim
n→∞

n−1∑
s=N

[
Q(s)− (∆ρ(s))2

4ρ(s+ 1)r(s)

]
= ∞ (3.1)

where

Q(n) = ρ(n)q1(n)
α(n− σ)(n+ c− σ −N)

2(n+ 1)
, (3.2)

and

q1(n) = L(1− P )
d∑

s=c

q(n, s), (3.3)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Assume that {x(n)} is a nonoscillatory solution of equation (1.1). Without loss of generality we may
assume that x(n) > 0, x(n+ s− τ) > 0 for n ≥ n1 ≥ n0 ∈ N0 and {z(n)} is defined as in (1.2). Then {z(n)}
satisfies two cases of Lemma 2.1.
Case(I). Let {z(n)} satisfies Case (I) of Lemma 2.1. From (1.2), we have

x(n) ≥ z(n)−
b∑

s=a

p(n, s)z(n+ s− τ)

≥
(
1−

b∑
s=a

p(n, s)
)
z(n)

≥ (1− P )z(n). (3.4)

Using condition (C3) in equation (1.1), we have

∆(r(n)∆2z(n)) ≤ −
d∑

s=c

q(n, s)Lx(n+ s− σ). (3.5)

Now using (3.4) in inequality (3.5), we obtain

∆(r(n)∆2z(n)) ≤ −L(1− P )
d∑

s=c

q(n, s)z(n+ s− σ)
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≤ −q1(n)z(n+ c− σ). (3.6)

Define

w(n) = ρ(n)
r(n)∆2z(n)

∆z(n)
, n ≥ n1. (3.7)

Then w(n) > 0 for all n ≥ n1 and from (3.6), we have

∆w(n) ≤ −ρ(n)
q1(n)z(n+ c− σ)

∆z(n+ 1)
+

∆ρ(n)
ρ(n+ 1)

w(n+ 1)

− w(n+ 1)
∆2z(n)
∆z(n)

≤ −ρ(n)
q1(n)z(n+ c− σ)

∆z(n+ 1)
+

∆ρ(n)
ρ(n+ 1)

w(n+ 1)

− w2(n+ 1)
ρ(n+ 1)r(n)

. (3.8)

By Lemma 2.3 with y(n) = ∆z(n), we have

1
∆z(n+ 1)

≤ α(n− σ)
n+ 1

1
∆z(n− σ)

for all n ≥ N. (3.9)

Unsing (3.9) in (3.8), we obtain

∆w(n) ≤ −ρ(n)q1(n)
α(n− σ)
n+ 1

z(n+ c− σ)
∆z(n− σ)

+
∆ρ(n)
ρ(n+ 1)

w(n+ 1)

− w2(n+ 1)
ρ(n+ 1)r(n)

.

Now applying Lemma 2.4 in the last inequality, we obtain

∆w(n) ≤ −ρ(n)q1(n)
α(n− σ)
n+ 1

(n+ c− σ −N)
2

+
∆ρ(n)
ρ(n+ 1)

w(n+ 1)− w2(n+ 1)
ρ(n+ 1)r(n)

≤ −Q(n) +A(n)w(n+ 1)−B(n)w2(n+ 1)

or
Q(n) ≤ −∆w(n) +A(n)w(n+ 1)−B(n)w2(n+ 1) (3.10)

where

A(n) =
∆ρ(n)
ρ(n+ 1)

, B(n) =
1

ρ(n+ 1)r(n)
.

Now, using completing the square, we have

Q(n)− (A(n))2

4B(n)
≤ −∆w(n).

Summing the last inequality from N to n− 1, we have

n−1∑
s=N

(
Q(s)− (∆ρ(s))2

4ρ(s+ 1)r(s)

)
≤ w(N)− w(n) ≤ w(N).

Letting n→∞, we obtain a contradiction to (3.1).
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have limn→∞ x(n) = 0. This completes
the proof.

Before stating the next theorem, we define functions h, H : N0 × N0 → R such that

(i) H(n, n) = 0 for n ≥ n0 ≥ 0;
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(ii) H(n, s) > 0 for n > s ≥ n0;

(iii) ∆2H(n, s) = H(n, s + 1) −H(n, s) ≤ 0 for n > s ≥ n0 and there exists a positive real sequence {ρ(n)}
such that

∆2H(n, s) +
∆ρ(s)
ρ(s+ 1)

H(n, s) = −h(n, s)
√
H(n, s)

for n > s ≥ n0.

Theorem 3.2. Assume that (2.1) holds. If there exists a positive real sequence {ρ(n)} such that

lim
n→∞

sup
1

H(n, n0)

n−1∑
s=n0

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
= ∞, (3.11)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Assume that {x(n)} is a nonoscillatory solution of equation (1.1). Proceeding as the proof of Theorem
3.1, we have (3.10). Now multiplying the inequality (3.10) by H(n, s), then summing the resulting inequality
from n2 to n− 1 for all n ≥ n2 ≥ n0, we have

n−1∑
s=n2

H(n, s)Q(s) ≤ −
n−1∑
s=n2

∆w(s)H(n, s)

+
n−1∑
s=n2

(A(s)w(s+ 1)−B(s)w2(s+ 1))H(n, s).

By summation by parts, we obtain

n−1∑
s=n2

H(n, s)Q(s)

≤ H(n, n2)w(n2) +
n−1∑
s=n2

w(s+ 1)∆2H(n, s)

+
n−1∑
s=n2

A(s)w(s+ 1)H(n, s)−
n−1∑
s=n2

B(s)w2(s+ 1)H(n, s)

≤ H(n, n2)w(n2) +
n−1∑
s=n2

[
∆2H(n, s) +

∆ρ(s)
ρ(s+ 1)

H(n, s)
]
×

w(s+ 1)−
n−1∑
s=n2

B(s)w2(s+ 1)H(n, s). (3.12)

Using completing the square in the last inequality, we obtain

n−1∑
s=n2

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≤ H(n, n2)w(n2)

or
1

H(n, n2)

n−1∑
s=n2

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≤ w(n2).

Letting n→∞, we obtain a contradiction to (3.1).
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have limn→∞ x(n) = 0. This completes
the proof.

Corollary 3.1. If H(n, s) = (n− s)β for all n ≥ s ≥ 0 and

lim
n→∞

sup
1
nβ

n−1∑
s=n0

[
(n− s)βQ(s)− 1

4
ρ(s+ 1)r(s)(n− s)β−2

]
= ∞, (3.13)

for every β ≥ 1, then every solution of equation (1.1) is oscillatory.
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Corollary 3.2. If H(n, s) =
(
log n+1

s+1

)β

for all n ≥ s ≥ 0 and

lim
n→∞

sup(log(n+ 1))−β 1
nα

n−1∑
s=n0

[(
log

n+ 1
s+ 1

)β

Q(s)

− 1
4(s+ 1)2

ρ(s+ 1)r(s)
(
log

n+ 1
s+ 1

)β−2]
= ∞, (3.14)

for every β ≥ 1, then every solution of equation (1.1) is oscillatory.

The proof of Corollary 3.1 and 3.2 follows from Theorem 3.2 and hence the details are omitted.

Theorem 3.3. Assume that all conditions of Theorem 3.2 are satisfied except condition (3.11). Also let

0 < infs≥n0

[
lim

n→∞
inf

H(n, s)
H(n, n0)

]
≤ ∞ (3.15)

and

lim
n→∞

sup
1

H(n, n0)

n−1∑
s=n0

ρ(s+ 1)r(s)h2(n, s) <∞ (3.16)

hold. If there exists a positive sequence {ψ(n)} such that

lim
n→∞

sup
n−1∑
s=n0

(ψ(n))2

ρ(s+ 1)r(s)
= ∞ (3.17)

and

lim
n→∞

sup
1

H(n,N)

n−1∑
s=N

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≥ ψ(N), (3.18)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Proceeding as in the proof of Theorem 3.2, we obtain (3.12). Using completing the square in (3.12) and
rearranging we obtain

lim
n→∞

sup
1

H(n, n2)

n−1∑
s=n2

[
H(n, s)Q(s)− h2(n, s)

4B(s)

]
≤ w(n2)

− lim
n→∞

inf
1

H(n, n2)

n−1∑
s=n2

[√
H(n, s)B(s)w(s+ 1) +

h(n, s)
2
√
B(s)

]2

for n ≥ n2. It follow from (3.18) that

w(n2) ≥ ψ(n2) + lim
n→∞

inf
1

H(n, n2)
n−1∑
s=n2

[√
H(n, s)B(s)w(s+ 1) +

h(n, s)
2
√
B(s)

]2

,

which means that,
w(n2) ≥ ψ(n2) for n ≥ N (3.19)

and

lim
n→∞

inf
1

H(n, n2)

n−1∑
s=n2

[√
H(n, s)B(s)w(s+ 1) +

h(n, s)
2
√
B(s)

]2

<∞.

Therefore

lim
n→∞

inf
[ 1
H(n, n2)

n−1∑
s=n2

H(n, s)B(s)w2(s+ 1)
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+
1

H(n, n2)

n−1∑
s=n2

h(n, s)
√
H(n, s)w(s+ 1)

+
1
4

1
H(n, n2)

n−1∑
s=n2

h2(n, s)
B(s)

]
<∞.

Then

lim
n→∞

inf
[ 1
H(n, n2)

n−1∑
s=n2

H(n, s)B(s)w2(s+ 1)

+
1

H(n, n2)

n−1∑
s=n2

h(n, s)
√
H(n, s)w(s+ 1)

]
<∞. (3.20)

Define the functions

U(n) =
1

H(n, n2)

n−1∑
s=n2

H(n, s)B(s)w2(s+ 1)

V (n) =
1

H(n, n2)

n−1∑
s=n2

√
H(n, s)h(n, s)w(s+ 1)

Then, the inequality (3.20), implies that

lim
n→∞

inf [U(n) + V (n)] <∞. (3.21)

The rest of the proof is similar to that of Theorem 2 of [6], and hence the details are omitted.
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have limn→∞ x(n) = 0. This completes
the proof.

Theorem 3.4. Assume that all conditions of Theorem 3.3 are satisfied except condition (3.16). Also let

lim
n→∞

inf
1

H(n, n0)

n−1∑
s=n0

H(n, s)Q(s) <∞ (3.22)

and

lim
n→∞

inf
1

H(n,N)

n−1∑
s=N

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≥ ψ(N) (3.23)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. The proof is similar to that of Theorem 3.3 and hence the details are omitted.

Now, let us define
H(n, s) = (n− s)β , n ≥ s ≥ 0,

where β ≥ 1 is a constant. Then H(n, n) = 0, for n ≥ 0 and H(n, s) > 0 for n > s ≥ 0. Clearly ∆2H(n, s) ≤ 0
for n > s ≥ 0 and

h(n, s) = [(n− s)β − (n− s− 1)β ](n− s)−(β/2) ≤ β(n− s)(β−2)/2,

for n > s ≥ 0. We see that (3.15) holds,

lim
n→∞

H(n, s)
H(n, n0)

= lim
n→∞

(n− s)β

nβ
= 1.

Hence, by Theorems 3.3 and 3.4, we have the following two corollaries.
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Corollary 3.3. Let β ≥ 1 be a constant, and suppose that

lim
n→∞

sup
1
nβ

n−1∑
s=n0

βρ(s+ 1)r(s)(n− s)β−2 <∞. (3.24)

If there is a sequence {ψ(n)} satisfying (3.17) and

lim
n→∞

sup
1

(n−N)β

n−1∑
s=N

[
(n− s)βQ(s)− β2

4
ρ(s+ 1)r(s)(n− s)β−2

]
≥ ψ(N) (3.25)

then every solution of equation (1.1) is oscillatory or converges to zero.

Proof. The proof follows from Theorem 3.3 and hence the details are omitted.

Corollary 3.4. Let β ≥ 1 be a constant, and suppose that

lim
n→∞

inf
1
nβ

n−1∑
s=n0

(n− s)βQ(s) <∞. (3.26)

If there is a sequence {ψ(n)} satisfying (3.17) and

lim
n→∞

inf
1

(n−N)β

n−1∑
s=N

[
(n− s)βQ(s)− β2

4
ρ(s+ 1)r(s)(n− s)β−2

]
≥ ψ(N) (3.27)

then every solution of equation (1.1) is oscillatory or converges to zero.

Proof. The proof follows from Theorem 3.4 and hence the details are omitted.

We conclude this paper with the following example.

4 An example

Consider the difference equation

∆
(
n∆2

(
x(n) +

2∑
s=1

1
2
x(n+ s− 1)

))
+

2∑
s=1

(
4n+

4
3
s
)
x(n+ s− 1) = 0. (4.1)

Here r(n) = n, p(n, s) = 1
2 , q(n, s) = 4n + 4

3s, σ = τ = 1, a = 1, b = 2, c = 1 and d = 2. It is easy to see
that all conditions of Theorem 3.1 are satisfied. Hence every solution of equation (4.1) is oscillatory. In fact
{xn} = {(−1)n} is one such oscillatory solution of equation (4.1).
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1 Introduction and Preliminaries

Fuzzy set theory, compared to other mathematical theories, is perhaps the most easily adaptable theory to
practice. The main reason is that a fuzzy set has the property of relativity, variability and inexactness in the
definition of its elements. Instead of defining an entity in calculus by assuming that its role is exactly known,
we can use fuzzy sets to define the same entity by allowing possible deviations and inexactness in its role.
This representation suits well the uncertainties encountered in practical life, which make fuzzy sets a valuable
mathematical tool. The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [16]
and subsequently several authors have discussed various aspects of the theory and applications of fuzzy sets
such as fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy
mathematical programming. Matloka [11] introduced bounded and convergent sequences of fuzzy numbers and
studied some of their properties. For more details about sequence spaces of fuzzy numbers see ([1], [4], [7], [12],
[13], [14], [15]) and references therein.

The notion of difference sequence spaces was introduced by Kızmaz [8], who studied the difference sequence
spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Çolak [6] by introducing the
spaces l∞(∆n), c(∆n) and c0(∆n). Let w be the space of all complex or real sequences x = (xk) and let r, s

be non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆r
s) = {x = (xk) ∈ w : (∆r

sxk) ∈ Z},

where ∆r
sx = (∆r

sxk) = (∆r−1
s xk−∆r−1

s xk+1) and ∆0xk = xk for all k ∈ N, which is equivalent to the following
binomial representation

∆r
sxk =

r∑
v=0

(−1)v

(
r

v

)
xk+sv.

Taking s = 1, we get the spaces which were introduced and studied by Et and Çolak [6]. Taking r = s = 1, we
get the spaces which were introduced and studied by Kızmaz [8].

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and convex function such that
M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.

∗Corresponding author.

E-mail addresses: sunilksharma42@yahoo.co.in (Sunil K. Sharma) and kuldipraj68@gmail.com (Kuldip Raj).
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Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following sequence space,

`M =
{

x ∈ w :
∞∑

k=1

M
( |xk|

ρ

)
< ∞

}
which is called as an Orlicz sequence space. Also `M is a Banach space with the norm

||x|| = inf
{

ρ > 0 :
∞∑

k=1

M
( |xk|

ρ

)
≤ 1

}
.

Also, it was shown in [9] that every Orlicz sequence space `M contains a subspace isomorphic to `p(p ≥ 1).
An Orlicz function M satisfies ∆2−condition if and only if for any constant L > 1 there exists a constant K(L)
such that M(Lu) ≤ K(L)M(u) for all values of u ≥ 0. An Orlicz function M can always be represented in the
following integral form

M(x) =
∫ x

0

η(t)dt

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) = 0, η(t) > 0, η is non-decreasing
and η(t) →∞ as t →∞.

Let D be the set of all bounded intervals A = [A,A] on the real line R. For A,B ∈ D, define A ≤ B if and
only if A ≤ B and A ≤ B, d(A,B) = max{A−B,A−B}.
Then it can be easily see that d defines a metric on D and (D, d) is complete metric space (see [5]).

A fuzzy number is fuzzy subset of the real line R which is bounded, convex and normal. Let L(R) denote
the set of all fuzzy numbers which are upper semi continuous and have compact support, i.e. if X ∈ L(R) then
for any α ∈ [0, 1], Xα is compact where

Xα =
{

t : X(t) ≥ α, if 0 < α ≤ 1,

t : X(t) > 0, if α = 0.

For each 0 < α ≤ 1, the α-level set Xα is a non-empty compact subset of R. The linear structure of L(R)
includes addition X + Y and scalar multiplication λX, (λa scalar) in terms of α-level sets, by

[X + Y ]α = [X]α + [Y ]α

and
[λX]α = λ[X]α,

for each 0 ≤ α ≤ 1.

Define a map d̄ : L(R)× L(R) → R by

d̄(X, Y ) = sup
0≤α≤1

d(Xα, Y α).

For X, Y ∈ L(R) define X ≤ Y if and only if Xα ≤ Y α for any α ∈ [0, 1]. It is known that (L(R, d̄)) is a
complete metric space (see [11]).

A sequence X = (Xk) of fuzzy numbers is a function X from the set N of natural numbers into L(R). The
fuzzy number Xn denotes the value of the function at n ∈ N and is called the nth term of the sequence.

In this paper we define difference entire sequence spaces of fuzzy numbers by using regular matrices A =
(ank), (n, k = 1, 2, 3, · · · ). By the regularity of A we mean that the matrix which transform convergent sequence
into a convergent sequence leaving the limit (see [10]). We denote by w(F ) the set of all sequences X = (Xk)
of fuzzy numbers.

Let X = (Xk) be a sequence of fuzzy numbers, A = (ank) n, k = 1, 2, 3, · · · be a non-negative regular matrix
and M = (Mk) be a sequence of Orlicz functions. Now, we define the following sequence spaces in this paper :
ΓM(F,A, p,∆r

s) ={
X = (Xk) :

∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

→ 0 as k →∞, for some ρ > 0
}
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and
ΛM(F,A, p,∆r

s) ={
X = (Xk) : sup

n

( ∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
)

< ∞, for some ρ > 0
}

.

If A = I, the unit matrix, we get the above spaces as follows :
ΓM(F, p, ∆r

s) = {
X = (Xk) :

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

→ 0 as k →∞, for some ρ > 0
}

and
ΛM(F, p, ∆r

s) = {
X = (Xk) : sup

n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

< ∞, for some ρ > 0
}

.

If we take M(x) = x, we get
Γ(F,A, p,∆r

s) = {
X = (Xk) :

∑
k

ank

[
d̄

(
|∆r

sXk|
1
k

ρ
, 0

)]pk

→ 0 as k →∞, for some ρ > 0
}

and
Λ(F,A, p,∆r

s) = {
X = (Xk) : sup

n

( ∑
k

ank

[
d̄

(
|∆r

sXk|
1
k

ρ
, 0

)]pk
)

< ∞, for some ρ > 0
}

.

If we take p = (pk) = 1 ∀ k, we get
ΓM(F,A, ∆r

s) ={
X = (Xk) :

∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]
→ 0 as k →∞, for some ρ > 0

}
and
ΛM(F,A, ∆r

s) ={
X = (Xk) : sup

n

( ∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))])
< ∞, for some ρ > 0

}
.

If A = (ank) is a Cesaro matrix of order 1, i.e.

ank =
{

1
n , k ≤ n,

0, k > n

then we get
ΓM(F, p, ∆r

s) ={
X = (Xk) :

1
n

n∑
k=1

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

→ 0 as k →∞, for some ρ > 0
}

and
ΛM(F, p, ∆r

s) = {
X = (Xk) : sup

n

1
n

n∑
k=1

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

< ∞, for some ρ > 0
}

.
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The space Γ is defined as follows:

Γ =
{

X = (Xk) :
1
n

n∑
k=1

|Xk|
1
k → 0 as k →∞, for some ρ > 0

}
.

The following inequality will be used throughout the paper. Let p = (pk) be a sequence of positive real
numbers with 0 < pk ≤ supk pk = H and let K = max{1, 2H−1}. Then for sequences {ak} and {bk} in the
complex plane, we have

|ak + bk|pk ≤ K(|ak|pk + |bk|pk).

The main purpose of this paper is to study difference entire sequence spaces of fuzzy numbers defined by a
sequence of Orlicz functions. We also studied some topological properties and interesting inclusion relations
between the above defined sequence spaces.

2 Main Results

Proposition 2.1. If d̄ is a translation invariant metric on L(R) then

(i) d̄(X + Y, 0) ≤ d̄(X, 0) + d̄(Y, 0),

(ii) d̄(λX, 0) ≤ |λ|d̄(X, 0), |λ| > 1.

Proof. It is easy to prove so we omit the details.

Theorem 2.2. If M = (Mk) be a sequence of Orlicz functions, then ΓM(F, p, ∆r
s) is a complete metric space

under the metric

d(X, Y ) = sup
n

[
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

s(Xk − Yk)| 1k
ρ

, 0
))]pk

.

Proof. Let X = (Xk), Y = (Yk) ∈ ΓM(F, p, ∆r
s). Let {X(n)} be a Cauchy sequence in ΓM(F, p, ∆r

s). Then
given any ε > 0 there exists a positive integer N depending on ε such that d(X(n), X(m)) < ε, for all n, m ≥ N .
Hence

sup
(n)

[
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n)
k −∆r

sX
(m)
k | 1k

ρ
, 0

))]pk

< ε ∀m,n ≥ N.

Consequently {X(n)
k } is a Cauchy sequence in the metric space L(R). But L(R) is complete. So, X

(n)
k → Xk

as n →∞. Hence there exists a positive integer n0 such that[
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n)
k −∆r

sX
(m)
k | 1k

ρ
, 0

))]pk

< ε ∀n > n0.

In particular, we have [
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n0) −∆r

sXk|
1
k

ρ
, 0

))]pk

< ε.

Now [
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

≤
[

1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sXk −∆r
sX

(n0)
k | 1k

ρ
, 0

))]pk

+
[

1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n0)
k | 1k
ρ

, 0
))]pk

≤ ε + 0 as n →∞.

Thus (
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

)))pk

< ε as n →∞.

This implies that (Xk) ∈ ΓM(F, p, ∆r
s). Hence ΓM(F, p, ∆r

s) is a complete metric space. This completes the
proof.
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Theorem 2.3. Let M = (Mk) be a sequence of Orlicz functions and p = (pk) be a bounded sequence of positive
real numbers, the space ΓM(F, p, ∆r

s) is a linear over the field of complex numbers C.

Proof. Let X = (Xk), Y = (Yk) ∈ ΓM(F, p, ∆r
s) and α, β ∈ C. Then there exist some positive numbers ρ1 and

ρ2 such that
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ1
, 0

))]pk

→ 0 as k →∞

and
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sYk|
1
k

ρ2
, 0

))]pk

→ 0 as k →∞.

Let 1
ρ3

= min
{

1
|α|p

1
ρ1

, 1
|β|p

1
ρ2

}
. Since M is non-decreasing and convex so by using inequality (1.1), we have

n∑
k=1

1
n

[
d̄

(
Mk

(
|∆r

s(αXk + βYk)| 1k
ρ3

, 0
))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sαXk|
1
k

ρ3
+
|∆r

sβYk|
1
k

ρ3
, 0

))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|α| 1k |∆r

sXk|
1
k

ρ3
+
|β| 1k |∆r

sαYk|
1
k

ρ3
, 0

))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|α||∆r

sXk|
1
k

ρ3
+
|β||∆r

sαYk|
1
k

ρ3
, 0

))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ1
+
|∆r

sαYk|
1
k

ρ2
, 0

))]pk

≤ K

n∑
k=1

1
n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ1
, 0

))]pk

+ K
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sYk|
1
k

ρ2
, 0

))]pk

→ 0 as k →∞.

Hence
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

s(αXk + βYk)| 1k
ρ3

, 0
))]pk

→ 0 as k →∞. Hence ΓM(F, p, ∆r
s) is a linear space. This

completes the proof.

Theorem 2.4. Let M = (Mk) be a sequence of Orlicz functions and p = (pk) be a bounded sequence of positive
real numbers. Then the space ΓM(F,A, p,∆r

s) is complete with respect to the paranorm defined by

g(X) = sup
(k)

( ∑
ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
) 1

H

,

where H = max
{
1, supk(pk/H)

}
and d̄ is translation metric.

Proof. Clearly, g(0) = 0, g(−x) = g(x). It can also be seen easily that g(x+y) ≤ g(x)+g(y) for X = (Xk), Y =
(Yk) in ΓM(F,A, p,∆r

s), since d̄ is translation invariant. Now for any scalar λ, we have |λ|
pk
H < max{1, sup |λ|},

so that g(λx) < max{1, sup |λ|}, λ fixed implies λx → 0. Now, let λ → 0, X fixed for sup |λ| < 1, we have[∑
ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< ε for N > N(ε).

Also for 1 ≤ n ≤ N , since [∑
ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< ε,

there exists m such that [ ∞∑
k=m

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< ε.
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Taking λ small enough, we have[ ∞∑
k=m

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< 2ε for all k.

Since g(λX) → 0 as λ → 0. Therefore g is a paranorm on ΓM(F,A, p,∆r
s).

To show the completeness, let (X(i)) be a Cauchy sequence in ΓM(F,A, p,∆r
s). Then for a given ε > 0 there

is r ∈ N such that [∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i) −X(j))| 1k

ρ
, 0

))]pk
] 1

H

< ε for all i, j > r. (2.1)

Since d̄ is a translation, so equation (2.1) implies that

[∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i)
k −X

(j)
k )| 1k

ρ
, 0

))]pk
] 1

H

< ε for all i, j > r and each n. (2.2)

Hence [
d̄

(
Mk

(
|∆r

s(X
(i)
k −X

(j)
k )| 1k

ρ
, 0

))]
< ε for all i, j > r.

Therefore (X(i)) is a Cauchy sequence in L(R). Since L(R) is complete, limj→∞Xj
k = Xk. Fixing r0 ≥ r and

letting j →∞, we obtain (2.2) that[∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i)
k −Xk)| 1k

ρ
, 0

))]]
< ε for all r0 > r, (2.3)

since d̄ is a translation invariant. Hence[∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i) −X)| 1k
ρ

, 0
))]pk

] 1
H

< ε

i.e. X(i) → X in ΓM(F,A, p,∆r
s). It is easy to see that X ∈ ΓM(F,A, p,∆r

s). Hence ΓM(F,A, p,∆r
s) is

complete. This completes the proof.

Theorem 2.5. Let A = (ank) (n, k = 1, 2, 3, · · · ) be an infinite matrix with complex entries. Then A ∈
ΓM(F,A, p,∆r

s) if and only if given ε > 0 there exists N = N(ε) > 0 such that |ank| < εnNk (n, k = 1, 2, 3, · · · ).

Proof. Let X = (Xk) ∈ Γ and let Yn =
( ∞∑

k=1

ankd̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))pk
)

, (n = 1, 2, 3, · · · ). Then (Yn) ∈ Γ

if and only if given any ε > 0 there exists N = N(ε) > 0 such that |ank| < εnNk by using Theorem 4 of [3].
Thus A ∈ ΓM(F,A, p,∆r

s) if and only if the condition holds.

Theorem 2.6. If A = (ank) transforms Γ into ΓM(F,A, p,∆r
s) then limn→∞(ank)qn = 0 for all integers q > 0

and each fixed k = 1, 2, 3, · · · , where X = (Xk) be a sequence of fuzzy numbers and d̄ is translation invariant.

Proof. Let Yn =
[ ∞∑

k=1

ankd̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))pk
]

(n = 1, 2, 3, · · · ). Let (Xk) ∈ Γ and (Yn) ∈ ΓM(F,A, p,∆r
s).

Take (Xk) = δk = (0, 0, 0, · · · , 1, 0, 0, · · · ), 1 in the kth place and zero’s elsewhere, then (Xk) ∈ Γ. Hence
∞∑

k=1

|ank|qn < ∞ for every positive q. In particular lim
n→∞

(ank)qn = 0 for all positive integers q and each fixed

k = 1, 2, 3, · · · . This completes the proof.

Theorem 2.7. If A = (ank) transforms ΓM(F,A, p,∆r
s) into Γ, then limn→∞(ank)qn = 0 for all integers q > 0

and each fixed k = 1, 2, 3, · · · , where X = (Xk) be a sequence of fuzzy numbers and d̄ is translation invariant.
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Proof. Let

tn =
[ ∞∑

k=1

d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))pk
]
∈ Γ.

Let

sn =
[ ∞∑

k=1

d̄

(
Mk

(
|0| 1k
ρ

, 0
))pk

]
∈ Γ.

Then Yn = (tn − sn) =
[ ∞∑

k=1

ankd̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))p]
and d̄

(
Mk

(
|∆r

sXk|
1
k

ρ , 0
)pk

)
∈ Γ. Hence (Yn) ∈ Γ.

Therefore (ank)qn → 0 as n →∞ ∀k. This completes the proof.

Theorem 2.8. If A = (ank) transforms ΓM(F,A, p,∆r
s) into ΓM(F,A, p,∆r

s), then limn→∞(ank)qn = 0 for
all integers q > 0 and each fixed k = 1, 2, 3, · · · , where X = (Xk) be a sequence of fuzzy numbers and d̄ is
translation invariant.

Proof. The proof of the Theorem follows from Theorem 2.6 and Theorem 2.7.
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Abstract

The aim of this paper is to introduce new classes of mappings namely Ω̂-open mappings, somewhat Ω̂ open functions

and hardly Ω̂-open mappings by utilizing Ω̂-closed sets. Also investigate some of their properties.
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1 Introduction

In 1969, Karl R. et al.[6] introduced the concept of Somewhat continuous and somewhat open function
and investigated their properties.These functions are nothing but Frolik functions such that the condition onto
was just dropped. These notions are also related to the idea of weakly equivalent topologies which was first
introduced by Yougslova [11]. In this paper we study the concept of somewhat Ω̂ continuous and somewhat Ω̂
open function and investigated their properties by giving suitable examples on it. More over,we introduce and
study two more kinds of open mappings via Ω̂-closed sets. Also we investigate their properties.

2 Preliminaries

Throughout this paper (X, τ) (or briefly X) represent a topological space with no separation axioms assumed
unless otherwise explicitly stated. For a subset A of (X, τ) , we denote the closure of A, the interior of A and
the complement of A as cl(A), int(A) and Ac respectively. The following notations are used in this paper. The
family of all open (resp.δ-open,Ω̂-open) sets on X are denoted by O(X) (resp.δO(X), Ω̂O(X)). The family of
all Ω̂-closed sets on X are denoted by Ω̂C(X).

• O(X, x) = {U ∈ X�x ∈ U ∈ O(X)}

• δO(X, x) = {U ∈ X�x ∈ U ∈ δO(X)}

• Ω̂O(X, x) = {U ∈ X�x ∈ U ∈ Ω̂O(X)}

Let us sketch some existing definitions,which are useful in the sequel as follows.

Definition 2.1. [5] A subset A of Xis called δ-closed in a topological space (X, τ) if A = δcl(A), where
δcl(A) = {x ∈ X : int(cl(U)) ∩ A 6= ∅, U ∈ O(X, x)}.The complement of δ-closed set in (X, τ) is called δ-open
set in (X, τ). From [5],lemma 3, δcl(A) = ∩{F ∈ δC(X) : A ⊆ F} and from corollary 4, δcl(A) is a δ-closed
for a subset A in a topological space (X, τ).

Definition 2.2. A subset A of a topological space (X, τ) is called

∗Corresponding author.

E-mail addresses: mlthivagar@yahoo.co.in (M. Lellis Thivagar) and rsanbuchelvi@gmail.com (M. Anbuchelvi).
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(i) semiopen set in (X, τ) if A ⊆ cl(int(A)).

(ii) Ω̂-closed set [7] if δcl(A) ⊆ U whenever A ⊆ U and U is semi open in (X, τ).

The complement of Ω̂-closed set is called Ω̂-open.

Definition 2.3. A function f : (X, τ) → (Y, σ) is called

(i) somewhat open [6] if U ∈ τ and U 6= ∅, then there exists V ∈ σ such that V 6= ∅ and U ⊆ f(U).

(ii) somewhat b open [3] if U ∈ τ and U 6= ∅, then there exists a b-open set V ∈ σ such that V 6= ∅ and
U ⊆ f(U).

(iii) somewhat sg open [2] if U ∈ τ and U 6= ∅, then there exists a sg-open set V ∈ σ such that V 6= ∅ and
U ⊆ f(U).

(iv) perfectly continuous [10] if the inverse image of open set in Y is clopen set in X.

(v) completely continuous [1] if the inverse image of open set in Y is regular open set in X.

(vi) super continuous [9] if the inverse image of open set in Y is δ open set in X.

(vii) somewhat continuous [6] if U ∈ σ and f−1(U) 6= ∅, then there exists a non empty setV ∈ τ such that
V ⊆ f−1(U).

(viii) somewhat b continuous [3] if U ∈ σ and f−1(U) 6= ∅, then there exists a non empty b-open setV in (X, τ)
such that V ⊆ f−1(U).

(ix) somewhat sg continuous [2] if U ∈ σ and f−1(U) 6= ∅, then there exists a non empty sg-open setV in
(X, τ) such that V ⊆ f−1(U).

Definition 2.4. A space (X, τ) is said to be T 3
4

[4] if every δg-open set is δ-open set in X.

Definition 2.5. A space (X, τ) is said to be T1 if for every two different point x and y, there exists open sets
U and V such that x ∈ U, y /∈ U and y ∈ V, x /∈ V . Also every proper set is contained in a proper open set.

Theorem 2.6. [8] A space (X, τ) is ωTΩ̂-space if and only if every closed set is Ω̂-closed in (X, τ).

Theorem 2.7. [8] A space (X, τ) is semi-T 1
2

if and only if every Ω̂-open set is open in (X, τ).

3 Ω̂-open mappings

Definition 3.1. A map f : (X, τ) → (Y, σ) is said to be Ω̂-open function if the image of every open set in X

is Ω̂-open set in Y .

Example 3.2. Let X = Y = {a, b, c}, τ = {∅, {a}, {a, b}, {a, c}, X}, σ = {∅, {a}, {b}, {a, b}, Y }. Define
f : (X, τ) → (Y, σ) by f(a) = a, f(b) = a, f(c) = b. Then f is Ω̂-open function.

Remark 3.3. The notion of Ω̂-open function and open mappings are independent from the following examples.

Example 3.4. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, , X}, σ = {∅, {a, b}, Y }. Define f : (X, τ) →
(Y, σ) by f(a) = a, f(b) = b, f(c) = c. Then f is Ω̂-open but not open function.

Example 3.5. Let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X}, σ = {∅, {a}, {a, b}, Y }. Define f : (X, τ) → (Y, σ)
by f(a) = a, f(b) = a, f(c) = b. Then f is open but not Ω̂-open function.

Let us characterize Ω̂-open function in the following theorems.

Theorem 3.6. A function f : (X, τ) → (Y, σ) is Ω̂-open function if and only if for any subset A of Y and
for any closed set F in X such that f−1(A) ⊆ F , there exists a Ω̂-closed set F 1 in Y such that A ⊆ F 1 and
f−1(F−1) ⊆ F .
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Proof. Necessity- Let A be any subset in Y and F be any closed set in X such that f−1(A) ⊆ F . Then
(X \ F ) is open in X. By hypothesis, f((X \ F )) is Ω̂-open in Y and hence Y \ f((X \ F )) is Ω̂-closed in
Y . Since f−1(A) ⊆ F, (X \ F ) ⊆ (X \ f−1(A)) = f−1(Y \ A). Therefore, f(X \ F ) ⊆ (Y \ A) and hence
A ⊆ (Y \ f(X \ F )). Now f−1(Y \ f(X \ F )) = (X \ f−1f(X \ F )) ⊆ F . If we take F 1 = (Y \ f(X \ F )),then
F 1 is a Ω̂-closed set in Y such that f−1(F 1) ⊆ F .
Sufficiency- Suppose that U is any open set in X. Then (X \U) is closed in X and f−1(Y \ f(U)) ⊆ (X \ U)
By hypothesis, there exists Ω̂-closed set F in Y such that (Y \ f(U)) ⊆ F and f−1(F ) ⊆ (X \ U). Therefore,
(Y \ F ) ⊆ f(U) and U ⊆ (X \ f−1(F )) = f−1(Y \ F ). Therefore,(Y \ F ) ⊆ f(U) ⊆ (Y \ F ) and hence
(Y \ F ) = f(U). Thus f(U) is Ω̂-open set in Y .

Theorem 3.7. A function f : (X, τ) → (Y, σ) is Ω̂-open function if and only if for any subset B of Y ,f−1(Ω̂cl(B)) ⊆
cl(f−1(B)).

Proof. Necessity- For any subset B of Y, f−1(B) ⊆ cl(f−1(B)). By theorem 3.6,there exists a Ω̂-closed set
A in Y such that B ⊆ A and f−1(A) ⊆ cl(f−1(B)). By[7] the definition of Ω̂ closure, Ω̂cl(B) ⊆ A. Then
f−1(Ω̂cl(B)) ⊆ f−1(A) ⊆ cl(f−1(B)). Thus, f−1(Ω̂cl(B)) ⊆ cl(f−1(B)).
Sufficiency- Let A be any set in Y and F be any closed set in X such that f−1(A) ⊆ F . If F 1 = Ω̂cl(A),then
[7] theorem 5.3, F 1 is Ω̂-closed set in Y containing A. By hypothesis, f−1(F 1) = f−1(Ω̂cl(A)) ⊆ cl(f−1(A)) ⊆
cl(F ) ⊆ F . By theorem 3.6, f is Ω̂-open function.

Theorem 3.8. For any function f : (X, τ) → (Y, σ), the following statements are true.

(i) f is Ω̂-open mapping.

(ii) f(δint(A)) ⊆ Ω̂int(f(A)) for any subset A in X.

(iii) For every x ∈ X and for every δ-open set U in X containing x,there exists a Ω̂-open set W in Y containing
f(x) such that W ⊆ f(U).

Proof. (i) ⇒ (ii) Suppose that A is any subset of X.Then δint(A) is open in X and δint(A) ⊆ A. By hypoth-
esis, f(δint(A)) is Ω̂-open set in Y and f(δint(A)) ⊆ f(A). By the definition of Ω̂ interior,Ω̂int(f(A)) is the
largest Ω̂-open set contained in f(A). Therefore, f(δint(A)) ⊆ δint(f(A)).

(ii) ⇒ (iii) Let x ∈ X and U be any δ-open set in X containing x. Then there exists δ-open set V in X

such that x ∈ V ⊆ U . By hypothesis, f(V ) = f(δint(V )) ⊆ Ω̂int(f(V )). Then f(V ) is Ω̂-open in Y containing
f(x) such that f(V ) ⊆ f(U). If we take W = f(V ),then W satisfies our requirement.

(iii) ⇒ (i) Suppose that U is any δ-open set in X and y is any point in f(U). By hypothesis, there exists an
Ω̂-open set Wy in Y containing y such that Wy ⊆ f(U).Therefore,f(U) =

⋃
{Wy : y ∈ f(U)}. By [7] theorem

4.16,f(U) is Ω̂-open set in Y .

Theorem 3.9. A surjective function f : (X, τ) → (Y, σ) is Ω̂-open function if and only if f−1 : Y → X is
Ω̂-continuous.

Proof. Necessity- If U is any open set in X then by hypothesis, (f−1)−1(U) = f(U) is Ω̂-open in Y .Hence
f−1 : Y → X is Ω̂-continuous.
Sufficiency- If U is any open set in X, then by hypothesis,f(U) = (f−1)−1(U) is Ω̂-open in Y . Hence
f : (X, τ) → (Y, σ) is Ω̂-open function.

Remark 3.10. In general, composition of any two Ω̂-open functions is not a Ω̂-open function from the following
example.

Example 3.11. X = Y = {a, b, c, d} and Z = {a, b, c}, τ = {∅, {b, c}, {a, b, c}, {b, c, d}, X},
σ = {∅, {a}, {b, c, d}, Y }, η = {∅, {a}, {b}, {a, b}, Z}. Then Ω̂O(Y ) = P (X), Ω̂O(Z) = η. If f : (X, τ) →
(Y, σ) is defined by f(a) = a, f(b) = c, f(c) = d, f(d) = a. Then f is Ω̂-open function. If g : (Y, σ) → (Z, η) is
defined by g(a) = a, g(b) = a, g(c) = b, g(d) = c. Then g is Ω̂-open function.But g ◦ f : (X, τ) → (Z, η) defined
by (g ◦ f)(x) = g(f(x)) for all x ∈ X is not Ω̂-open function because (g ◦ f)({b, c}) = {b, c} not belongs to
Ω̂O(Z).
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Theorem 3.12. If f : (X, τ) → (Y, σ) is open function and g : (Y, σ) → (Z, η) is Ω̂-open function, then
g ◦ f : (X, τ) → (Z, η) is Ω̂-open function.

Proof. It follows from their definitions.

Theorems on Composition

Theorem 3.13. Let (Y, σ) be a semi-T 1
2
-space. If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are Ω̂-open

functions, then g ◦ f : (X, τ) → (Z, η) is Ω̂-open function.

Proof. It follows from their definitions.

Theorem 3.14. If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are any two functions such that g ◦ f : (X, τ) →
(Z, η) is Ω̂-open function then,

(i) f is Ω̂-open mapping if g is Ω̂-irresolute and injective.

(ii) g is Ω̂-open mapping if f is continuous and surjective.

Proof. (i) If U is any open set in X, g(f(U)) is Ω̂-open in Z. Since g is Ω̂-irresolute, g−1(g(f(U))) is Ω̂-open
in Y . Since g is injective, g−1(g(f(U))) = f(U) is Ω̂-open in Y . Thus f is Ω̂-open mapping.

(ii) If U is any open set in Y , then f−1(U) is open set in X. Since g ◦ f : (X, τ) → (Z, η) is Ω̂-open function,
g(f(f−1(U))) is Ω̂-open in Z. Since f is surjective, g(f(f−1(U))) = g(U) is Ω̂-open in Z.

4 Somewhat Ω̂-open, Hardly Ω̂-open mappings

Definition 4.1. A subset A of a space X is said to be Ω̂-dense in X if Ω̂cl(A) = X. Or, there is no Ω̂-closed
between A and X.

Example 4.2. Let X = {a, b, c}, τ = {∅, {a}, X}. Then Ω̂-dense sets in X are {{a},{a,b},{a,c}}.

Definition 4.3. A function f : (X, τ) → (Y, σ) is said to be somewhat Ω̂-open if for each non empty set
U ∈ O(X), there exists a non empty set V ∈ Ω̂O(Y ) such that V ⊆ f(U).

Example 4.4. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {b}, {c}, {b, c}, Y }. Define f : (X, τ) →
(Y, σ) by f(a) = b, f(b) = c, f(c) = a. Then f is somewhat Ω̂-open mapping.

Theorem 4.5. Every somewhat Ω̂-open mapping is somewhat b-(resp.sg-) open mapping.

Proof. Assume that f : (X, τ) → (Y, σ) is somewhat Ω̂-open mapping and suppose that U is any non empty
set in X. By hypothesis,there exists a non empty set V ∈ Ω̂O(Y ) such that V ⊆ f(U). By [7] remark 3.13, V

is b-(resp.sg-)open set in Y . Hence f is somewhat b open mapping.

Remark 4.6. The following example shows that the reversible implication is not true in general.

Example 4.7. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {a}, {b}, {a, b}, Y }. Define f : (X, τ) →
(Y, σ) by f(a) = b, f(b) = c, f(c) = a. Then f is somewhat b-(resp.sg-) open mapping but not somewhat Ω̂-open
mapping.

Remark 4.8. The notions, somewhat open (resp.somewhat semi open )mapping and somewhat Ω̂-open mapping
are independent from the following examples.

Question: Is there any example on a mapping which is somewhat open but not somewhat Ω̂-open?

Example 4.9. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}, and σ = {∅, {a}, {b, c}, Y }. Define
f : (X, τ) → (Y, σ) by f(a) = b, f(b) = c, f(c) = a.Then f is somewhat Ω̂-open mapping but not somewhat
open mapping.

Theorem 4.10. If (Y, σ) is semi-T 1
2
, then every somewhat Ω̂-open mapping f : (X, τ) → (Y, σ) is somewhat

open mapping.
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Proof. Let U ∈ O(X) be any non empty set in X. By hypothesis,there exists a non empty set V ∈ Ω̂O(Y )
such that V ⊆ f(U). Since in a semi-T 1

2
space, every Ω̂-open set is open,V ∈ O(Y ). Hence f is somewhat

open mapping.

Theorem 4.11. If (Y, σ) is ωTΩ̂, then every somewhat open mapping f : (X, τ) → (Y, σ) is somewhat Ω̂-open
mapping.

Proof. Let U ∈ O(X) be any non empty set in X. By hypothesis,there exists a non empty set V ∈ O(Y ) such
that V ⊆ f(U).Since in a ωTΩ̂ space,every open set is Ω̂-open, V ∈ Ω̂O(Y ). Hence f is somewhat Ω̂-open
mapping.

Let us prove a characterization of somewhat Ω̂ open mapping.

Theorem 4.12. A mapping f : (X, τ) → (Y, σ) is somewhat Ω̂ open if and only if inverse image of a Ω̂-dense
set in Y is dense in X.

Proof. Necessity- Suppose that D is Ω̂-dense set in Y and suppose f−1(D) is not dense in X. Therefore,
there exists a proper closed set F in X such that f−1(D) ⊆ F ⊆ X. Then X \ F is a non empty open set in
X. By hypothesis, there exists a non empty set V ∈ Ω̂O(Y ) such that V ⊆ f(X \F ) or Y \ f(X \F ) ⊆ Y \ V .
Moreover, X \F ⊆ X \f−1(D) = f−1(Y \D) implies that f(X \F ) ⊆ Y \D. Then D ⊆ Y \f(X \ F ) ⊆ Y \V .
We have some proper Ω̂-closed set Y \ V in Y such that D ⊆ Y \ V ⊆ Y a contradiction to D is Ω̂-dense set
in Y . Therefore,f−1(D) is dense in X.

Sufficiency- If f is not somewhat Ω̂-open mapping,for every non empty open set U in X, no non empty
Ω̂-open set in Y is such that V ⊆ f(U). Then no proper Ω̂ closed set Y \V is such that Y \ f(U) ⊆ Y \V ⊆ Y .
Therefore, Y \ f(U) is Ω̂-dense in Y . By hypothesis, f−1(Y \ f(U)) is dense in X or X \ (f−1(f(U)) is dense
in X. Therefore,cl(X \ (f−1(f(U))) = X. Moreover, U ⊆ (f−1(f(U)) implies that X \ (f−1(f(U)) ⊆ X \ U .
Then X = cl(X \ (f−1(f(U))) ⊆ cl(X \U) = X\ \ int(U) and hence int(U) = ∅, a contradiction to U is a non
empty set in X.

Theorem 4.13. Suppose that f : (X, τ) → (Y, σ) is a bijective mapping. f is somewhat Ω̂-open mapping if
and only if for every closed set F in X such that f(F ) 6= Y , there exists a proper set D ∈ Ω̂C(X) such that
f(F ) ⊆ D.

Proof. Necessity- Suppose that F is any closed set in X such that f(F ) 6= Y . Then X \F is a non empty open
set in X.By hypothesis, there exists a non empty set V ∈ Ω̂O(Y ) such that V ⊆ f(X\F ) or Y \f(X\F ) ⊆ Y \V .
Since f is bijective,f(F ) ⊂ Y \ V . If we define, D = Y \ V ,then D 6= ∅, D ∈ Ω̂C(Y ) such that f(F ) ⊆ D.

Sufficiency- Suppose that U is any non empty open set in X.Then X \ U is a proper closed set in X. If
f(X \ U) = Y ,then it is easily seen that U = ∅, a contradiction.Therefore,f(X \ U) 6= Y . By hypothesis,there
exists a proper Ω̂-closed set D in Y such that f(X \ U) ⊆ D. That is,Y \D ⊆ Y \ f(X \ U) = f(U), where
Y \D 6= ∅, Y \D ∈ Ω̂O(Y ).Thus f is somewhat Ω̂-open mapping.

Theorem 4.14. Suppose that A is any open set in a topological space (X, τ). If f : (X, τ) → (Y, σ) is somewhat
Ω̂-open mapping, then f |A: (A, τ |A) → (Y, σ) is also somewhat Ω̂-open mapping on the subspace (A, τ |A).

Proof. Suppose that U ∈ τ |A, U 6= ∅. Since U is open in (A, τ |A) and A is open in X, U is open in X. By
hypothesis,there exists a non empty Ω̂-open set V in Y such that V ⊆ f(U). Therefore,f |A is somewhat
Ω̂-open mapping.

Theorem 4.15. Suppose that (X, τ) and (Y, σ) are any two topological spaces and suppose X = A∪B, where
A and B are open in X. If f : (X, τ) → (Y, σ) is any function such that f |A and f |B are somewhat Ω̂-open
mappings,then f is a somewhat Ω̂-open mapping.

Proof. Let U be any open set in X. Then U ∩ A and U ∩ B are open sets in the subspaces (A, τ |A) and
(A, τ |B) respectively. Since X = A ∪B, either A ∩ U 6= ∅ or B ∩ U 6= ∅ or both A ∩ U 6= ∅ and B ∩ U 6= ∅.
case(i) If U ∩A 6= ∅.
Since f |A is somewhat Ω̂-open mapping,there exists a non empty V ∈ Ω̂O(Y ) such that V ⊆ f(U ∩A) ⊆ f(U).
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It follows that f is somewhat Ω̂-open mapping.
case(ii) If U ∩B 6= ∅.
Since f |B is somewhat Ω̂-open mapping, there exists a non empty V ∈ Ω̂O(Y ) such that V ⊆ f(U∩B) ⊆ f(U).
It follows that f is somewhat Ω̂-open mapping.
case(iii) If both U ∩A 6= ∅ and U ∩B 6= ∅. It follows from case(i) or case(ii).

Remark 4.16. Composition of two somewhat Ω̂-open mappings is not always somewhat Ω̂-open mapping from
the following example.

Example 4.17. X = Y = {a, b, c, d} and Z = {a, b, c}, τ = {∅, {b, c}, {a, b, c}, {b, c, d}, X}, σ = {∅, {a}, {b, c, d}, Y },
η = {∅, {a}, {b}, {a, b}, Z}. Then Ω̂O(Y ) = P (X), Ω̂O(Z) = η. If f : (X, τ) → (Y, σ) is defined by f(a) =
a, f(b) = c, f(c) = d, f(d) = a. Then f is somewhat Ω̂-open function. If g : (Y, σ) → (Z, η) is defined by
g(a) = a, g(b) = a, g(c) = b, g(d) = c. Then g is somewhat Ω̂-open function.But g ◦ f : (X, τ) → (Z, η) defined
by (g ◦ f)(x) = g(f(x)) for all x ∈ X is not a somewhat Ω̂-open function because (g ◦ f)({b, c}) = {b, c} does
not contain any Ω̂-open set in Z.

The following theorem states the condition under which the composition of two somewhat Ω̂-open mappings
is again a somewhat Ω̂-open mappings.

Theorem 4.18. If f : (X, τ) → (Y, σ) is an open mapping and g : (Y, σ) → (Z, η) is a somewhat Ω̂-open
mapping,then g ◦ f : (X, τ) → (Z, η) is a somewhat Ω̂-open mapping.

Proof. Suppose U ∈ O(X) is any non empty set in X. Since f is an open mapping, f(U) is an open set in Y .
Since g is somewhat Ω̂-open mapping,there exists a non empty set V ∈ Ω̂O(Z) such that V ⊆ g(f(U)) = g◦f(U).
Hence g ◦ f is somewhat Ω̂-open mapping.

Definition 4.19. A function f : (X, τ) → (Y, σ) is said to be hardly Ω̂-open if for each Ω̂ dense set A in Y

that is contained in a proper Ω̂-open set in Y, f−1(A) is Ω̂-dense in X.

Example 4.20. Let X = Y = {a, b, c}, τ = σ = {∅, {a}, X}. Then Ω̂ dense sets in X are {{a},{a,b},{a,c},X}.Define
f : (X, τ) → (Y, σ) by f(a) = a, f(b) = a and f(c) = c. Then f is hardly Ω̂-open mapping.

Theorem 4.21. Let Y be a T1 space. A function f : (X, τ) → (Y, σ) is hardly open function if and only if for
each Ω̂-dense set A in Y, f−1(A) is Ω̂-dense in X.

Proof. Since in a T1 space,every set is properly contained in a proper open set,it follows.

Theorem 4.22. [4] A topological space is T 3
4

if and only if {x} is either δ-open or closed.

Theorem 4.23. If Y is a T 3
4

space,then f : (X, τ) → (Y, σ) is hardly Ω̂-open function if and only if for each

Ω̂-dense set D in Y, f−1(D) is Ω̂-dense in X.

Proof. Necessity- Assume that f is hardly Ω̂-open function and D is any Ω̂-dense set in Y . Let y ∈ Y \ D

be an arbitrary point. Since D is Ω̂-dense in Y, Ω̂cl(D) = Y . That is,Y \ Ω̂cl(D) = ∅. By [7] theorem 5.3
(vii),Y \ δcl(D) = ∅ or δint(Y \D) = ∅. Therefore,{y} is not a δ open in a T 3

4
space Y .By the theorem 4.22,

{y} is a closed set in Y and hence Y \{y} is a proper open set in Y . Therefore,D is contained in a proper open
set Y \ {y}. By hypothesis,f−1(D) is Ω̂-dense in X.

Sufficiency- From the given hypothesis, f is hardly Ω̂-open function.

Theorem 4.24. f : (X, τ) → (Y, σ) is hardly Ω̂-open function if and only if Ω̂int(f−1(A)) = ∅ for each subset
A in Y such that Ω̂int(A) = ∅ and A contains a nonempty closed set.

Proof. Necessity- Assume that f is hardly Ω̂-open function and A ⊆ Y such that Ω̂int(A) = ∅ and F , a
nonempty closed set in Y such that F ⊆ A. Then, Ω̂cl(Y \A) = Y \Ω̂int(A) = Y . Since F ⊆ A, Y \A ⊆ Y \ F 6=
Y . Therefore, Y \A is a Ω̂-dense in Y which is contained in a proper open set Y \ F . By hypothesis,f−1(Y \A)
is Ω̂-dense in X. Therefore, X = Ω̂cl(f−1(Y \ A)) = X \ Ω̂int(f−1(A)). Thus, X \ Ω̂int(f−1(A)) = X and
hence Ω̂int(f−1(A)) = ∅.

Sufficiency- Suppose that D is any Ω̂-dense in Y such that it is contained in a proper open set U .
Since U 6= ∅, Y \ U is a non empty closed set contained in Y \ D. By hypothesis, Ω̂int(f−1(Y \ D)) =
∅.Then,X \ Ω̂cl(f−1(D)) = ∅ and hence Ω̂cl(f−1(D)) = X. Thus,f−1(D) is Ω̂ dense in X.
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Theorem 4.25. Let f : (X, τ) → (Y, σ) be any function. If Ω̂int(f(A)) 6= ∅ for every subset A of X having
the property that Ω̂int(A) 6= ∅ and there exists a non empty closed set F in X such that f−1(F ) ⊆ A,then f is
hardly Ω̂-open function.

Proof. Suppose that D is any Ω̂-dense in Y which is contained in a proper open set U . Since U 6= ∅, Y \U 6= ∅
and hence Y \ U is a non empty closed set contained in Y \D.If we define A = f−1(Y \D), F = Y \ U , then
f−1(F ) ⊆ A. Moreover, Ω̂int(f(A)) = Ω̂int(f(f−1(Y \D))) ⊆ Ω̂int(Y \D) = ∅. By hypothesis, we should have
Ω̂int(A) = ∅. That is, Ω̂int(f−1(Y \D)) = ∅. Therefore,X \ Ω̂cl(f−1(D)) = ∅ and hence Ω̂cl(f−1(D)) = X.
Thus, f−1(D) is Ω̂ dense in X. Therefore, f is hardly Ω̂-open function.

Theorem 4.26. If f : (X, τ) → (Y, σ) is hardly Ω̂-open function, then Ω̂int(f(A)) 6= ∅ for every subset A of
X having the property that Ω̂int(A) 6= ∅ and f(A) contains a non empty closed set.

Proof. Suppose that A is any set in X such that Ω̂int(A) 6= ∅ and F is any non empty closed set in Y such that
F ⊆ f(A). If Ω̂int(f(A)) = ∅,then Y \f(A) is Ω̂-dense in Y such that Y \f(A) is contained in a proper open set
Y \F . Since f is hardly Ω̂-open function, f−1(Y \ f(A)) is Ω̂ dense in X. That is, Ω̂cl(f−1(Y \ f(A))) = X or
X \ Ω̂int(f−1(f(A))) = X. Then, Ω̂int(f−1(f(A))) = ∅ and hence Ω̂int(A) = ∅, a contradiction.Therefore,our
assumption is wrong and thus Ω̂int(f(A)) 6= ∅.

Theorem 4.27. If f : (X, τ) → (Y, σ) is surjective,then the following statements are true.

(i) f is hardly Ω̂-open function.

(ii) Ω̂int(f(A)) 6= ∅ for every subset A of X having the property that Ω̂int(A) 6= ∅ and there exists a non
empty closed set F in Y such that F ⊆ f(A)

(iii) Ω̂int(f(A)) 6= ∅ for every subset A of X having the property that Ω̂int(A) 6= ∅ and there exists a non
empty closed set F in Y such that f−1(F ) ⊆ A

Proof. (i) ⇒ (ii) It’s nothing but the theorem 4.10.

(ii) ⇒ (iii) Since f is surjective,f−1(F ) ⊆ f−1(f(A)) = A. Hence it holds.

(iii) ⇒ (i) It follows from the theorem 4.9.

5 Somewhat Ω̂-Continuous functions

Definition 5.1. A function f : (X, τ) → (Y, σ) is said to be somewhat Ω̂-continuous if for each non empty set
U ∈ O(Y ) and f−1(U) 6= ∅, there exists a non empty set V ∈ Ω̂O(X) such that V ⊆ f−1(U).

Example 5.2. Let X = Y = {a, b, c}, τ = {∅, {b, c}, X} and σ = {∅, {a}, Y }. Define f : (X, τ) → (Y, σ) by
f(a) = b, f(b) = a, f(c) = a. Then f is somewhat Ω̂-continuous.

Theorem 5.3. Every somewhat Ω̂-continuous is somewhat b (resp.sg)continuous

Proof. Assume that f : (X, τ) → (Y, σ) is somewhat Ω̂-continuous and suppose that U is any non empty set in
Y such that f−1(U) 6= ∅. By hypothesis,there exists a non empty set V ∈ Ω̂O(Y ) such that V ⊆ f−1(U). By
[7] figure-1,V is b (resp.sg)open set in Y .Hence f is somewhat b continuous.

Remark 5.4. The following example shows that the reversible implication is not true in general.

Example 5.5. Let X = Y = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, X} and σ = {∅, {a}, Y }. Define f : (X, τ) →
(Y, σ) by f(a) = c, f(b) = a, f(c) = a, f(d) = a. Then f is both somewhat b continuous and somewhat sg

continuous but not somewhat Ω̂-continuous.

Remark 5.6. The notions, somewhat continuous and somewhat Ω̂-continuous are independent from the fol-
lowing examples.
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Example 5.7. Let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X} and σ = {∅, {a}, Y }. If f : (X, τ) → (Y, σ) is
defined by f(a) = b, f(b) = a, f(c) = c then f is somewhat Ω̂-continuous but not somewhat continuous.

Question 2:Is there any example on a mapping which is somewhat continuous but not ŝomewhatΩ-continuous?

Example 5.8. There is no example on another one.

Theorem 5.9. If (Y, σ) is semi-T 1
2
, then every somewhat Ω̂-continuous f : (X, τ) → (Y, σ) is somewhat

continuous.

Proof. Let U ∈ O(X) be any non empty set in X. By hypothesis,there exists a non empty set V ∈ Ω̂O(Y )
such that V ⊆ f(U). Since in a semi-T 1

2
space, every Ω̂-open set is open,V ∈ O(Y ).Hence f is somewhat

continuous.

Let us prove a characterization of somewhat Ω̂-continuous.

Theorem 5.10. Let (X, τ) and (Y, σ) be any two topological spaces. Then the following are equivalent state-
ments.

(i) f is somewhat Ω̂-continuous.

(ii) If F is a closed subset of Y such that f−1(F ) 6= X, then there exists a proper set G ∈ Ω̂C(X), such that
f−1(F ) ⊆ G.

(iii) Image of a Ω̂-dense set in X is dense in Y .

Proof. (i) ⇒ (ii). Suppose that F is any closed set in Y such that f−1(F ) 6= X. Then Y \ F is a non empty
open set in Y such that f−1(F c) = (f−1(F ))c 6= ∅. By hypothesis, there exists a non empty set V ∈ Ω̂O(X)
such that V ⊆ f−1(F c) = (f−1(F ))c. Then,f−1(F ) ⊆ V c. If we define, G = V c, then G 6= ∅, G ∈ Ω̂C(X) such
that f (F ) ⊆ G.

(ii) ⇒ (i). Suppose that U is any non empty open set in Y such that f−1(U) 6= ∅. Then Y \ U is a proper
closed set in Y such that f−1(U c) = (f−1(U))c 6= X. By hypothesis,there exists a proper set G ∈ Ω̂C(X) such
that f−1(U c) = (f−1(U))c ⊆ G. Then,Gc 6= ∅, Gc ∈ Ω̂O(X) and Gc ⊆ f−1(U). Therefore, f is somewhat
Ω̂-continuous.

(ii) ⇒ (iii). Suppose that D is any Ω̂-dense set in X and assume that f(D) is not dense in Y . Then, there
exists a proper closed set F in Y such that f(D) ⊆ F ⊆ Y . Since F 6= Y, f−1(F ) 6= f−1(Y ) 6= X. By hypothe-
sis,there exists a proper set G ∈ Ω̂C(X) such that f−1(F ) ⊆ G. Therefore, D ⊆ f−1f(D) ⊆ f−1(F ) ⊆ G. We
have a proper Ω̂-closed set G in X such that D ⊆ G ⊆ X,a contradiction to D is Ω̂-dense in X. Therefore,f(D)
is dense in Y .

(iii) ⇒ (ii). If (ii) not holds, then there exists a closed set F in Y such that f−1(F ) 6= Xand there is no
proper set G ∈ Ω̂C(X), such that f−1(F ) ⊆ G ⊆ X. Then, f−1(F ) is Ω̂-dense in X and hence by hypothesis,
f(f−1(F )) is Ω̂-dense in Y . Moreover, F vis dense in Y ,a contraction to the choice of F .

Remark 5.11. The following example reveals that composition of two somewhat Ω̂-continuous functions is not
always the somewhat Ω̂-continuous.

Example 5.12. X = Y = Z = {a, b, c}, τ = {∅, {a, b}, X}, σ = {∅, {a}, {b, c}, Y }, η = {∅, {a}, {b}, {a, b}, Z}.
If f : (X, τ) → (Y, σ) is defined by f(a) = a, f(b) = b, f(c) = c and g : (Y, σ) → (Z, η) is defined by g(a) =
b, g(b) = c, g(c) = a. Then fand g are somewhat Ω̂-continuous functions. But g ◦ f : (X, τ) → (Z, η) defined by
(g ◦ f)(x) = g(f(x)) for all x ∈ X is not a somewhat Ω̂-continuous because (g ◦ f)({a}) = {c} is not containing
any non empty Ω̂-open set in X.

Composition Theorems

Theorem 5.13. Suppose that (X, τ), (Y, σ) and (Z, η) are three topological spaces.

(i) If f : (X, τ) → (Y, σ) is a somewhat Ω̂-continuous function and g : (Y, σ) → (Z, η) is surjective continuous,
then g ◦ f : (X, τ) → (Z, η) is a somewhat Ω̂-continuous mapping.
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(ii) If f : (X, τ) → (Y, σ) is a somewhat Ω̂-continuous function and g : (Y, σ) → (Z, η) is surjective super
continuous, then g ◦ f : (X, τ) → (Z, η) is a somewhat Ω̂-continuous.

(iii) If f : (X, τ) → (Y, σ) is a somewhat Ω̂-continuous function and g : (Y, σ) → (Z, η) is surjective completely
continuous, then g ◦ f : (X, τ) → (Z, η) is a somewhat Ω̂-continuous.

(iv) If f : (X, τ) → (Y, σ) is a somewhat Ω̂-continuous function and g : (Y, σ) → (Z, η) is surjective perfectly
continuous, then g ◦ f : (X, τ) → (Z, η) is a somewhat Ω̂-continuous.

Proof. (i) Suppose that U is any open set in Z such that (g ◦ f)−1(U) 6= ∅.Since g is surjective continuous,
g−1(U) is a non empty open set in Y . Since f is a somewhat Ω̂-continuous,there exists a non empty
Ω̂-open set V in X such that V ⊆ (g ◦ f)−1(U). Therefore, g ◦ f is somewhat Ω̂-continuous.

(ii) Suppose that U is any open set in Z such that (g◦f)−1(U) 6= ∅. Since g is surjective super continuous,g−1(U)
is a non empty δ-open and hence open set in Y . Since f is a somewhat Ω̂-continuous, there exists a non
empty Ω̂-open set V in X such that V ⊆ (g ◦ f)−1(U). Therefore, g ◦ f is somewhat Ω̂-continuous.

• •The proofs of (iii) and (iv) are similar to (ii).

Theorem 5.14. Suppose that A is any open pre closed and Ω̂-dense set in a topological space (X, τ). If
f : (X, τ) → (Y, σ) is somewhat Ω̂-continuous, then f | A : (A, τ |A) → (Y, σ) is also somewhat Ω̂-continuous
on the subspace (A, τ | A).

Proof. Suppose that U ∈ O(Y ) such that (f | A)−1(U) 6= A.If f−1(U) = X,then f−1(U) ∩ A = X ∩ A = A,a
contradiction to (f | A)−1(U) 6= A. Therefore, f−1(U) 6= X. By hypothesis,there exists a non empty set
V ∈ Ω̂O(X) such that V ⊆ f−1(U). Then, V ∩ A ⊆ f−1(U) ∩ A = (f | A)−1(U). Since A is Ω̂-dense set in
X, A ∩ V 6= ∅. By[7] theorem 6.8, A ∩ V is Ω̂-open in the subspace (A, τ | A). Therefore,f | A is somewhat
Ω̂-continuous on the subspace (A, τ | A).

Theorem 5.15. Suppose that (X, τ) and (Y, σ) are any two topological spaces and suppose X = A∪B, where
A and B are both δ open and pre closed in X. If f : (X, τ) → (Y, σ) is any function such that f | A and f | B
are somewhat Ω̂-continuous functions,then f is a somewhat Ω̂-continuous.

Proof. Let U be any open set in Y such that f−1(U) 6= ∅. If both (f |A)−1(U) = f−1(U) ∩ A, (f |B)−1(U) =
f−1(U)∩B are empty, then f−1(U) = ∅, a contradiction.Therefore, the possible cases are either f−1(U)∩A 6= ∅
or f−1(U) ∩B 6= ∅ or both f−1(U) ∩A and f−1(U) ∩B are nonempty. It is enough to prove only for the case
either f−1(U) ∩A 6= ∅ or f−1(U) ∩B 6= ∅.Then automatically second one follows.
Suppose that either f−1(U) ∩ A 6= ∅ or f−1(U) ∩ B 6= ∅. If f−1(U) ∩ A 6= ∅, by hypothesis,there exists a
non empty Ω̂-open set V ∈ (A, τ |A) such that V ⊆ f−1(U) ∩A ⊆ f−1(U). By[7] theorem 6.9,V is Ω̂-open in
X.Therefore.f is a somewhat Ω̂-continuous.

Definition 5.16. Let τ and σ are two topologies on a set X. Then τ is said to be equivalent (resp.Ω̂-equivalent)
to σ if for every non empty U ∈ τ there exists an non empty open (resp.Ω̂-open) set V in (X, σ) such that
V ⊆ U and if for every non empty U ∈ σ there exists an non empty open (resp.Ω̂-open) set V in (X, τ) such
that V ⊆ U .

Theorem 5.17. Let τ∗ be a topology on X which is Ω̂-equivalent to a topology τ on X. If f : (X, τ) → (Y, σ)
is a somewhat continuous, then f : (X, τ∗) → (Y, σ) is somewhat Ω̂-continuous.

Proof. Suppose that U is any open set in (X, σ) such that f−1(U) 6= ∅. Since f is somewhat continuous, there
exists a non empty open set V in (X, τ) such that V ⊆ f−1(U). Since τ∗ Ω̂-equivalent to τ , there exists Ω̂-open
set V1 in (X, τ∗) such that V1 ⊆ f−1(U). Hence f is somewhat Ω̂-continuous.

Theorem 5.18. Let σ∗ be a topology on Y which is equivalent to a topology σ on Y . If f : (X, τ) → (Y, σ) is
a somewhat Ω̂-continuous surjective function, then f : (X, τ) → (Y, σ∗) is somewhat Ω̂-continuous.

Proof. Suppose that U is any open set in (Y, σ∗) such that f−1(U) 6= ∅. Since σ∗ is equivalent to σ, there exists
a non empty open set V in (Y, σ) such that V ⊆ U . Since f : (X, τ) → (Y, σ) is surjective, f−1(V ) 6= ∅.Since
f : (X, τ) → (Y, σ) is somewhat Ω̂-continuous, there exists a non empty Ω̂-open set G in (X, τ) such that
G ⊆ f−1(V ). Hence f : (X, τ) → (Y, σ∗) is somewhat Ω̂-continuous.
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6 Ω̂-irresolvable spaces

In this section we establish the definition of Ω̂-resolvable spaces and it’s properties.

Definition 6.1. A space (X, τ) is said to be Ω̂-resolvable,if there exists a subset A of X such that both A and
Ac are Ω̂-dense in X.Otherwise it is known as Ω̂-irresolvable space.

Example 6.2. Example 3.2 is Ω̂-irresolvable space.

Let us prove a characterization of Ω̂-resolvable space.

Theorem 6.3. A space (X, τ) is Ω̂-resolvable if and only if it has a pair of disjoint Ω̂ dense sets in X.

Proof. Necessity- Suppose that X is Ω̂-resolvable. Therefore,there exists a subset A of X such that both A

and Ac are Ω̂-dense in X.If we define B = Ac, then we get a pair of disjoint Ω̂-dense sets in X.

Sufficiency- By hypothesis,we can choose a disjoint pair of Ω̂-dense sets namely A and B in X. Then
Ω̂cl(A) = Ω̂cl(B) = X such that A ⊆ Bc or B ⊆ Ac. If A ⊆ Bc, then by [7] theorem 5.3 (ii), Ω̂cl(A) ⊆ Ω̂cl(Bc).
Then X ⊆ Ω̂cl(Bc) and hence X = Ω̂cl(Bc). Therefore,we have a subset B in X such that B and Bc are both
Ω̂-dense in X.If B ⊆ Ac, then Ω̂cl(B) ⊆ Ω̂cl(Ac). Then X ⊆ Ω̂cl(Bc) and hence X = Ω̂cl(Bc). Therefore,we
have a subset A in X such that A and Ac are both Ω̂-dense in X. Therefore, X is Ω̂-resolvable.

Theorem 6.4. A space (X, τ) is Ω̂-irresolvable if and only if Ω̂int(A) 6= ∅ for every Ω̂-dense set A in X.

Proof. Necessity- Suppose that A is any Ω̂-dense set in X.By hypothesis,Ω̂cl(Ac) 6= X and hence (Ω̂int(A))c 6=
∅c. Therefore, Ω̂int(A) 6= ∅.

Sufficiency- Suppose that X is Ω̂-resolvable. Then,there exists a subset A of X such that both A and Ac

are Ω̂-dense in X. Then Ω̂cl(Ac) = X and hence [Ω̂int(A)]c = [∅]c. Therefore, Ω̂int(A) = ∅,a contradiction.

Theorem 6.5. If X = A∪B, where A and B are such that Ω̂int(A) = ∅, Ω̂int(B) = ∅. Then X is Ω̂-resolvable.

Proof. Given that X = A ∪ B,A and B are such that Ω̂int(A) = ∅, Ω̂int(B) = ∅. Therefore,Ω̂cl(Ac) =
X, Ω̂cl(Bc) = X.Moreover,X \ (A ∪ B) = ∅, or [X \ A] ∩ [X \ B] = ∅. Then X \ A ⊆ [X \B]c. Therefore,
Ω̂cl(Ac) ⊆ Ω̂cl(B) and hence X ⊆ Ω̂cl(B).Thus we get a subset B in X such that both B and Bc are Ω̂-dense
in X.Therefore, X is Ω̂-resolvable.

Remark 6.6. The above theorem can be extended to any finite number. That is, if X =
⋃i=n

i=1 Ai for any finite
number of empty Ω̂ interior sets A1, A2, ...An, then X is Ω̂-resolvable.

Theorem 6.7. If f : (X, τ) → (Y, σ) is a somewhat Ω̂-open mapping on a irresolvable space X, then Y is Ω̂
irresolvable space.

Proof. Suppose that A is any non empty Ω̂ dense set in Y . Assume that Ω̂(int(A)) = ∅. Then Ω̂cl(Y \A) = Y .
Since f is somewhat Ω̂-open by theorem 4.13,f−1(Y \ A) is dense in X. Then,cl(f−1(Y \ A)) = X and hence
cl(X \ f−1(A)) = X. Thus,int(f−1(A)) = ∅.Again by hypothesis, f−1(A) is a dense set in X with a empty
interior, a contradiction to X is irresolvable. Therefore, our assumption is wrong and hence Ω̂(int(A)) 6= ∅. By
theorem 6.4,Y is a Ω̂ irresolvable space.

Theorem 6.8. Let Y be irresolvable space.If f : (X, τ) → (Y, σ) is a somewhat Ω̂-continuous bijective map-
ping,then X is Ω̂ irresolvable space.

Proof. Suppose that A is any non empty Ω̂ dense set in X. Assume that Ω̂(int(A)) = ∅. Then Ω̂cl(X \A) = X.
Since f is somewhat Ω̂-continuous by theorem 5.10 (ii), f(X \A) is dense in Y . Then,cl(f(X \A)) = Y . Since f

is bijective, cl(Y \f(A)) = Y . Thus, int(f(A)) = ∅. Again by hypothesis, f(A) is a dense set in Y with a empty
interior, a contradiction to Y is irresolvable. Therefore, our assumption is wrong and hence Ω̂(int(A)) 6= ∅. By
theorem 6.4, X is a Ω̂ irresolvable space.
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Abstract

A radio labeling of a graph G is a function f from the vertex set V (G) to the set of non-negative integers such

that |f(u) − f(v)| ≥ diam(G) + 1 − dG(u, v), where diam(G) and dG(u, v) are diameter and distance between u and v

in graph G respectively. The radio number rn(G) of G is the smallest number k such that G has radio labeling with

max{f(v) : v ∈ V (G)} = k. We investigate radio number for strong product of P2 and Pn.

Keywords: Interference, channel assignment, radio labeling, radio number, strong product.
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1 Introduction

In 1980, Hale[5] initiated the problem to determine the minimum number of channels in a given network
which is now popular as a channel assignment problem. He classified transmitter as very close and close trans-
mitter according to the interference between them. He called very close transmitters if a pair of transmitters
has major interference and called close transmitters if a pair of transmitters has minor interference. Hale[5]
gave the graphical representation for the channel assignment problem wherein he represented transmitters by
vertices and interference between a pair of transmitters by edges. Two transmitters are joined by an edge if
major interference occurs between them and minor interference is taken as vertices at distance two in a graph.

In 1991, Roberts[10] suggested a solution for channel assignment problem and proposed that a pair of
transmitters having minor interference must receive different channels and a pair of transmitters having major
interference must receive channels that are at least two apart. Motivated through this Griggs and Yeh[4]
introduced the distance two labeling which is defined as follows:

A distance two labeling (or L(2, 1)-labeling) of a graph G = (V (G), E(G)) is a function f from vertex set
V (G) to the set of nonnegative integers such that the following conditions are satisfied:

(1) |f(u)− f(v)| ≥ 2 if d(u, v) = 1.

(2) |f(u)− f(v)| ≥ 1 if d(u, v) = 2.

The difference between the largest and the smallest label assigned by f is called the span of f and the
minimum span over all L(2, 1)-labeling of G is called the λ-number of G, denoted by λ(G). The L(2, 1)-
labeling has been explored in past two decades by many researchers like Yeh[17, 18], Georges and Mauro[3],
Sakai[11], Chang and Kuo[1], Wang[15], Vaidya and Bantva[12] and Vaidya et al.[13].

But as time passed, practically it has been observed that the interference among transmitters might go
beyond two levels. Radio labeling extends the number of interference level considered in L(2, 1)-labeling from
two to the largest possible - the diameter of G. The diameter of G is denoted by diam(G) or simply by d is
the maximum distance among all pairs of vertices in G. Motivated through the problem of channel assignment
of FM radio stations Chartrand et. al[2] introduced the concept of radio labeling of graph as follows.

∗Corresponding author.

E-mail addresses: samirkvaidya@yahoo.co.in (S. K. Vaidya) and devsi.bantva@gmail.com (D. D. Bantva).
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A radio labeling of a graph G is an injective function f : V (G) → {0, 1, 2, ...} such that the following is
satisfied for all u, v ∈ V (G):

|f(u)− f(v)| ≥ diam(G) + 1− dG(u, v).

The radio number denoted by rn(G) is the minimum span of a radio labeling for G. Note that when
diam(G) is two then radio labeling and distance two labeling are identical. The radio labeling is studied in the
past decade by many researchers like Liu[6], Liu and Xie[7, 8], Liu and Zhu[9] and Vaidya and Vihol[14].

In this paper, we completely determine the radio number of strong product of P2 with Pn. Through out this
discussion, the order of P2 � Pn is p and we consider n ≥ 3 as P2 � P2 is simply K4 for which L(2, 1)-labeling
and radio labeling coincide. Moreover terms not defined here are used in the sense of West[16].

2 Main results

The strong product G � H of G and H is the graph in which the vertex (u, v) is adjacent to the vertex
(u

′
, v

′
) if and only if u = u

′
and vv

′ ∈ E(H), or v = v
′
and uu

′ ∈ E(G), or uu
′ ∈ E(G) and vv

′ ∈ E(H).
For P2 � P2k+1, let v0 and v

′

0 be the centers. Let vL1, vL2, ... ,vLk be the vertices on the left side and vR1,
vR2, ... ,vRk be the vertices on the right side with respect to center v0 and v

′

L1, v
′

L2, ... ,v
′

Lk be the vertices on
the left side and v

′

R1, v
′

R2, ... ,v
′

Rk be the vertices on the right side with respect to center v
′

0.
For P2 � P2k, let vL0 and vR0, v

′

L0 and v
′

R0 be the centers. Let vL1, vL2, ... ,vL(k−1) be the vertices on the
left side and vR1, vR2, ... ,vR(k−1) be the vertices on the right side with respect to centers vL0 and vR0 and
v

′

L1, v
′

L2, ... ,v
′

L(k−1) be the vertices on the left side and v
′

R1, v
′

R2, ... ,v
′

R(k−1) be the vertices on the right side

with respect to centers v
′

L0 and v
′

R0.
Let for P2 � P2k+1, V (P2 � P2k+1) = VL ∪ VR ∪ V

′

L ∪ V
′

R

VL = {v0, vL1, vL2, ... ,vLk}

VR = {v0, vR1, vR2, ... ,vRk}

V
′

L = {v′

0, v
′

L1, v
′

L2, ... ,v
′

Lk}

V
′

R = {v′

0, v
′

R1, v
′

R2, ... ,v
′

Rk}

Let for P2 � P2k, V (P2 � P2k) = VL ∪ VR ∪ V
′

L ∪ V
′

R

VL = {vL0, vL1, vL2, ... ,vL(k−1)}

VR = {vR0, vR1, vR2, ... ,vR(k−1)}

V
′

L = {v′

L0, v
′

L1, v
′

L2, ... ,v
′

L(k−1)}

V
′

R = {v′

R0, v
′

R1, v
′

R2, ... ,v
′

R(k−1)}

In P2 � Pn, we say two vertices u and v are on opposite side if u ∈ VL or V
′

L and v ∈ VR or V
′

R.

We define the level function on V (P2 � Pn) to the set of whole numbers W from a center vertex w by

L(u) = {d(u, w) : w is a center vertex }, for any u ∈ V (P2 � Pn).

In P2 � Pn, the maximum level is k if n = 2k + 1 and k − 1 if n = 2k.

Observation 2.1. For P2 � Pn,

(1) |V (P2 � Pn)| =
{

4k + 2 if n = 2k + 1
4k if n = 2k
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(2) d(u, v) ≤
{

L(u) + L(v) if n = 2k + 1
L(u) + L(v) + 1 if n = 2k

(3) If ui, ui+1 ∈ V (P2 � Pn), 1 ≤ i ≤ p− 1 are on opposite side and d(ui, ui+1) = d(ui+1, ui+2) or d(ui, ui+1)
= d(ui+1, ui+2)± 1 then d(ui, ui+2) = 1.

Theorem 2.2. Let P2 � Pn be a strong product of P2 and Pn and k = bn
2 c then

rn(P2 � Pn) ≥
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Moreover, the equality holds if and only if there exist a radio labeling f with ordering {u1, u2, ... ,up} of
vertices of P2 � Pn such that f(u1) = 0 < f(u2) < f(u3) < ... < f(up), where all the following holds (for all
1 ≤ i ≤ p− 1):
(1) ui and ui+1 are on opposite side,
(2) {u1, up} = {w1, w2} where w1, w2 are center vertex.

Proof. Let f be an optimal radio labeling for P2 � Pn, where f(u1) = 0 < f(u2) < f(u3) < ... < f(up). Then
f(ui+1)− f(ui) ≥ (d + 1) - d(ui, ui+1), for all 1 ≤ i ≤ p− 1. Summing these p− 1 inequalities we get

rn(P2 � Pn) = f(up) ≥ (p− 1)(d + 1) -
p−1∑
i=1

d(ui, ui+1) (2.1)

Case - 1 : n is odd.

For P2 � P2k+1, we have

p−1∑
i=1

d(ui, ui+1) ≤
p−1∑
i=1

[L(ui) + L(ui+1)]

= 2
∑

u∈V (G)

L(u) - L(u1) - L(up)

= 2
∑

u∈V (G)

L(u) (2.2)

Substituting (2.2) in (2.1), we get

rn(P2 � Pn) = f(up) ≥ (p− 1)(d + 1) - 2
∑

u∈V (G)

L(u)

For P2 � P2k+1, p = 4k + 2, d = 2k and
∑

u∈V (G)

L(u) = 2k(k + 1)

rn(P2 � Pn) = f(up) ≥ (4k + 2− 1)(2k + 1) - 4(k(k + 1))

= (4k + 1)(2k + 1) - 4k(k + 1)

= 8k2 + 4k + 2k + 1 - 4k2 - 4k

= 4k2 + 2k + 1

= 2k(2k + 1) + 1

Case - 2 : n is even.

For P2 � P2k, we have

p−1∑
i=1

d(ui, ui+1) ≤
p−1∑
i=1

[L(ui) + L(ui+1) + 1]
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= 2
∑

u∈V (G)

L(u) - L(u1) - L(up) + (p− 1)

= 2
∑

u∈V (G)

L(u) + (p− 1) (2.3)

Substituting (2.3) in (2.1), we get

rn(P2 � Pn) = f(up) ≥ (p− 1)(d + 1) - 2
∑

u∈V (G)

L(u) - (p− 1)

For P2 � P2k, p = 4k, d = 2k − 1 and
∑

v∈V (G)

L(u) = 2k(k − 1)

rn(P2 � Pn) = f(up) ≥ (4k − 1)(2k − 1 + 1) - 4(k(k − 1)) - (4k − 1)

= 8k2 - 2k - 4k2 + 1

= 4k2 - 2k + 1

= 2k(2k − 1) + 1

Thus, from Case - 1 and Case - 2, we have

rn(P2 � Pn) ≥
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Theorem 2.3. Let f be an assignment of distinct non-negative integers to V (P2 � Pn) and {u1, u2, u3 ,...,
up} be the ordering of V (P2 � Pn) such that f(ui) < f(ui+1) defined by f(u1) = 0 and f(ui+1) = f(ui) + d +
1− d(ui, ui+1). Then f is a radio labeling if for any 1 ≤ i ≤ p− 2 and k = bn

2 c the following holds.
(1) d(ui, ui+1) ≤ k + 1 if n is odd,
(2) d(ui, ui+1) ≤ k + 1 and d(ui, ui+1) 6= d(ui+1, ui+2) if n is even.

Proof. Let f(u1) = 0 and f(ui+1) = f(ui) + d + 1− d(ui, ui+1), for any 1 ≤ i ≤ p− 1 and k = bn
2 c.

For each i = 1, 2, ..., p− 1, let fi = f(ui+1)− f(ui). Now we want to prove that f is a radio labeling if (1)
and (2) holds. i.e. for any i 6= j, |f(uj)− f(ui)| ≥ d + 1− d(ui, uj)

Case - 1 : n is odd.

If n = 2k + 1 then d = 2k and let (1) holds.

Let j > i then f(uj)− f(ui) = fi + fi+1 + ... + fj−1

= (j − i)(d + 1) - d(ui, ui+1) - d(ui+1, ui+2) - ... - d(uj−1, uj)

≥ (j − i)(d + 1)− (j − i)(k + 1) as d(ui, ui+1) ≤ k + 1

= (j − i)(2k + 2)− (j − i)(k + 1)

= (j − i)(2k + 2− k − 1)

= (j − i)(k + 1)

≥ d + 1− d(ui, uj).
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Case - 2 : n is even.

If n = 2k then d = 2k − 1 and let (2) holds.

Let j > i then f(uj)− f(ui) = fi + fi+1 + ... + fj−1

= (j − i)(d + 1) - d(ui, ui+1) - d(ui+1, ui+2) - ... - d(uj−1, uj)

If j − i = even then

≥ (j − i)(d + 1)− j−i
2 (k + 1)− j−i

2 (k)

= (j − i)(2k)− (j − i)(k)− j−i
2

= (j − i)(k)− j−i
2

≥ d + 1− d(ui, uj)

If j − i = odd then

≥ (j − i)(d + 1)− j−i+1
2 (k + 1)− j−i−1

2 (k)

≥ d + 1− d(ui, uj)

Thus, in both the cases f is a radio labeling and hence the result.

Theorem 2.4. Let P2 � Pn be a strong product of P2 and Pn and k = bn
2 c then

rn(P2 � Pn) ≤
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Proof. Here we consider following two cases.

Case - 1 : n is odd.

For P2 � P2k+1, define f : V(P2 � P2k+1) → {0,1,2, ... ,2k(2k + 1) + 1} by f(ui+1) = f(ui) + d + 1 - L(ui)
- L(ui+1) as per ordering of vertices shown in Table 1:

Table 1

Case - 2 : n is even.
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For P2 �P2k, define f : V(P2 �P2k) → {0,1,2, ... ,2k(2k−1)+1} by f(ui+1) = f(ui) + d - L(ui) - L(ui+1)
as per ordering of vertices shown in Table 2:

Table 2

Thus in Case - 1 and Case - 2, it is possible to assign labeling to the vertices of P2 � Pn with span equal to
the lower bound satisfying the condition of Theorem 2.3. Hence f is a radio labeling.

Theorem 2.5. Let P2 � Pn be a strong product of P2 and Pn and k = bn
2 c then

rn(P2 � Pn) =
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Proof. The proof follows from Theorem 2.2 and Theorem 2.4.

Example 2.1. In Figure 1, ordering of the vertices and optimal radio labeling of P2 � P9 is shown.

v0 → vR4 → vL1 → v
′

R4 → v
′

L1 → vR3 → vL2 → v
′

R3 → v
′

L2 → vR2 → vL3 →

v
′

R2 → v
′

L3 → vR1 → vL4 → v
′

R1 → v
′

L4 → v
′

0= rn(P2 � P9)

Example 2.2. In Figure 2, ordering of the vertices and optimal radio labeling of P2 � P10 is shown.

vL0 → vR4 → vL1 → vR3 → vL2 → vR2 → vL3 → vR1 → vL4 → vR0 → v
′

L0 →

v
′

R4 → v
′

L1 → v
′

R3 → v
′

L2 → v
′

R2 → v
′

L3 → v
′

R1 → v
′

L4 → v
′

R0= rn(P2 � P10)

60

68 51 34 17 73 64 47 30 13

5223956092643

v0vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4

v0vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4
' ' ' ' ' ' ' ' '

Figure 1. rn(P2 � P9) = 73
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68 59 50 91 82 73 64 55

514233241091827

vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4vL0 vR0

vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4
' ' ' ' ' ' ' 'vL0

' vR0
'

36

86 77

Figure 2. rn(P2 � P10) = 91

3 Concluding Remarks

The assignment of channels is of great importance for the establishment of transmitter network which is
free of interference. The radio labeling is an intelligent move in this direction because the level of interference
is maximum at diametrical distance. We take up this problem in the context of strong product of P2 and Pn

and determine radio number for the same. To derive similar results for other graph families is an open area of
research.
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Abstract

In this paper a theorem on degree of approximation of a function f ∈ Lip(α, r) by product summability (E, q)(N̄ , pn)

of conjugate series of Fourier series associated with f has been proved.
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1 Introduction

Let
∑
an be a given infinite series with the sequence of partial sums {sn}. Let {pn} be a sequence of

positive real numbers such that

Pn =
n∑

υ=0

pυ −→∞, as n −→∞, (P−i = p−i = 0, i ≥ 0). (1.1)

The sequence-to-sequence transformation

tn =
1
Pn

n∑
υ=0

pυsυ, (1.2)

defines the sequence {tn} of the (N̄ , pn)-mean of the sequence {sn} generated by the sequence of coefficient
{pn}. If

tn −→ s, as n −→∞, (1.3)

then the series
∑
an is said to be (N̄ , pn) summable to s.

The conditions for regularity of (N̄ , pn)-summability are easily seen to be [1]{
(i)Pn →∞, as n→∞,

(ii)
∑n

i=0 pi ≤ C | Pn |, as n→∞.
(1.4)

The sequence-to-sequence transformation, [1]

Tn =
1

(1 + q)n

n∑
υ=0

(
n

υ

)
qn−υsυ, (1.5)
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defines the sequence {Tn} of the (E, q) mean of the sequence {sn}. If

Tn → s, as n→∞, (1.6)

then the series Σan is said to be (E, q) summable to s. Clearly (E, q) method is regular. Further, the (E, q)
transformation of the (N̄ , pn) transform of {sn} is defined by

τn =
1

(1 + q)n
Σn

k=0

(
n

k

)
qn−kTk

=
1

(1 + q)n
Σn

k=0

(
n

k

)
qn−k

{
1
Pk

Σk
υ=0pυsυ

}
(1.7)

If
τn → s, as n→∞, (1.8)

then
∑
an is said to be (E, q)(N̄ , pn)-summable to s.

Let f(t) be a periodic function with period 2π and L-integrable over (−π, π). The Fourier series associated
with f at any point x is defined by

f(x) ∼ a0

2
+
∞∑

n=1

(ancos nx+ bnsin nx) ≡
∞∑

n=0

An(x), (1.9)

and the conjugate series of the Fourier Series (1.9) is
∞∑

n=1

(bncos nx− ansin nx) ≡
∞∑

n=0

Bn(x). (1.10)

Let s̄n(f : x) be the n-th partial sum of (1.10). The L∞-norm of a function f : R→ R is defined by

‖ f ‖∞= sup{|f(x)| : x ∈ R} (1.11)

and the Lυ-norm is defined by

‖ f ‖υ=
( ∫ 2π

0

|f(x)|υ
) 1

υ

, υ ≥ 1. (1.12)

The degree of approximation of a function f : R→ R by a trigonometric polynomial Pn(x) of degree n under
norm ‖ · ‖∞ is defined by [5]

‖ Pn − f ‖∞= sup{|pn(x)− f(x)| : x ∈ R} (1.13)

and the degree of approximation En(f) a function f ∈ Lυ is given by

En(f) = min
Pn

‖Pn − f‖υ. (1.14)

A function f is said to satisfy Lipschitz condition (here after we write f ∈ Lip α) if

|f(x+ 1)− f(x)| = O(|t|α), 0 < α ≤ 1. (1.15)

and f(x)εLip(α, r), for 0 ≤ x ≤ 2π, if( ∫ 2π

0

|f(x+ t)− f(x)|rdx
) 1

r

= 0(|t|α), 0 < α ≤ 1, r ≥ 1, t > 0. (1.16)

For a given positive increasing function ξ(t), the function f(x) ∈ Lip (ξ(t), r), if( ∫ 2π

0

|f(x+ t)− f(x)|rdx
) 1

r

= 0(ξ(t)), r ≥ 1, t > 0. (1.17)

We use the following notation throughout this paper:

ψ(t) =
1
2
{f(x+ t)− f(x− t)}, (1.18)

and

Kn(t) =
1

π(1 + q)n

n∑
k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − cos

(
υ + 1

2

)
t

sin t
2

}
.

Further, the method (E, q)(N,Pn) is assumed to be regular.
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2 Known Theorems

Dealing with the degree of approximation by the product Misra et. al. [2] proved the following theorem
using (E, q)(N, pn)-mean of Conjugate Series of Fourier series:

Theorem 2.1. If f is 2π-periodic function of class Lipα, then degree of approximation by the product (E, q)(N̄ , pn)

summability mean of the conjugate series (1.10) of the Fourier Series (1.9) is given by ‖τn−f |∞ = O

(
1

(n+1)α

)
,

0 < α < 1, where τn is as defined in (1.7).

Very recently Paikray et. al [3] established a theorem on degree of approximation by the product mean
(E, q)(N̄ , pn) of the Conjugate Series of fourier Series of a function of class Lip(α, r). They proved:

Theorem 2.2. If f is a 2π-Periodic function of class Lip(α, r), then degree of approximation by the product
(E, q)(N̄ , pn) summability means on on he Conjugate Series (1.10) of the Fourier series (1.9) is given by

‖τn − f‖∞ = O

(
1

(n+1)α+ 1
r

)
, 0 < α < 1, r ≥ 1, where τn is as defined in (1.7).

3 Main Theorem

In this paper, we have proved a theorem on degree of approximation by the product mean (E, q)(N̄ , pn) of
the conjugate series of the Fourier series of a function of class Lip(ξ(t), r). We prove:

Theorem 3.3. Let ξ(t) be a positive increasing function and f a 2π- periodic function of the class Lip(ξ(t), r), r ≥
1, t > 0. Then degree of approximation by the product (E, q)(N̄ , pn) summability means on the Conjugate Series

(1.10) of the Fourier series (1.9) is given by ‖ τn− f ‖∞= O

(
(n+1)

1
r ξ

(
1

n+1

))
, r ≥ 1, where τn is as defined

in (1.7).

4 Required Lemmas

We require the following Lemmas to prove the theorem.

Lemma 4.1.
|K̄n(t)| = O(n), 0 ≤ t ≤ 1

n+ 1
.

Proof. For 0 ≤ t ≤ 1
n+1 , we have sin nt ≤ n sin t then

|K̄n(t)| = 1
π(1 + q)n

∣∣∣∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − cos

(
υ + 1

2

)
t

sin t
2

}∣∣∣∣∣∣∣∣
≤ 1
π(1 + q)n

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − cos υt · cos t

2 + sin υt · sin t
2

sin t
2

}∣∣∣∣∣
≤ 1
π(1 + q)n

∣∣∣∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

(cos t
2

(
2 sin2 υ t

2

)
sin t

2

+ sin υt
)}∣∣∣∣∣∣∣∣

≤ 1
π(1 + q)n

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

(
O

(
2 sin υ

t

2
sin υ

t

2

)
+ υ sin t

)}∣∣∣∣∣
≤ 1
π(1 + q)n

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ(O(υ) +O(υ))
}∣∣∣∣∣

≤ 1
π(1 + q)n

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−kO(k)

Pk

k∑
υ=0

pυ

∣∣∣∣∣
= O(n).
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This proves the lemma.

Lemma 4.2.

|K̄n(t)| = O

(
1
t

)
, for

1
n+ 1

≤ t ≤ π.

Proof. For 1
n+1 ≤ t ≤ π, by Jordan’s lemma, we have sin

(
t
2

)
≥ t

π .Then

|K̄n(t)| = 1
π(1 + q)n

∣∣∣∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − cos

(
υ + 1

2

)
t

sin t
2

}∣∣∣∣∣∣∣∣
≤ 1
π(1 + q)n

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − cos υ t

2 · cos t
2 + sin υ t

2 · sin
t
2

sin t
2

}∣∣∣∣∣
≤ 1
π(1 + q)n

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

π

2t
pυ

(
cos

t

2

(
2 sin2 υ

t

2

)
+ sin υ

t

2
· sin t

2

)}∣∣∣∣∣
≤ π

2π(1 + q)nt

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

}∣∣∣∣∣ =
1

2(1 + q)nt

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

}∣∣∣∣∣
=

1
2(1 + q)nt

∣∣∣∣∣
n∑

k=0

(
n

k

)
qn−k

∣∣∣∣∣
= O

(
1
t

)
.

This proves the lemma.

5 Proof of Theorem 3.1

Using Riemann-Lebesgue theorem, we have for the n-th partial sum s̄n(f : x) of the conjugate Fourier series
(1.10) of f(x), following Titchmarch [4]

s̄n(f : x)− f(x) =
2
π

∫ π

0

ψ(t)K̄ndt,

the (N, pn) transform of s̄n(f : x) using (1.2) is given by

tn − f(x) =
2
πPn

∫ π

0

ψ(t)
n∑

k=0

pk

cos t
2 − sin

(
n+ 1

2

)
t

2 sin
(

t
2

) dt,

denoting the (E, q)(N, pn) transform of s̄n(f : x) by τn, we have

‖τn − f‖ =
1

π(1 + q)n

∫ π

0

ψ(t)
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − sin

(
υ + 1

2

)
t

2 sin
(

t
2

) }
dt

=
∫ π

0

ψ(t)K̄n(t)dt

=
{ ∫ 1

n+1

0

+
∫ π

1
n+1

}
ψ(t)K̄n(t)dt

= I1 + I2, say. (5.1)

Now
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|I1| =
2

π(1 + q)n

∣∣∣∣∣∣∣∣
∫ 1

n+1

0

ψ(t)
n∑

k=0

(
n

k

)
qn−k

{
1
Pk

k∑
υ=0

pυ

cos t
2 − cos

(
υ + 1

2

)
t

2 sin t
2

}
dt

∣∣∣∣∣∣∣∣
=

∣∣∣∣ ∫ 1
n+1

0

ψ(t)K̄n(t)dt
∣∣∣∣

=
( ∫ 1

n+1

0

(
ψ(t)
ξ(t)

)r

dt

) 1
r
( ∫ 1

n+1

0

(ξ(t)K̄n(t))sdt

) 1
s

, using Holder’s inequality

= O(1)
( ∫ 1

n+1

0

ξ(t)nsdt

) 1
s

= O

(
ξ

(
1

n+ 1

))(
ns

n+ 1

) 1
s

= O

(
ξ

(
1

n+ 1

)
1

(n+ 1)
1
s−1

)
= O

(
ξ

(
1

n+ 1

)
1

(n+ 1)−
1
r

)
= O

(
(n+ 1)

1
r ξ

(
1

n+ 1

))
. (5.2)

Next

|I2| ≤
( ∫ π

1
n+1

(
φ(t)
ξ(t)

)r

dt

) 1
r
( ∫ π

1
n+1

(ξ(t)K̄n(t))sdt

) 1
s

, using Holder’s inequality

= O(1)
( ∫ π

1
n+1

(
ξ(t)
t

)s

dt

) 1
s

, using Lemma 4.1

= O(1)
( ∫ n+1

1
π

(ξ( 1
y

)
1
y

)s
dy

y2

) 1
s

. (5.3)

Since ξ(t) is a positive increasing function, so is ξ(1/y)/(1/y). Using second mean value theorem we get

= O

(
(n+ 1)ξ

(
1

n+ 1

))( ∫ n+1

δ

dy

y2

) 1
s

, for some
1
π
≤ δ ≤ n+ 1

= O

(
(n+ 1)

1
r ξ

(
1

n+ 1

)
Then from (5.2) and (5.3), we have

| τn − f(x) | = O

(
(n+ 1)

1
r ξ

(
1

n+ 1

))
, for r ≥ 1.

‖ τn − f(x) ‖∞= sup
−π<x<π

|τn − f(x)| = O

(
(n+ 1)

1
r ξ

(
1

n+ 1

))
, r ≥ 1.

This completes the proof of the theorem.
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1 Introduction

Sectorial operators, that is, linear operators A defined in Banach spaces, whose spectrum lies in a sector

Sw =
{
λ ∈ C/{0} | |argλ| ≤ w

}
∪ {0} for some 0 ≤ w ≤ π

2

and whose resolvent satisfies an estimate

||(λ−A)−1|| ≤ C|λ|−1, ∀ λ ∈ C\Sw, (1.1)

have been studied extensively during the last 40 years, both in abstract settings and for their applications
to partial differential equations. Many important elliptic differential operators belong to the class of sectorial
operators, especially when they are considered in the Lebesgue spaces or in spaces of continuous functions (see
[1] and [[2], chapter 3]). However, if we look at spaces of more regular functions such as the spaces of Holder
continuous functions, we find that these elliptic operators do no longer satisfy the estimate (1.1) and therefore
are not sectorial as was pointed out by Von Wahl (see [[3], Ex.3.1.33], see [4]).

Neverthless, for these operators estimates such as

||(λ−A)−1|| ≤ C

|λ|1−γ
, λ ∈

∑
w,v

=
{
λ ∈ C : |arg(λ− w)| < v

}
(1.2)

where γ ∈ (0, 1), w ∈ R and v ∈ (π
2 , π), can be obtained, (see[4]) which allows to define an associated ”analytic

semigroup” by means of the Dunford Integral

T (t) =
1

2πi

∫
Γθ

eλt(λ−A)−1dλ, t > 0 (1.3)

where Γθ =
{
R+eiθ

}
∪

{
R+e−iθ

}
.
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In the literature, a linear operator A : D(A) ⊂ X → X which satisfy the condition (1.2) is called almost
sectorial and the operator family

{
T (t), T (0) = I, t ≥ 0

}
is said the ”semigroup of growth γ” generated by A.

The operator family T (t)t≥0 has properties similar at those of analytic semigroup which allow to study some
classes of partial differential equations via the usual methods of semigroup theory. Concerning almost sectorial
operators, semigroups of growth γ and applications to partial differential equations, we refer the reader to
[4, 5, 6, 7, 8] and the references there in.

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a com-
plex medium, polymer rheology, etc., involves derivatives of fractional order. Fractional differential equations
also serve as an excellent tool for the description of hereditary properties of various materials and processes.
Though the concepts and the calculus of fractional derivative are few centuries old, it is realized only recently
that these derivatives form an excellent framework for modeling real world problems.

In the consequence, fractional differential equations have been of great interest. For details, see the mono-
graphs of Kilbas et al.[9], Lakshimkantham et al.[10], Miller and Ross [11], Podlubny [12] and the papers in
[13, 14, 15, 16] and the references therein.

On the otherhand, the theory of impulsive differential equations has undergone rapid development over
the years and played a very imortant role in modern applied mathematical models of real processes arising in
phenomena studied in physics, population dynamics, chemical technology, biotechnology and economics. See,
the monographs of Bainov and Simeonov [17], Benchohra et al.[18], Lakshmikantham et al.[19], Samoilenko and
Perestyuk[20], A. Anguraj et al.[21, 22] and the references therein. However impulsive fractional differential
equations have been studied by the authors, see for instance [23, 24, 25].

We have also seen articles dealing with nonlocal conditions. That is a classical initial condition x(0) = x0

is extended to the following nonlocal condition x(0)+ g(x(.)) = x0, where x(.) is a solution and g is a mapping
defined on some function space into X. Such nonlocal conditions were first used by K. Deng, in [26]. In his
paper, Deng indicated that the diffusion phenomenon of a small amount of gas in a transparent tube can give a
better result than using the usual local condition. For the importance of nonlocal conditions in different fields,
we refer the reader to [27, 28, 29, 30] and the references contained therein.

Very recently, Rong-Nian Wang et al.[31], studied the classical and mild solutions of abstract fractional
cauchy problems using almost sectorial operators and in [32], A.N. Carvalho et al. established the existence
of mild solutions for cauchy problem for non-autonomous evolution equation, in which the operator in the
linear part depends on time t and for each t, it is almost sectorial.To the best of our knowledge, much less
is known about the nonlocal impulsive fractional differential equations with almost sectorial operators. Using
the concepts of the above mentioned papers, we proved the existence and uniqueness of mild solutions of the
nonlocal impulsive fractional differential equations with almost sectorial operators.

Here, we consider the semilinear impulsive fractional differential equations with nonlocal conditions in the
following form. 

cDαx(t) = Ax(t) + f(t, x(t)), t ∈ I = [0, T ], t 6= tk

∆x|t=tk
= Ik(x(t−k )), t = tk, k = 1, 2, ...,m.

x(0) + g(x) = x0

(1.4)

where cDα is the standard Caputo’s fractional derivative of order α, 0 < α < 1 and A : D(A) ⊂ X → X is an
almost sectorial operator on a Banach space X. Here, 0 < t1 < t2 < ... < tm = T , Ik ∈ C(X, X), k = 1, 2, ...,m.
Let ∆x|t=tk

= x(t+k )− x(t−k ), x(t+k ) and x(t−k ) represent the right and left limits of x(t) at t = tk respectively.
The nonlocal condition

g(x) =
n∑

i=1

cix(si)

where ci, i = 1,2,...n, are given constants and 0 < s1 < s2... < sn ≤ T .

2 Preliminaries

In this section, we recall some notations, properties of T (t) and the definition of a mild solution of (1.4) by
investigating the Classical solutions of the system (1.4).
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Proposition 2.1. ([5, 6]). Let A be the almost sectorial operator satisfying the conditions (1.2) and (1.3).
Then the following properties are satisfied.

(i) The operator A is closed, T(t+s) = T(t)T(s) and AT(t)x = T(t)Ax, ∀ t, s ∈ [0,∞) and each x ∈ D(A).

(ii) d
dtT (t) = AT (t).

(iii) There exists a constant C0 > 0 such that ||AnT (t)|| ≤ Cnt−(n+γ) (t > 0).

Now, we state the necessary notions and facts on fractional calculus.

Definition 2.1. ([9]) The Riemann-Liouville fractional integral operator of order q > o with the lower limit
t0 for a function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

t0

(t− s)q−1f(s)ds, t > t0

provided the right-hand side is pointwise defined on [t0,∞), where Γ is the gamma function.

Definition 2.2. ([9]) The Riemann-Liouville (R-L) derivative of order q > 0 with the lower limit t0 for a
function f : [t0,∞) → R can be written as

Dqf(t) =
1

Γ(n− q)
dn

dtn

∫ t

t0

(t− s)(n−q−1)f(s)ds, t > t0, n− 1 < q < n.

Definition 2.3. ([9]). The Caputo fractional derivative of order q > 0 with the lower limit t0 for a function
f : [t0,∞) → R can be written as

cDqf(t) =
1

Γ(n− q)

∫ t

t0

(t− s)(n−q−1)f (n)(s)ds = I(n−q)f (n)(t), t > t0, n− 1 < q < n.

Denote Eα,β the generalized Mittag-Leffler function defined by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
=

1
2πi

∫
℘

λα−βeλ

λα − z
dλ, α, β > 0, z ∈ C

where ℘ is a contour which starts and ends at −∞.
Throughout this section we let A be an almost sectorial operator with semigroup of growth γ, where

0 < γ < 1. In the sequel, we will define two families of operators based on the generalized Mittag-Leffler-type
functions and the resolvent operators associated with A. They will be two families of linear and bounded op-
erators.

Next, we consider the definition of mild solution of (1.4).

Consider, the following cauchy problem,{
cDαx(t) = Ax(t) + f(t, x(t)), 0 < α < 1,

x(0) + g(x) = x0 ∈ X
(2.5)

where f is an abstract function defined on [0, ∞) and with values in X, A is almost sectorial operator.
Using Mittag-Leffler function, the Classical solution of the system (2.5) is given by,

x(t) = [x0 − g(x)]Eα,1(Atα) +
∫ t

0

(t− s)α−1Eα,α(A(t− s)α)f(s, x(s))ds. (2.6)

Denote the operators Pα(t) = tα−1Eα,α(Atα) and Sα(t) = Eα,1(Atα). Then x(t) can be expressed as

x(t) = Sα(t)[x0 − g(x)] +
∫ t

0

Pα(t− s)f(s, x(s))ds. (2.7)
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where Sα(t) and Pα(t) can be expressed as

Sα(t) =
1

2πi

∫
Γθ

eλtλα−1(λα −A)−1dλ.

Pα(t) =
1

2πi

∫
Γθ

eλt(λα −A)−1dλ.

where Γθ =
{
R+eiθ

}
∪

{
R+e−iθ

}
, is oriented counter-clockwise.

Lemma 2.1. For each fixed t > 0, Sα(t) and Pα(t) are linear and bounded operators on X. Moreover, there
exist constants Cs = C(α, γ) > 0, Cp = C(α, γ) > 0 such that for all t > 0,

||Sα(t)|| ≤ Cst
−αγ , ||Pα(t)|| = Cpt

α(1−γ)−1, where 0 < γ < 1.

Proof. Since, t > 0, 0 < γ < 1, there exists a constant C > 0 such that

||(λ−A)−1|| ≤ C

|λ|1−γ
, λ ∈

∑
w,v

From [32], observe that 1
2πi

∫
Γθ

eλt(λ−A)−1dλ converge in the uniform operator topology for all t > 0 and by
(1.3), we have that

||Sα(t)|| ≤
∥∥∥ 1

2πi

∫
Γθ

eλtλα−1(λα −A)−1dλ
∥∥∥

≤ 1
2π

∫
Γθ

e−cosθ|λ|t|λ|α−1||(λα −A)−1||d|λ|

≤ 1
2π

∫
Γθ

e−cosθ|λ|t|λ|α−1 C

|λ|α(1−γ)
d|λ|

≤ C t−αγ

2π

∫
Γθ

e−cosθ|µ||µ|αγ−1dµ

≤ Cs t−αγ

Also, we have

||Pα(t)|| ≤
∥∥∥ 1

2πi

∫
Γθ

eλt(λα −A)−1dλ
∥∥∥

≤ 1
2π

∫
Γθ

e−cosθ|λ|t||(λα −A)−1||d|λ|

≤ 1
2π

∫
Γθ

e−cosθ|λ|t C

|λ|α(1−γ)
d|λ|

≤ C tα(1−γ)−1

2π

∫
Γθ

e−cosθ|µ||µ|−α(1−γ)dµ

≤ Cs tα(1−γ)−1

Lemma 2.2. ([31]) For t > 0, Sα(t) and Pα(t) are continuous in the uniform operator topology. Moreover,
for every r > 0, the continuity is uniform on [r,∞).

Theorem 2.1. If f satisfies the uniform Holder condition with exponent β ∈ (0, 1] and A is an almost sectorial
operator, then any solution of the Cauchy problem (1.4) is a fixed point of the operator given below

Γx(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].
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In fact, from(2.7) it is easy to see that Theorem [2.1] holds, so the proof is omitted.
Now let us consider the set of functions PC(I, X) =

{
x : I → X : x ∈ C((tk, tk+1], X), k = 1, 2, ...,m and

there exist x(t+k ) and x(t−k ), k = 1, 2, ...m with x(t−k ) = x(tk)
}

endowed with the norm ||x||PC = supt∈I ||x(t)||.
From Theorem[2.1], we can define the mild solution of the system (1.4) as follows:

Definition 2.4. A function x : I → X is called a mild solution of a system (1.4), if x ∈ PC(I, X) and satisfies
the following equation,

x(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Remark 2.1. It is easy to verify that a classical solution of (1.4) is a mild solution of the same system.

3 Existence Results

In this section, we give the main results on the existence of mild solutions of the system (1.4).
To establish our results, we introduce the following hypotheses.

(H1) f : I × X → X is continuous and there exists a constant M > 0 such that

||f(t, x)− f(t, y)|| ≤ M ||x− y||, ∀ t ∈ I, x, y ∈ X
||f(t, 0)|| ≤ k1,

where k1 is a constant.

(H2) g : PC(I, X) → X is continuous and there exists a constant b such that

||g(x)− g(y)|| ≤ b||x− y||PC , ∀ t ∈ I, x, y ∈ PC(I, X)

||g(0)|| ≤ k2,

where k2 is a constant.

(H3) for each k = 1, 2, ...,m, there exists ρk > 0 such that

||Ik(x)− Ik(y)|| ≤ ρk||x− y||, ∀x, y ∈ X
||Ik(0)|| ≤ k3,

where k3 is a constant.

(H4) For each x0 ∈ X, there exists a constant r > 0 such that
r ≥ max

1≤i≤m

{
CsT

−αγ
[
||x0||+ r(ρi + b + 1) + k2 + k3)

]
+ Cp(Mr + k1)T α(1−γ)

α(1−γ)

}
Theorem 3.2. Under the assumptions (H1)− (H3), the system (1.4) has a unique mild solution x ∈ PC(I, X)
if

N = max
1≤i≤m

{
CsT

−αγ
[
b + 1 + ρi

]
+ CpM

Tα(1−γ)

α(1− γ)

}
< 1 (3.8)

Proof. Define Γ : PC(I, X) → PC(I, X) by
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Γx(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Clearly, the fixed points of the operator Γ are the solutions of the problem (1.4). We shall use the Banach
contracton principle to prove that Γ has a fixed point.
We shall show that Γ is a contraction.
Let x, y ∈ PC(I, X). Then for each t ∈ [0, t1] and by the lemma (2.1), we have

||Γx(t)− Γy(t)|| ≤ ||Sα(t)|| ||g(x)− g(y)||+
∫ t

0

||Pα(t− s)|| ||f(s, x(s))− f(s, y(s))||ds

≤ Cst
−αγ b ||x− y||+ Cp

∫ t

0

(t− s)α(1−γ)−1 M ||x(s)− y(s)||ds

≤
[
CsT

−αγ b + M Cp
Tα(1−γ)

α(1− γ)

]
||x− y||PC

For t ∈ (t1, t2],

||Γx(t)− Γy(t)|| ≤ ||Sα(t− t1)||
[
||x(t−1 )− y(t−1 )||+ ||I1(x(t−1 ))− I1(y(t−1 ))||

]
+

∫ t

t1

||Pα(t− s)|| ||f(s, x(s))− f(s, y(s)||ds

≤ Cs(t− t1)−αγ
[
||x(t−1 )− y(t−1 )||+ ρ1||x(t−1 )− y(t−1 )||

]
+Cp

∫ t

t1

(t− s)α(1−γ)−1 M ||x(s)− y(s)||ds

≤
[
Cs T−αγ(ρ1 + 1) + M Cp

Tα(1−γ)

α(1− γ)

]
||x− y||PC

Similarly, for all t ∈ (ti + ti+1],

||Γx(t)− Γy(t)|| ≤
[
Cs T−αγ(ρi + 1) + M Cp

Tα(1−γ)

α(1− γ)

]
||x− y||PC

and for t ∈ (tm, T ],

||Γx(t)− Γy(t)|| ≤
[
Cs T−αγ(ρm + 1) + M Cp

Tα(1−γ)

α(1− γ)

]
||x− y||PC

Thus, for all t ∈ [0, T ],

||Γx(t)− Γy(t)|| ≤ max
1≤i≤m

{
Cs T−αγ(b + ρi + 1) + M Cp

Tα(1−γ)

α(1− γ)

}
||x− y||PC

≤ N ||x− y||PC

Thus, by the equation (3.8), Γ is a contraction mapping. As a consequence of Banach fixed point theorem,
we deduce that Γ has a unique fixed point x0 ∈ PC(I, X) which is a solution of the problem (1.4).

Our next result is based on Krasnoselskii’s fixed point theorem.

Lemma 3.3. (Krasnoselskii’s Fixed point theorem)([14]). Let X be a Banach space, let E be a bounded closed
convex subset of X and let Γ1, Γ2 be maps of E into X such that Γ1x + Γ2y ∈ E for every pair x, y ∈ E. If Γ1

is a contraction and Γ2 is completely continuous, then the equation Γ1x + Γ2x = x has a solution on E.
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Theorem 3.3. Assume that the hypothesis (H1) − (H4) are satisfied, then the system has atleast one mild
solution on I.

Proof. Define operator Γ : PC(I, X) → PC(I, X), as in Theorem [3.2] by

Γx(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Define Br as Br =
{

x ∈ PC(I, X) : ||x||PC ≤ r
}

. Then, Br is a closed, bounded and convex subset of
PC(I, X). On Br, we define the operators Γ1 and Γ2 as follows.

Γ1x(t) =



Sα(t)[x0 − g(x)], t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
, t ∈ (tm, T ].

and

Γ2x(t) =



∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Now, we show that Γ1 + Γ2 has a fixed point in Br. The proof is divided into three steps.
Step 1: Γ1x + Γ2y ∈ Br, for every pair x, y ∈ Br.
Consider for any x, y ∈ Br and for t ∈ [0, t1], we have

||Γ1x(t) + Γ2y(t)|| ≤ ||Sα(t)||
[
||x0||+ ||g(x)− g(0)||+ ||g(0)||

]
+

∫ t

0

||Pα(t− s)|| [||f(s, y(s))− f(s, 0)||+ ||f(s, 0)||]ds

≤ Cs t−αγ
[
||x0||+ b||x||+ k2

]
+ Cp

∫ t

0

(t− s)α(1−γ)−1 (M ||y||+ k1)ds

≤ Cs T−αγ
[
||x0||+ br + k2

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)

For t ∈ (t1, t2], we have

||Γ1x(t) + Γ2y(t)|| ≤ ||Sα(t− t1)||
[
||x(t−1 )||+ ||I1(x(t−1 ))||

]
+

∫ t

t1

||Pα(t− s)|| ||f(s, y(s))||ds

≤ Cs (t− t1)−αγ
[
r + (ρ1r + k3)

]
+ Cp

∫ t

t1

(t− s)α(1−γ)−1 (Mr + k1)ds

≤ Cs T−αγ
[
r(1 + ρ1) + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)
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Similarly, we have

||Γ1x(t) + Γ2y(t)|| ≤ Cs T−αγ
[
r(1 + ρi) + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)
, ∀ t ∈ (ti, ti+1]

and

||Γ1x(t) + Γ2y(t)|| ≤ Cs T−αγ
[
r(1 + ρm) + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)
, ∀ t ∈ (tm, T ]

Thus, for all t ∈ [0, T ] and by (H4), we have

||Γ1x(t) + Γ2y(t)|| ≤ max
1≤i≤m

{
Cs T−αγ

[
||x0||+ r(1 + ρi + b) + k2 + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)

}
≤ r

which means that Γ1x + Γ2y ∈ Br for any x, y ∈ Br.

Step 2: Γ1 is contraction on Br.
Let x, y ∈ Br. By (H2) and (H3) , for each t ∈ [0, t1],

||Γ1x(t)− Γ1y(t)|| ≤ ||Sα(t)|| ||g(x)− g(y)||
≤ Cst

−αγ b ||x− y||
≤ b CsT

−αγ ||x− y||

For t ∈ (t1, t2],

||Γ1x(t)− Γ1y(t)|| ≤ ||Sα(t− t1)||
[
||x(t−1 )− y(t−1 )||+ ||I1(x(t−1 ))− I1(y(t−1 ))||

]
≤ CsT

−αγ [1 + ρ1]||x− y||

Similarly, for all t ∈ (ti, ti+1],

||Γ1x(t)− Γ1y(t)|| ≤ Cs T−αγ(ρi + 1) ||x− y||

and therefore for all t ∈ (tm, T ],

||Γ1x(t)− Γ1y(t)|| ≤ Cs T−αγ(ρm + 1) ||x− y||

Thus, for all t ∈ [0, T ],

||Γ1x(t)− Γ1y(t)|| ≤ max
1≤i≤m

{
Cs T−αγ(b + ρi + 1)

}
||x− y||

≤ N ||x− y||

Thus, from equation (3.8), Γ1 is contraction on Br.
Step 3: Now, we show that Γ2 is a completely continuous operator.
For that consider, for any t ∈ [0, t1], we have

||Γ2x(t)|| ≤
∫ t

0

||Pα(t− s)|| ||f(s, x(s))||ds

≤ Cp

∫ t

0

(t− s)α(1−γ)−1 (M ||x||+ k1)ds

≤ Cp(Mr + k1)
Tα(1−γ)

α(1− γ)

Similarly, for all t ∈ (ti, ti+1],

||Γ2x(t)|| ≤ Cp(Mr + k1)
Tα(1−γ)

α(1− γ)



A. Anguraj et al. / Nonlocal impulsive fractional ... 51

Thus, from the above inequalities,
{

Γ2x : x ∈ Br

}
is uniformly bounded for every t ∈ [0, T ].

Next, we will prove that
{

Γ2x : x ∈ Br

}
is equicontinuous.

Let, s1, s2 ∈ [0, t1], with s1 < s2, then ∀s1, s2, we have

||(Γ2x)(s2)− (Γ2x)(s1)|| ≤
∫ s2

0

||Pα(s2 − s)|| ||f(s, x(s))||ds−
∫ s1

0

||Pα(s1 − s)|| ||f(s, x(s))||ds

≤ Cp

[ ∫ s1

0

[
(s2 − s)α(1−γ)−1 − (s1 − s)α(1−γ)−1

]
||f(s, x(s))||ds

+
∫ s2

s1

(s2 − s)α(1−γ)−1 ||f(s, x(s))||ds
]

≤ Cp (Mr + k1)
α(1− γ)

[
s

α(1−γ)
2 − s

α(1−γ)
1

]
Similarly, ∀s1, s2 ∈ (ti, ti+1], with s1 < s2, i = 1, 2, ...,m, we have

||(Γ2x)(s2)− (Γ2x)(s1)|| ≤ Cp (Mr + k1)
α(1− γ)

[
(s2 − ti)α(1−γ) − (s1 − ti)α(1−γ)

]
Thus, from the above inequalities, we have lims2→s1 ||(Γ2x)(s2)− (Γ2x)(s1)|| = 0. So, Γ2 is equicontinuous.

Moreover, it is clear that from the lemma (2.2), Γ2 is continuous. So, Γ2 is a completely continuous operator.
Therefore, Krasnoselskii’s fixed point theorem shows that Γ = Γ1 + Γ2 has a fixed point on Br and hence

the system (1.4) has a solution on I.

4 Example

Let Â = (−i∆ + σ)
1
2 , D(Â) = W 1,3(R2) (a sobolev space)

be as in example 6.3([31]), in which the authors demonstrate that Â is an almost sectorial operator for some
0 < w < π

2 and γ = 1
6 . We denote the semigroup associated with Â by T(t) and ||T (t)|| ≤ C0t

− 1
6 , where C0 is

a constant.
Let X = L3(R2), we consider the following problem.


cD

1
2 x(t) = Âx(t) + cos t

(t+6)2
|x(t)|

1+|x(t)| , t ∈ I = [0, 1], t 6= 1
2

∆x( 1
2 ) = |x( 1

2
−)|

15+|x( 1
2
−)|

, t = 1
2

x(0) + 1
2x( 1

5 ) = x(1)

where

f(t, x(t)) =
cos t

(t + 6)2
|x(t)|

1 + |x(t)|
,

I1(x) =
|x|

15 + |x|
,

g(x) =
1
2
x(

1
5
).

By direct computations, we see that

‖f(t, x(t))− f(t, y(t))‖ =
∣∣∣∣ cos t

(t + 6)2

∣∣∣∣ ∥∥∥∥ |x(t)|
1 + |x(t)|

− |y(t)|
1 + |y(t)|

∥∥∥∥ ≤ 1
36
‖x(t)− y(t)‖

‖I1(x)− I1(y)‖ ≤ 1
15
‖x− y‖

‖g(x)− g(y)‖ ≤ 1
2
‖x− y‖

So,it is clear that the functions f, g and Ik satisfy the assumptions (H1), (H2) and (H3) with M = 1
36 b =

1
2 , and ρ1 = 1

15 . Then, choosing for instance α = 1
2 and T = 1, we have from the equation (3.8),

N = Cs

[7
4

+
1
15

]
+ Cp

1
36

12
5

< 1
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for the suitable values of the constants Cs and Cp. Moreover the assumption (H4) is also satisfied. Thus, all
the assumptions of Theorem [3.2] and Theorem [3.3] are satisfied and hence by the conclusion of the Theorems
[3.2] and [3.3], the nonlocal impulsive fractional problem (1.4) has a unique solution on [0,1].
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Abstract

In the present paper, we apply random analogue Kannan fixed point theorem [10] to analyze the existence of a

solution of a nonlinear stochastic integral equation of the Hammerstein type of the form

x(t; ω) = h(t; ω) +

∫
S

k(t, s; ω)f(s, x(s; ω))dµ(s)

where t ∈ S, a σ-finite measure space with certain properties, ω ∈ Ω, the supporting set of a probability measure space

(Ω, β, µ) and the integral is a Bochner integral.

Keywords: random fixed point, Kannan operator, stochastic integral equation.
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1 Introduction

The importance of random fixed point theory lies in its vast applicability in probabilistic functional analysis
and various probabilistic models. The introduction of randomness however leads to several new questions of
measurability of solutions, probabilistic and statistical aspects of random solutions. It is well known that
random fixed point theorems are stochastic generalization of classical fixed point theorems what we call as
determinstic results. Random fixed point theorems for random contraction mappings on separable complete
metric spaces were first proved by Špaček [18] and Hanš (see [6]-[7]). The survey article by Bharucha-Reid
[4] in 1976 attracted the attention of several mathematicians and gave wings to this theory. Itoh [8] extended
Špaček’s and Hanš’s theorems to multivalued contraction mappings. Random fixed point theorems with an
application to Random differential equations in Banach spaces are obtained by Itoh [8]. Sehgal and Waters
[17] had obtained several random fixed point theorems including random analogue of the classical results due
to Rothe [13]. In recent past, several fixed point theorems including Kannan type [10] Chatterjeea [5] and
Zamfirescu type [20] have been generalized in stochastic version (see for detail in Joshi and Bose [9], Saha et
al. ([14], [15]).
On the otherhand, Padgett [12] used the random analogue of Banach fixed point theorem [3] to analyze the
existence and uniqueness of random solution of a nonlinear stochastic integral equation of the Hammerstein
type of the form

x(t;ω) = h(t;ω) +
∫

S

k(t, s;ω)f(s, x(s;ω))dµ(s)

and proved several theorems. Achari [1] and Saha et al.[16] continued to work on this application for more
generalized random nonlinear contraction operators.

∗Corresponding author.

E-mail addresses:debashisdey@yahoo.com (Debashis Dey) and mantusaha@yahoo.com (Mantu Saha).
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In the following section, we study on application of two basic random fixed point theorems of importance,
one - is Kannan fixed point theorem [10] and the other one is - Chatterjea fixed point theorem [5] to analyze
the existence of solution for such integral equation.

2 Preliminaries

Let (X, βX) be a separable Banach space where βX is a σ-algebra of Borel subsets of X, and let (Ω, β, µ)
denote a complete probability measure space with measure µ, and β be a σ-algebra of subsets of Ω. For more
details one can see Joshi and Bose [9].

Theorem 2.1. (Joshi and Bose [9]) Let X be a separable Banach space and (Ω, β, µ) be a complete probability
measure space. Let T : Ω×X → X be a continuous random operator satisfying

‖T (ω, x1)− T (ω, x2)‖ ≤ k1(ω) [‖x1 − T (ω, x1) ‖+ ‖x2 − T (ω, x2) ‖]
+k2(ω) [‖x1 − T (ω, x2) ‖+ ‖x2 − T (ω, x1) ‖]
+k3 ‖x1 − x2‖ (2.1)

for all ω ∈ Ω and x1, x2 ∈ X, ki(ω) ≥ 0; 1 ≤ i ≤ 3. are real valued random variables with 2k1(ω) + 2k2(ω) +
k3(ω) < 1 almost surely. Then there exists a unique random fixed point of T .

Remark 2.1. (I) In the above theorem, setting k2(ω) = k3(ω) = 0, one can find random analogue of kannan
fixed point theorem [10] and in that case the operator T : Ω×X → X takes the form:

‖T (ω, x1)− T (ω, x2)‖ ≤ k1(ω) [‖x1 − T (ω, x1) ‖+ ‖x2 − T (ω, x2) ‖] (2.2)

for all ω ∈ Ω and x1, x2 ∈ X, k1(ω) ≥ 0 is real valued random variables with k1(ω) < 1
2 almost surely.

(II) Setting k1(ω) = k3(ω) = 0, one can find random analogue of Chatterjea fixed point theorem [5] and in
that case the operator T : Ω×X → X takes the form:

‖T (ω, x1)− T (ω, x2)‖ ≤ k2(ω) [‖x1 − T (ω, x2) ‖+ ‖x2 − T (ω, x1) ‖] (2.3)

for all ω ∈ Ω and x1, x2 ∈ X, k2(ω) ≥ 0 is real valued random variables with k2(ω) < 1
2 almost surely.

Remark 2.2. Note that neither Kannan operator nor Chatterjea operator is continuous in general. So random
fixed point theorems for these two operators are slightly different from their deterministic approach.

3 Application to a random nonlinear integral equation

We now show an application of stochastic version of Kannan fixed point theorem in solving nonlinear
stochastic integral equation of the Hammerstein type of the form:

x(t;ω) = h(t;ω) +
∫

S

k(t, s;ω)f(s, x(s;ω))dµ0(s) (3.4)

where
(i)S is a locally compact metric space with metric d on S×S, µ0 is a complete σ-finite measure defined on the
collection of Borel subsets of S;
(ii) ω ∈ Ω, where ω is a supporting set of probability measure space (Ω, β, µ);
(iii) x(t;ω) is the unknown vector-valued random variables for each t ∈ S.
(iv) h(t;ω) is the stochastic free term defined for t ∈ S;
(v) k(t, s;ω) is the stochastic kernel defuned for t and s in S and
(vi) f(t, x) is vector-valued function of t ∈ S and x

and the integral in equation (3.4) is a Bochner integral.
We will further assume that S is the union of a countable family of compact sets {Cn} having the properties
that C1 ⊂ C2 ⊂ ... and that for any other compact set S there is a Ci which contains it (see [2]).
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Definition 3.1. We define the space C(S, L2(Ω, β, µ)) to be the space of all continuous functions from S into
L2(Ω, β, µ) with the topology of uniform convergence on compacta i.e. for each fixed t ∈ S, x(t;ω) is a vector
valued random variable such that

‖x(t;ω)‖2L2(Ω,β,µ) =
∫

Ω

|x(t;ω)|2 dµ(ω) < ∞

It may be noted that C(S, L2(Ω, β, µ)) is locally convex space (see [19]) whose topology is defined by a countable
family of seminorms given by

‖x(t;ω)‖n = sup
t∈Cn

‖x(t;ω)‖L2(Ω,β,µ) , n = 1, 2, ...

Moreover C(S, L2(Ω, β, µ)) is complete relative to this topology since L2(Ω, β, µ) is complete.

We further define BC = BC(S, L2(Ω, β, µ)) to be the Banach space of all bounded continuous functions
from S into L2(Ω, β, µ) with norm

‖x(t;ω)‖BC = sup
t∈S

‖x(t;ω)‖L2(Ω,β,µ)

The space BC ⊂ C is the space of all second order vector-valued stochastic process defined on S which are
bounded and continuous in mean square.
We will consider the function h(t;ω) and f(t, x(t;ω)) to be in the space C(S, L2(Ω, β, µ)) with respect to the
stochastic kernel. We assume that for each pair (t, s), k(t, s;ω) ∈ L∞(Ω, β, µ) and denote the norm by

‖k(t, s;ω)‖ = ‖k(t, s;ω)‖L∞(Ω,β,µ) = µ− ess sup
ω∈Ω

|k(t, s;ω)| .

Also we will suppose that k(t, s;ω) is such that |||k(t, s;ω)||| . ‖x(s;ω)‖L2(Ω,β,µ) is µ0-integrable with respect to
s for each t ∈ S and x(s;ω) in C(S, L2(Ω, β, µ)) and there exists a real valued function G defined µ0-a.e. on S,
so that G(S) ‖x(s;ω)‖L2(Ω,β,µ) is µ0-integarable and for each pair (t, s) ∈ S × S,

|||k(t, u;ω)− k(s, u;ω)||| . ‖x(u, ω)‖L2(Ω,β,µ) ≤ G(u) ‖x(u, ω)‖L2(Ω,β,µ)

µ0-a.e. Further, for allmost all s ∈ S, k(t, s;ω) will be continuous in t from S into L∞(Ω, β, µ).
We now define the random integral operator T on C(S, L2(Ω, β, µ)) by

(Tx)(t;ω) =
∫

S

k(t, s;ω)x(s;ω)dµ0(s) (3.5)

where the integral is a Bochner integral. Moreover, we have that for each t ∈ S, (Tx)(t;ω) ∈ L2(Ω, β, µ) and
that (Tx)(t;ω) is continuous in mean square by Lebesgue’s dominated convergence theorem. So (Tx)(t;ω) ∈
C(S, L2(Ω, β, µ)).

Definition 3.2. (see [1], [11]) Let B and D be Banach spaces. The pair (B,D) is said to be admissible with
respect to a random operator T (ω) if T (ω)(B) ⊂ D.

Lemma 3.1. (see [12]) The linear operator T defined by (3.5) is continuous from C(S, L2(Ω, β, µ)) into itself.

Lemma 3.2. (see [12], [11]) If T is a continuous linear operator from C(S, L2(Ω, β, µ)) into itself and B,D ⊂
C(S, L2(Ω, β, µ)) are Banach spaces stronger than C(S, L2(Ω, β, µ)) such that (B,D) is admissible with respect
to T , then T is continuous from B into D.

Remark 3.3. (see [12]) The operator T defined by (3.5) is a bounded linear operator from B into D.
It is to be noted that by a random solution of the equation (3.4) we will mean a function x(t;ω) in C(S, L2(Ω, β, µ))
which satisfies the equation (3.4) µ-a.e.

We are now in a state to prove the following theorem.

Theorem 3.2. We consider the stochastic integral equation (3.4) subject to the following conditions:
(a) B and D are Banach spaces stronger than C(S, L2(Ω, β, µ)) such that (B,D) is admissible with respect to
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the integral operator defined by (3.5);
(b) x(t;ω) → f(t, x(t;ω)) is an operator from the set

Q(ρ) = {x(t;ω) : x(t;ω) ∈ D, ‖x(t;ω)‖D ≤ ρ}

into the space B satisfying

‖f(t, x1(t;ω))− f(t, x2(t;ω))‖B ≤ λ(ω) [‖x1(t;ω)− f (t, x1(t;ω))‖D

+ ‖x2(t;ω)− f(t, x2(t;ω))‖D] (3.6)

for x1(t;ω), x2(t;ω) ∈ Q(ρ), where 0 ≤ λ(ω) < 1
2 is a real valued random variable almost surely,

(c) h(t;ω) ∈ D.
Then there exists a unique random solution of (3.4) in Q(ρ), provided
λ(ω) (1 + c(ω)) < 1

2 and

‖h(t;ω)‖D +
1 + λ(ω)
1− λ(ω)

c(ω) ‖f(t; 0)‖B ≤ ρ

(
1− c(ω)λ(ω)

1− λ(ω)

)
where c(ω) is the norm of T (ω).

Proof. Define the operator U(ω) from Q(ρ) into D by

(Ux)(t;ω) = h(t;ω) +
∫

S

k(t, s;ω)f(s, x(s;ω))dµ0(s)

Now

‖(Ux)(t;ω)‖D ≤ ‖h(t;ω)‖D + c(ω) ‖f(t, x(t;ω))‖B

≤ ‖h(t;ω)‖D + c(ω) ‖f(t; 0)‖B + c(ω) ‖f(t, x(t;ω))− f(t; 0)‖B

Then from the condition (3.6) of this theorem

‖f(t, x(t;ω))− f(t; 0)‖B ≤ λ(ω)[‖x(t;ω)− f(t, x(t;ω))‖D + ‖f(t; 0)‖D]

≤ λ(ω) [‖x(t;ω)‖D + ‖f(t, x(t;ω))‖D + ‖f(t; 0)‖D]

≤ λ(ω) [‖x(t;ω)‖D + ‖f(t, x(t;ω))− f(t; 0)‖D + 2 ‖f(t; 0)‖D]

implies

‖f(t, x(t;ω))− f(t; 0)‖B ≤ λ(ω)
1− λ(ω)

ρ +
2λ(ω)

1− λ(ω)
‖f(t; 0)‖B (3.7)

Therefore by (3.7), we have

‖(Ux)(t;ω)‖D ≤ ‖h(t;ω)‖D + c(ω) ‖f(t; 0)‖B

+c(ω)
[

λ(ω)ρ
1− λ(ω)

+
2λ(ω)

1− λ(ω)
‖f(t; 0)‖B

]
= ‖h(t;ω)‖D +

c(ω)λ(ω)
1− λ(ω)

ρ +
1 + λ(ω)
1− λ(ω)

c(ω) ‖f(t; 0)‖B

< ρ

Hence (Ux)(t;ω) ∈ Q(ρ). Then for x1(t;ω), x2(t;ω) ∈ Q(ρ), we have by condition (b)

‖(Ux1)(t;ω)− (Ux2)(t;ω)‖D =
∥∥∥∥∫

S

k(t, s;ω)[f(s, x1(s;ω))− f(s, x2(s;ω))]dµ0(s)
∥∥∥∥

D

≤ c(ω) ‖f(t, x1(t;ω))− f(t, x2(t;ω))‖B

≤ c(ω)λ(ω) [‖x1(t;ω)− f (t, x1(t;ω))‖D

+ ‖x2(t;ω)− f(t, x2(t;ω))‖D]

since c(ω)λ(ω) < 1
2 , U(ω) is a Kannan contraction on Q(ρ). Hence, by Theorem 2.1 and Remark 2.1(I), there

exists a unique x∗(t, ω) ∈ Q(ρ), which is a fixed point of U , that is x∗(t, ω) is the unique random solution of
the equation (3.4).
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A similar theorem can be obtained using random analogue of Chatterjea fixed point theorem [5].

Theorem 3.3. Assume that the stochastic integral equation (3.4) subject to the following conditions:
(a

′
) Same as (a) of Theorem 3.2;

(b
′
) x(t;ω) → f(t, x(t;ω)) is an operator from the set

Q(ρ) = {x(t;ω) : x(t;ω) ∈ D, ‖x(t;ω)‖D ≤ ρ}

into the space B satisfying

‖f(t, x1(t;ω))− f(t, x2(t;ω))‖B ≤ λ(ω) [‖x1(t;ω)− f (t, x2(t;ω))‖D

+ ‖x2(t;ω)− f(t, x1(t;ω))‖D] (3.8)

for x1(t;ω), x2(t;ω) ∈ Q(ρ), where 0 ≤ λ(ω) < 1
2 is a real valued random variable almost surely,

(c
′
) h(t;ω) ∈ D.

Then there exists a unique random solution of (3.4) in Q(ρ), provided
λ(ω) (1 + c(ω)) < 1

2 and

‖h(t;ω)‖D +
1 + λ(ω)
1− λ(ω)

c(ω) ‖f(t; 0)‖B ≤ ρ

(
1− c(ω)λ(ω)

1− λ(ω)

)
where c(ω) is the norm of T (ω).

Proof. The proof is similar to that of Theorem 3.2. So we avoid repeatation.

The following example illustrates the strength of our main result-Theorem 3.2.

Example 3.1. Consider the following nonlinear stochastic integral equation:

x(t;ω) =
∫ ∞

0

e−t−s

8(1 + |x(s;ω)|)
ds

Comparing with (3.4), we see that

h(t, ω) = 0, k(t, s;ω) =
1
2
e−t−s, f(s, x(s;ω)) =

1
4(1 + |x(s;ω)|)

Then one can check that equation (3.6) is satisfied with λ(ω) = 1
3 .

Comparing with integral operator equation (3.5), we see that the norm of T (ω) is c(ω) = 1
4 satisfying

λ(ω)(1 + c(ω)) < 1
2 . So, all the conditions of Theorem 3.2 are satisfied and hence there exists a random fixed

point of the integral operator T satisfying (3.5).

Acknowledgement: The authors are thankful to the referee for his precise remarks.
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Abstract

Let T be a periodic time scale. The purpose of this paper is to use Krasnoselskii’s fixed point theorem to prove the

existence of positive periodic solutions on time scale of the nonlinear neutral dynamic equation with variable delay

(x (t)− g (t, x (t− τ (t))))4 = r (t) x (t)− f (t, x (t− τ (t))) .

We invert this equation to construct a sum of a contraction and a compact map which is suitable for applying the

Krasnoselskii’s theorem. The results obtained here extend the works of Raffoul [17] and Ardjouni and Djoudi [3].
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1 Introduction

Let T be a periodic time scale such that 0 ∈ T. In this paper, we are interested in the analysis of qualitative
theory of positive periodic solutions of dynamic equations. Motivated by the papers [1]–[6], [9]–[17] and the
references therein, we consider the following nonlinear neutral dynamic equation with variable delay

(x (t)− g (t, x (t− τ (t))))4 = r (t)x (t)− f (t, x (t− τ (t))) . (1.1)

Throughout this paper we assume that τ : T → R and that id − τ : T → T is strictly increasing so that the
function x (t− τ (t)) is well defined over T. Our purpose here is to use the Krasnoselskii’s fixed point theorem
to show the existence of positive periodic solutions on time scales for equation (1.1). To reach our desired end
we have to transform (1.1) into an integral equation written as a sum of two mapping; one is a contraction
and the other is compact. After that, we use Krasnoselskii’s fixed point theorem, to show the existence of a
positive periodic solution for equation (1.1). In the special case T = R, in [3] we show that (1.1) has a positive
periodic solution by using Krasnoselskii’s fixed point theorem.

The organization of this paper is as follows. In Section 2, we present some preliminary material that we
will need through the remainder of the paper. We will state some facts about the exponential function on a
time scale as well as the Krasnoselskii’s fixed point theorem. For details on Krasnoselskii’s theorem we refer
the reader to [18]. In Section 3, we present our main results on existence of positive periodic solutions of (1.1).
The results presented in this paper extend the main results in [3, 17].

2 Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The study of dynamic equations on
time scales is a fairly new subject, and research in this area is rapidly growing (see [1], [2], [4]–[8], [14], [15] and
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papers therein). The theory of dynamic equations unifies the theories of differential equations and difference
equations. We suppose that the reader is familiar with the basic concepts concerning the calculus on time scales
for dynamic equations. Otherwise one can find in Bohner and Peterson books [7] and [8] most of the material
needed to read this paper. We start by giving some definitions necessary for our work. The notion of periodic
time scales is introduced in Atici et al. [5] and Kaufmann and Raffoul [14]. The following two definitions are
borrowed from [5] and [14].

Definition 2.1. We say that a time scale T is periodic if there exist a ω > 0 such that if t ∈ T then t±ω ∈ T.
For T 6= R, the smallest positive ω is called the period of the time scale.

Below are examples of periodic time scales taken from [14].

Example 2.1. The following time scales are periodic.
(1) T =

⋃∞

i=−∞
[2 (i− 1)h, 2ih] , h > 0 has period ω = 2h.

(2) T = hZ has period ω = h.
(3) T = R.
(4) T = {t = k − qm : k ∈ Z,m ∈ N0} where, 0 < q < 1 has period ω = 1.

Remark 2.1 ([14]). All periodic time scales are unbounded above and below.

Definition 2.2. Let T 6= R be a periodic time scales with the period ω. We say that the function f : T → R is
periodic with period T if there exists a natural number n such that T = nω, f (t± T ) = f (t) for all t ∈ T and
T is the smallest number such that f (t± T ) = f (t) . If T = R, we say that f is periodic with period T > 0 if
T is the smallest positive number such that f (t± T ) = f (t) for all t ∈ T.

Remark 2.2 ([14]). If T is a periodic time scale with period p, then σ (t± nω) = σ (t) ± nω. Consequently,
the graininess function µ satisfies µ (t± nω) = σ (t± nω) − (t± nω) = σ (t) − t = µ (t) and so, is a periodic
function with period ω.

Our first two theorems concern the composition of two functions. The first theorem is the chain rule on
time scales ([7], Theorem 1.93).

Theorem 2.1 (Chain Rule). Assume ν : T → R is strictly increasing and T̃ := ν (T) is a time scale. Let
ω : T̃ → R. If ν4 (t) and ω4̃ (ν (t)) exist for t ∈ Tk, then

(ω ◦ ν)4 =
(
ω4̃ ◦ ν

)
ν4.

In the sequel we will need to differentiate and integrate functions of the form f (t− r (t)) = f (ν (t)) where,
ν (t) := t− r (t). Our second theorem is the substitution rule ([7], Theorem 1.98).

Theorem 2.2 (Substitution). Assume ν : T → R is strictly increasing and T̃ := ν (T) is a time scale. If
f : T → R is rd-continuous function and ν is differentiable with rd-continuous derivative, then for a, b ∈ T,∫ b

a

f (t) ν4 (t)4t =
∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) 4̃s.

A function p : T → R is said to be regressive provided 1 + µ (t) p (t) 6= 0 for all t ∈ Tk. The set of all
regressive rd-continuous function f : T → R is denoted by R while the set R+ = {f ∈ R : 1 + µ (t) f (t) > 0
for all t ∈ T} .

Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T is defined by

ep (t, s) = exp
(∫ t

s

1
µ (z)

Log (1 + µ (z) p (z))4z
)
. (2.2)

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the exponential function y (t) = ep (t, s)
is the solution to the initial value problem y4 = p (t) y, y (s) = 1. Other properties of the exponential function
are given in the following lemma.
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Lemma 2.1 ([7]). Let p, q ∈ R. Then
(i) e0 (t, s) = 1 and ep (t, t) = 1;
(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s) ;

(iii)
1

ep (t, s)
= e	p (t, s) , where 	p (t) = − p (t)

1 + µ (t) p (t)
;

(iv) ep (t, s) =
1

ep (s, t)
= e	p (s, t) ;

(v) ep (t, s) ep (s, r) = ep (t, r) ;

(vi) e4p (., s) = pep (., s) and
(

1
ep (., s)

)4
= − p (t)

eσ
p (., s)

.

Theorem 2.3 ([6], Theorem 2.1). Let T be a periodic time scale with period ω > 0. If p ∈ Crd (T) is a
periodic function with the period T = nω, then∫ b+T

a+T

p (u)4u =
∫ b

a

p (u)4u, ep (b+ T, a+ T ) = ep (b, a) if p ∈ R,

and ep (t+ T, t) is independent of t ∈ T whenever p ∈ R.

Lemma 2.2 ([1]). If p ∈ R+, then

0 < ep (t, s) ≤ exp
(∫ t

s

p (u)4u
)
, ∀t ∈ T.

Corollary 2.1 ([1]). If p ∈ R+ and p (t) < 0 for all t ∈ T, then for all s ∈ T with s ≤ t we have

0 < ep (t, s) ≤ exp
(∫ t

s

p (u)4u
)
< 1.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables us to prove the existence
of positive periodic solutions to (1.1). For its proof we refer the reader to [18].

Theorem 2.4 (Krasnoselskii). Let D be a closed convex nonempty subset of a Banach space (B, ‖.‖) . Suppose
that A and B map D into B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.

3 Existence of positive periodic solutions

We will state and prove our main result in this section. After we provide an example to illustrate our
results. Let T > 0, T ∈ T be fixed and if T 6= R, T = np for some n ∈ N. By the notation [a, b] we mean

[a, b] = {t ∈ T : a ≤ t ≤ b} ,

unless otherwise specified. The intervals [a, b) , (a, b] and (a, b) are defined similarly.
Define PT = {ϕ : T → R | ϕ ∈ C and ϕ (t+ T ) = ϕ (t)} where C is the space of continuous real-valued

functions on T. Then (PT , ‖·‖) is a Banach space with the supremum norm

‖ϕ‖ = sup
t∈T

|ϕ (t)| = sup
t∈[0,T ]

|ϕ (t)| .

We will need the following lemma whose proof can be found in [14].

Lemma 3.3. Let x ∈ CT . Then ‖xσ‖ = ‖x ◦ σ‖ exists and ‖xσ‖ = ‖x‖ .

In this paper we assume that r ∈ R+ is continuous and for all t ∈ T,

r (t+ T ) = r (t) , (id− τ) (t+ T ) = (id− τ) (t) , (3.3)
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where id is the identity function on T. Also, we assume∫ T

0

r (s)4s > 0. (3.4)

We also assume that the functions g (t, x) and f (t, x) are continuous in their respective arguments and periodic
in t with period T , that is,

g (t+ T, x) = g (t, x) , f (t+ T, x) = f (t, x) . (3.5)

The following lemma is fundamental to our results.

Lemma 3.4. Suppose (3.3)–(3.5) hold. If x ∈ PT , then x is a solution of equation (1.1) if and only if

x (t) = g (t, x (t− τ (t)))

+
∫ t+T

t

G (t, s) [f (s, x (s− τ (s)))− r (s) g (s, x (s− τ (s)))]4s, (3.6)

where

G (t, s) =
er (t, σ (s))

1− e	r (t+ T, t)
. (3.7)

Proof. Let x ∈ PT be a solution of (1.1). First we write this equation as

(x (t)− g (t, x (t− τ (t))))4 − r (t) (x (t)− g (t, x (t− τ (t))))

= −f (t, x (t− τ (t))) + r (t) g (t, x (t− τ (t))) .

Multiply both sides of the above equation by e	r (σ (t) , 0) we get{
(x (t)− g (t, x (t− τ (t))))4 − r (t) (x (t)− g (t, x (t− τ (t))))

}
e	r (σ (t) , 0)

= {−f (t, x (t− τ (t))) + r (t) g (t, x (t− τ (t)))} e	r (σ (t) , 0) .

Since e	r (t, 0)4 = −r (t) e	r (σ (t) , 0) we find

[(x (t)− g (t, x (t− τ (t)))) e	r (t, 0)]4

= {−f (t, x (t− τ (t))) + r (t) g (t, x (t− τ (t)))} e	r (σ (t) , 0) .

Taking the integral from t to t+ T , we obtain∫ t+T

t

[(x (s)− g (s, x (s− τ (s)))) e	r (s, 0)]44s

=
∫ t+T

t

{−f (s, x (s− τ (s))) + r (s) g (s, x (s− τ (s)))} e	r (σ (s) , 0)4s.

As a consequence, we arrive at

(x (t+ T )− g (t+ T, x (t+ T − τ (t+ T )))) e	r (t+ T, 0)

− (x (t)− g (t, x (t− τ (t)))) e	r (t, 0)

=
∫ t+T

t

{−f (s, x (s− τ (s))) + r (s) g (s, x (s− τ (s)))} e	r (σ (s) , 0)4s.

Dividing both sides of the above equation by e	r (t, 0) and using the fact that x (t+ T ) = x (t), (3.3), (3.5) and

e	r (t+ T, 0)
e	r (t, 0)

= e	r (t+ T, t) ,
e	r (σ (s) , 0)
e	r (t, 0)

= er (t, σ (s)) ,

we obtain

x (t)− g (t, x (t− τ (t)))

=
∫ t+T

t

er (t, σ (s))
1− e	r (t+ T, t)

{f (s, x (s− τ (s)))− r (s) g (s, x (s− τ (s)))}4s.

Since each step is reversible, the converse follows easily. This completes the proof.
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To simplify notation, we let

m =
exp

(
−

∫ 2T

0
|r (u)|4u

)
1− e	r (T, 0)

, M =
exp

(∫ 2T

0
|r (u)|4u

)
1− e	r (T, 0)

.

It is easy to see that for all (t, s) ∈ [0, 2T ]× [0, 2T ],

m ≤ G (t, s) ≤M, (3.8)

and from Lemma 2.1 and Theorem 2.3, we have for all t, s ∈ R,

G (t+ T, s+ T ) = G (t, s) . (3.9)

To apply Theorem 2.4, we need to define a Banach space B, a closed convex subset D of B and construct
two mappings, one is a contraction and the other is compact. So, we let (B, ‖·‖) = (PT , ‖·‖) and D =
{ϕ ∈ B : L ≤ ϕ ≤ K}, where L is non-negative constant and K is positive constant. We express equation (3.6)
as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) := (Hϕ) (t) ,

where A,B : D → B are defined by

(Aϕ) (t) =
∫ t+T

t

G (t, s) {f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))}4s, (3.10)

and
(Bϕ) (t) = g (t, ϕ (t− τ (t))) . (3.11)

In this section, we obtain the existence of a positive periodic solution of (1.1) by considering the two cases;
g (t, x) ≥ 0 and g (t, x) ≤ 0 for all t ∈ R, x ∈ D. We assume that function g (t, x) is locally Lipschitz continuous
in x. That is, there exists a positive constant k such that

|g (t, x)− g (t, y)| ≤ k ‖x− y‖ , for all t ∈ [0, T ] , x, y ∈ D. (3.12)

In the case g (t, x) ≥ 0, we assume that there exist a non-negative constant k1 and positive constant k2 such
that

k1x ≤ g (t, x) ≤ k2x, for all t ∈ [0, T ] , x ∈ D, (3.13)

k2 < 1, (3.14)

and for all t ∈ [0, T ] , x ∈ D

L (1− k1)
mT

≤ f (t, x)− r (t) g (t, x) ≤ K (1− k2)
MT

. (3.15)

Lemma 3.5. For A defined in (3.10), Suppose that the conditions (3.3)–(3.5) and (3.13)–(3.15) hold. Then
A : D → B is compact.

Proof. We first show that A : D → B. Clearly, if ϕ is continuous, then Aϕ is. Evaluating (3.10) at t+ T gives

(Aϕ) (t+ T ) =
∫ t+2T

t+T

G (t+ T, s) {f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))}4s.

Use Theorem 2.2 with u = s− T to get

(Aϕ) (t+ T ) =
∫ t+T

t

G (t+ T, u+ T ) {f (u+ T, ϕ (u+ T − τ (u+ T )))

−r (u+ T ) g (u+ T, ϕ (u+ T − τ (u+ T )))}4u.

From (3.3), (3.4) and (3.9), we obtain

(Aϕ) (t+ T ) =
∫ t+T

t

G (t, u) {f (u, ϕ (u− τ (u)))− r (u) g (u, ϕ (u− τ (u)))}4s

= (Aϕ) (t) .
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That is, A : D → B.
We show that A (D) is uniformly bounded. For t ∈ [0, T ] and for ϕ ∈ D, we have

|(Aϕ) (t)| ≤

∣∣∣∣∣
∫ t+T

t

G (t, s) [f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))]4s

∣∣∣∣∣
≤MT

K (1− k2)
MT

= K (1− k2) .

by (3.8) and (3.15). Thus from the estimation of |(Aϕ) (t)| we arrive

‖Aϕ‖ ≤ K (1− k2) .

This shows that A (D) is uniformly bounded.
It remains to show that A (D) is equicontinuous. Let ϕn ∈ D, where n is a positive integer. Next we

calculate (Aϕn)4 (t) and show that it is uniformly bounded. By making use of (3.3) and (3.5) we obtain by
taking the derivative in (3.3) that

(Aϕn)4 (t) = [G (t, t+ T )−G (t, t)] {f (t, ϕn (t− τ (t)))− r (t) g (t, ϕn (t− τ (t)))}
+ r (t) (Aϕn)σ (t) .

Consequently, by invoking (3.8), (3.15) and Lemma 3.3, we obtain∣∣∣(Aϕn)4 (t)
∣∣∣ ≤ K (1− k2)

MT
+ ‖r‖K (1− k2) ≤ D,

for some positive constant D. Hence the sequence (Aϕn) is equicontinuous. The Ascoli-Arzela theorem implies
that a subsequence (Aϕnk

) of (Aϕn) converges uniformly to a continuous T -periodic function. Thus A is
continuous and A (D) is contained in a compact subset of B.

Lemma 3.6. Suppose that (3.12) holds. If B is given by (3.11) with

k < 1, (3.16)

then B : D → B is a contraction.

Proof. Let B be defined by (3.4). Obviously, Bϕ is continuous and it is easy to show that (Bϕ) (t+ T ) =
(Bϕ) (t). So, for any ϕ,ψ ∈ D, we have

|(Bϕ) (t)− (Bψ) (t)| ≤ |g (t, ϕ (t− τ (t)))− g (t, ψ (t− τ (t)))|
≤ k ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ k ‖ϕ− ψ‖. Thus B : D → B is a contraction by (3.16).

Theorem 3.5. Suppose (3.3)–(3.5) and (3.12)–(3.16) hold. Then equation (1.1) has a positive T -periodic
solution x in the subset D.

Proof. By Lemma 3.5, the operator A : D → B is compact and continuous. Also, from Lemma 3.6, the operator
B : D → B is a contraction. Moreover, if ϕ,ψ ∈ D, we see that

(Bψ) (t) + (Aϕ) (t)

= g (t, ψ (t− τ (t)))

+
∫ t+T

t

G (t, s) {f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))}4s

≤ k2K +M

∫ t+T

t

{f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))}4s

≤ k2K +MT
K (1− k2)

MT
= K.
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On the other hand,

(Bψ) (t) + (Aϕ) (t)

= g (t, ψ (t− τ (t)))

+
∫ t+T

t

G (t, s) {f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))}4s

≥ k1L+m

∫ t+T

t

{f (s, ϕ (s− τ (s)))− r (s) g (s, ϕ (s− τ (s)))}4s

≥ k1L+mT
L (1− k1)

mT
= L.

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus there exists a fixed point x ∈ D
such that x = Ax+ Bx. By Lemma 3.4 this fixed point is a solution of (1.1) and the proof is complete.

Remark 3.3. When T = R, Theorem 3.5 reduces to Theorem 3.1 of [3].

In the case g (t, x) ≤ 0, we substitute conditions (3.13)–(3.15) with the following conditions respectively.
We assume that there exist a negative constant k3 and a non-positive constant k4 such that

k3x ≤ g (t, x) ≤ k4x, for all t ∈ [0, T ] , x ∈ D, (3.17)

−k3 < 1, (3.18)

and for all t ∈ [0, T ] , x ∈ D
L− k3K

mT
≤ f (t, x)− r (t) g (t, x) ≤ K − k4L

MT
. (3.19)

Theorem 3.6. Suppose (3.3)–(3.5), (3.12) and (3.16)–(3.19) hold. Then equation (1.1) has a positive T -
periodic solution x in the subset D.

The proof follows along the lines of Theorem 3.5, and hence we omit it.

Remark 3.4. When T = R, Theorem 3.6 reduces to Theorem 3.2 of [3].
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2003.



A. Ardjouni, A. Djoudi / Existence of positive periodic solutions ... 67

[9] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publica-
tions, New York, 2006.

[10] F. D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl.
Math. Comput., 162(3)(2005), 1279-1302.

[11] F. D. Chen and J. L. Shi, Periodicity in a nonlinear predator-prey system with state dependent delays,
Acta Math. Appl. Sin. Engl. Ser., 21(1)(2005), 49-60.

[12] Y. M. Dib, M.R. Maroun and Y.N. Raffoul, Periodicity and stability in neutral nonlinear differential
equations with functional delay, Electronic Journal of Differential Equations, Vol. 2005(2005), No.
142, 1-11.

[13] M. Fan and K. Wang, P. J. Y. Wong and R. P. Agarwal, Periodicity and stability in periodic n-species
Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sin.
Engl. Ser., 19(4)(2003), 801-822.

[14] E. R. Kaufmann and Y. N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on
a time scale, J. Math. Anal. Appl., 319(1)(2006), 315–325.

[15] E. R. Kaufmann and Y. N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equations
with functional delay on a time scale, Electron. J. Differential Equations, Vol. 2007(2007), No. 27,
1–12.

[16] E. R. Kaufmann, A nonlinear neutral periodic differential equation, Electron. J. Differential Equa-
tions, Vol. 2010(2010), No. 88, 1–8.

[17] Y. N. Raffoul, Positive periodic solutions in neutral nonlinear differential equations, Electronic Journal
of Qualitative Theory of Differential Equations, Vol. 2007(2007), No. 16, 1–10.

[18] D. S. Smart, Fixed point theorems; Cambridge Tracts in Mathematics, No. 66. Cambridge University
Press, London-New York, 1974.

Received: November 25, 2012; Accepted: March 23, 2013

UNIVERSITY PRESS



Malaya Journal of Matematik 2(1)(2013) 68–76

Transient solution of an M [X]/G/1 queuing model with feedback,

random breakdowns and Bernoulli schedule server vacation having

general vacation time distribution

G. Ayyappana,∗and S.Shyamalab

aDepartment of Mathematics, Pondicherry Engineering College, Pondicherry, India.

bDepartment of Mathematics, Arunai Engineering College, Thiruvannamalai, Tamil Nadu, India.

Abstract

This paper analyze an M [X]/G/1 queue with feedback, random server breakdowns and Bernoulli schedule server

vacation with general(arbitrary) distribution. Customers arrive in batches with compound Poisson process and are

served one by one with first come first served basis. Both the service time and vacation time follow general (arbitrary)

distribution. After completion of a service the may go for a vacation with probability θor continue staying in the system

to serve a next customer, if any with probability 1− θ. With probability p, the customer feedback to the tail of original

queue for repeating the service until the service be successful. With probability 1 − p = q, the customer departs the

system if service be successful. The system may breakdown at random following Poisson process, whereas the repair time

follows exponential distribution. We obtain the time dependent probability generating function in terms of their Laplace

transforms and the corresponding steady state results explicitly. Also we derive the system performance measures like

average number of customers in the queue and the average waiting time in closed form.

Keywords: M [X]/G/1 queue, Poisson arrival, probability generating function, Bernoulli schedule, steady state, mean queue size,

mean waiting time.
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1 Introduction

Due to a lot of significance in the decision making process, the research on queuing theory has been
extensively increased. Queuing theory has made a revolution in industry and logistics sector apart from its
immense applications in many other areas like air traffic, bio-sciences, population studies, health sectors,
manufacturing and production sections etc. According to the prevailing demands or situations in real life
scenario, queuing models have been encountered enormously, in research perspective.

Most recently research studies on queues with server breakdown have been attracted, as an important
area of queuing theory and have been studied extensively and successfully due to their various applications
in production, communication systems. Mostly in the queuing literature, the server may be considered as an
reliable one,such that service station never fails. But in real situations mostly the servers are unreliable, we
often encounter the cases where service stations may fail which can be repaired. Similarly, many phenomena
always occur in the area of computer communication networks and flexible manufacturing system etc. Since the
performance of such a system may be heavily affected by server breakdowns, followed by a repair immediately,
such systems with a repairable service stations are well worth investigating from the queuing theory point of
view as well as reliability point of view.

∗Corresponding author.
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Recently, there have been several contributions in considering non-Markovian single server queuing system,
in which the server may experience with break downs and repairs, such system with repairable server has been
studied as queuing models by many authors including Avi-Itzhak and Naor [2], Graver [6], Takine and Sengupta
[21], Wang [24], Tang [22] Assani and Artalejo [1] etc.

Another feature in queuing theory is the study of queuing models with vacations. when the system is empty,
the server becomes idle and this idle time may be utilized by the server for being engaged for other purposes.
Thus, the non-availability of the server in the system is known as vacation. During the last three or four
decades, queuing theorists are interested in the study of queuing models with vacations immensely, because
of their applicability and theoretical structures in real life situations such as manufacturing and production
systems, computer and communication systems, service and distribution systems, etc.

The most remarkable works have been done in recent past by some researchers on vacation models including
Choudhary [3], Keilson and servi [9], Krishna Kumar [13], Levy and Yechiali [10], Wang [24], Madan [15, 16,
17, 18, 19], Thangaraj [23] etc. The details about vacation queues can be found in the survey of Doshi [5].

Transient state measures, which are very important to track down the functioning of the system at any
instant of time. In this paper we present an analysis of the transient state behavior of a queuing system
where breakdowns may occur at random, and once the system breaks down, it enters a repair process and the
customer whose service is interrupted goes back to the head of the queue. At the same time the server may
go on vacation. The vacations follow a Bernoulli distribution, that is, after a service completion, the server
may go for a vacation with probability p (0 ≤ p ≤ 1) or may continue to serve the next customer, if any, with
probability 1 − p. The service time and the vacation time are generally distributed, while the repair time is
exponentially distributed. The customers arrive in batches to the system and served one by one on a “first
come - first served” basis.

The rest of the paper has been organized as follows: in section 2, the mathematical description of our model
has been found, in section 3, the transient solution of the system has been derived, in section 4, the steady
state analysis has been discussed.

2 Mathematical description of the queuing model

To describe the required queuing model, we assume the following.
• Let λcidt; i = 1, 2, 3...be the first order probability of arrival of ’i’ customers in batches in the system

during a short period of time(t,t+dt)where 0 ≤ ci ≤ 1,
∑∞

i=1 ci = 1, λ > 0 is the mean arrival rate of batches.
• There is a single server which provides service following a general(arbitrary) distribution with distribution

function B(v)and density function b(v). Letµ(x)dx be the conditional probability density function of service
completion during the interval (x,x+dx] given that the elapsed service time is x, so that

µ(x) =
b(x)

1−B(x)
(2.1)

and therefore

b(v) = µ(v)e
−

∫ v

0

µ(x)
dx (2.2)

• After completion of service, if the customer is not satisfied with the service for certain reason or if customer
received unsuccessful service, the customer may immediately join the tail of the original queue as a feedback
customer for receiving another regular service with probability p(0 < p < 1). Otherwise the customer may
depart forever from the system with probability q(= 1 − p). The service discipline for feedback and newly
customers are first come first served. Also service time for a feedback customer is independent of its previous
service times.

• As soon as a service is completed , the server may take a vacation of random length with probability θ

(or) he may stay in the system providing service with probability 1− θ, where 0 ≤ θ ≤ 1.
• The vacation time of the server follows a general (arbitrary)with distribution function V(s)and the density

function v(s). Let ν(x)dx be the conditional probability of a completion of a vacation during the interval
(x, x + dx] given that the elapsed vacation time is x so that

ν(x) =
v(x)

1− V (x)
(2.3)



70 G. Ayyappan et al. / Transient solution of ...

and therefore

v(s) = ν(s)e
−

∫ s

0

ν(x)dx
(2.4)

• The system may breakdown at random and the breakdowns are assumed to occur according to a Poisson
stream with mean breakdown rate α > 0. Further we assume that once the system breakdown, the customer
whose service is interrupted comes back to the head of queue.

• Once the system breaks down it enters a repair process immediately. The repair times are exponentially
distributed with mean repair rate β > 0.

• Various stochastic processes involved in the queuing system are assumed to be independent of each other.

3 Definitions and Equations governing the system

We let,

(i) Pn(x, t) = Probability that at time ’t’ the server is active providing service and there are ’n’ (n ≥ 0)
customers in the queue excluding the one being served and the elapsed service time for this customer is x.
Consequently pn(t) denotes the probability that at time ’t’ there are ’n’ customers in the queue excluding
the one customer in service irrespective of the value of x.

(ii) Vn(x, t) = Probability that at time ’t’, the server is on vacation with elapsed vacation time x, and there
are ’n’ (n ≥ 0) customers waiting in the queue for service. Consequently Vn(t) denotes the probability
that at time ’t’ there are ’n’ customers in the queue and the server is on vacation irrespective of the value
of x.

(iii) Rn(t) = Probability that at time t, the server is inactive due to breakdown and the system is under repair
while there are’n’ (n ≥ 0) customers in the queue.

(iv) Q(t)= Probability that at time ’t’ there are no customers in the system and the server is idle but available
in the system.

The model is then, governed by he following set of differential-difference equations.

∂

∂t
Pn(x, t) +

∂

∂x
Pn(x, t) + (λ + µ(x) + α)Pn(x, t) = λ

n−1∑
i=1

ciPn−i(x, t);n ≥ 1 (3.1)

∂

∂t
P0(x, t) +

∂

∂x
P0(x, t) + (λ + µ(x) + α)P0(x, t) = 0 (3.2)

∂

∂t
Vn(x, t) +

∂

∂x
Vn(x, t) + (λ + ν(x))Vn(x, t) = λ

n−1∑
i=1

ciVn−i(x, t);n ≥ 1 (3.3)

∂

∂t
V0(x, t) +

∂

∂x
V0(x, t) + (λ + ν(x))V0(x, t) = 0 (3.4)

d

dt
Rn(t) = −(λ + β)Rn(t) + λ

n−1∑
i=1

ciRn−i(x, t) + α

∫ ∞

0

Pn−1(x, t)dx (3.5)

d

dt
R0(t) = −(λ + β)R0(t) (3.6)

d

dt
Q(t) = −λQ(t) + βR0(t) +

∫ ∞

0

V0(x, t)ν(x)dx + (1− θ)q
∫ ∞

0

P0(x, t)µ(x)dx (3.7)

The above equations are to be solved subject to the following boundary conditions

Pn(0, t) = (1− θ)
[
p

∫ ∞

0

Pn(x, t)µ(x)dx + q

∫ ∞

0

Pn+1(x, t)µ(x)dx

]
+

∫ ∞

0

Vn+1(x, t)ν(x)dx + βRn+1(t) + λcn+1Q(t);n ≥ 0 (3.8)
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Vn(0, t) = θ

∫ ∞

0

Pn(x, t)µ(x)dx;n ≥ 0 (3.9)

Assuming there are no customers in the system initially so that the server is idle.

V0(0) = 0;Vn(0) = 0;Q(0) = 1;Pn(0) = 0, n = 0, 1, 2, ... (3.10)

Generating functions of the queue length. The time dependent solution.

We define the probability generating functions
Pq(x, z, t) =

∑∞
n=0 znPn(x, t)

Pq(z, t) =
∑∞

n=0 znPn(t)

Vq(x, z, t) =
∑∞

n=0 znVn(x, t)

Vq(z, t) =
∑∞

n=0 znVn(t)

Rq(z, t) =
∑∞

n=0 znRn(t)

C(z) =
∞∑

n=1

cnzn (3.11)

which are convergent inside the circle given by |z| ≤ 1 and define the Laplace transform of a function f(t)
as

f(s) =
∫ ∞

0

f(t)e−stdt. (3.12)

Taking Laplace transforms of equations (3.1) to (3.9) and using the probability generating function defined
above.

∂

∂x
P̄n(x, s) + (s + λ + µ(x) + α)P̄n(x, s) = λ

n−1∑
i=1

ciP̄n−i(x, s) (3.13)

∂

∂x
P̄0(x, s) + (s + λ + µ(x) + α)P̄0(x, s) = 0 (3.14)

∂

∂x
V̄n(x, s) + (s + λ + ν(x))V̄n(x, s) = λ

n−1∑
i=1

ciV̄n−i(x, s) (3.15)

∂

∂x
V̄0(x, s) + (s + λ + ν(x))V̄0(x, s) = 0 (3.16)

(s + λ + β)R̄n(s) = λ
n−1∑
i=1

ciR̄n−i(s) + α

∫ ∞

0

P̄n−1(x, s)dx (3.17)

(s + λ + β)R̄0(s) = 0 (3.18)

(s + λ)Q̄(s) = 1 + βR̄0(s) +
∫ ∞

0

V̄0(x, s)ν(x)dx

+(1− θ)q
∫ ∞

0

P̄0(x, s)µ(x)dx (3.19)

for boundary conditions,

P̄n(0, s) = (1− θ)
[
p

∫ ∞

0

P̄n(x, s)µ(x)dx + q

∫ ∞

0

P̄n+1(x, s)µ(x)dx

]
+

∫ ∞

0

V̄n+1(x, s)ν(x)dx + βR̄n+1(s) + λcn+1Q̄(s);n ≥ 0 (3.20)
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V̄n(0, s) = θ

∫ ∞

0

P̄n(x, s)µ(x)dx;n ≥ 0 (3.21)

multiply equation (3.13) by zn and add (3.14) implies

∂

∂x
P̄q(x, z, s) + (s + λ− λC(z) + µ(x) + α)P̄q(x, z, s) = 0 (3.22)

performing similar operations to equations (3.15) to (3.18).

∂

∂x
V̄q(x, z, s) + (s + λ− λC(z) + ν(x))V̄q(x, z, s) = 0 (3.23)

(s + λ− λC(z) + β)R̄q(z, s) = αz

∫ ∞

0

P̄q(x, z, s)dx (3.24)

For the boundary conditions, we multiply equation(3.20)by zn+1, sum over n from 0 to ∞ and use gener-
ating function defined above, we get

zP̄q(0, z, s) = (1− θ)(pz + q)
∫ ∞

0

P̄q(x, z, s)µ(x)dx

+
∫ ∞

0

V̄q(x, z, s)ν(x)dx + βR̄q(z, s) + (1− sQ̄(s)) + λ(C(z)− 1)Q̄(s) (3.25)

Similarly multiply equation (3.21) by znand sum over n from 0 to ∞ and use generating function defined
above

V̄q(0, z, s) = θ

∫ ∞

0

P̄q(x, z, s)µ(x)dx (3.26)

Integrating equation(3.22) from 0 to x yields

P̄q(x, z, s) = P̄q(0, z, s)e
−(s+λ−λC(z)+α)x−

∫ x

0

µ(t)dt
(3.27)

where P̄q(0, z, s) is given by equation(3.25). Again integrating equation (3.27) by parts with respect to x
yields

P̄q(z, s) = P̄q(0, z, s)
[
1− B̄(s + λ− λC(z) + α)

(s + λ− λC(z) + α)

]
(3.28)

where

B̄(s + λ− λC(z) + α) =
∫ ∞

0

e−(s+λ−λC(z)+α)xdB(x) (3.29)

is Laplace - Stieltjes transform of the service time B(x). Now multiplying both sides of equation (3.27) by µ(x)
and integrating over x, we get∫ ∞

0

P̄q(x, z, s)µ(x)dx = P̄q(0, z, s)B̄(s + λ− λC(z) + α) (3.30)

Using equation (3.30) equation (3.26) becomes

V̄q(0, z, s) = θP̄q(0, z, s)B̄(s + λ− λC(z) + α) (3.31)

Similarly integrate equation (3.23) from 0 to x, we get

V̄q(x, z, s) = V̄q(0, z, s)e
−(s+λ−λC(z))x−

∫ x

0

ν(t)dt
(3.32)

substituting by the value of V̄q(0, z, s) from (3.31), in equation (3.33) we get

V̄q(x, z, s) = θP̄q(0, z, s)B̄(s + λ− λ(C(z)) + α)e
−(s+λ−λz)x−

∫ x

0

ν(t)dt
(3.33)
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Again integrating equation (3.33) by parts with respect to x

V̄q(z, s) = θP̄q(0, z, s)B̄(s + λ− λC(z) + α)
[
1− V̄ (s + λ− λ(C(z)))

(s + λ− λ(C(z)))

]
(3.34)

where

V̄ (s + λ− λC(z)) =
∫ ∞

0

e−(s+λ−λC(z))xdV (x) (3.35)

is Laplace - Stieltjes transform of the vacation time V(x). Now multiplying both sides of equation(3.33) by
ν(x) and integrating over x, we get∫ ∞

0

V̄q(x, z, s)ν(x)dx = θP̄q(0, z, s)B̄(s + λ− λC(z) + α)V̄ (s + λ− λC(z)) (3.36)

Using equation (3.28), equation (3.24) becomes

R̄q(z, s) =
αzP̄q(0, z, s)[1− B̄(s + λ− λC(z) + α)]
[s + λ− λC(z) + β][s + λ− λC(z) + α]

(3.37)

Now using (3.30), (3.36) and (3.37) in equation (3.25) and solving for P̄q(0, z, s) we get

P̄q(0, z, s) =
f1(z)f2(z)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(3.38)

where Dr = f1(z)f2(z){z − (1− θ)(pz + q)B̄[f1(z)]− θV̄ (s + λ− λC(z))B̄[f1(z)]}
− αβz{1− B̄[f1(z)]}

f1(z) = s + λ− λC(z) + α

f2(z) = s + λ− λC(z) + β

substituting the value of P̄q(0, z, s) from equation (3.38)in to equations (3.26), (3.34) and (3.37)

P̄q(z, s) =
f2(z)1− B̄[f1(z)][(1− sQ̄(s)) + λ(C((z))− 1)Q̄(s)]

Dr
(3.39)

V̄q(z, s) =
θf1(z)f2(z)B̄[f1(z)][(1− sQ̄(s)) + λ(C((z))− 1)Q̄(s)]

[
1−V̄ (s+λ−λC(z))

(s+λ−λC(z))

]
Dr

(3.40)

R̄q(z, s) =
αz[1− B̄[f1(z)]][(1− sQ̄(s)) + λ(C((z))− 1)Q̄(s)]

Dr
(3.41)

where Dr is given in the above.

4 The steady state analysis

In this section we shall derive the steady state probability distribution for our queuing model. To define
the steady state probabilities, suppress the argument’t’ where ever it appears in the time dependent analysis.
By using well known Tauberian property,

Lts→0sf̄(s) = Ltt→∞f(t) (4.1)

multiplying both sides of equation (3.39),(3.40),(3.41) and applying equation(4.1) and simplifying, we get

Pq(z) =
f2(z)(1− B̄[f1(z)])[λ(C((z))− 1)Q]

Dr
(4.2)

Vq(z) =
pf1(z)f2(z)B̄[f1(z)][V̄ (λ− λC((z))− 1)]Q

Dr
(4.3)
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Rq(z) =
θλαz[1− B̄[f1(z)]][(C((z))− 1)Q]

Dr
(4.4)

where Dr and f1(z) and f2(z) are given by in previous section. LetWq(z) denotes the probability generating
function of queue size irrespective of the state of the system. Then adding (4.2),(4.3) and (4.4), we get

Wq(z) = Pq(z) + Vq(z) + Rq(z) (4.5)

Wq(z) =
f2(z)[1−B[f1(z)]][λ(C((z))− 1)Q]

Dr
+

θf1(z)f2(z)B[f1(z)][V (λ− λC((z))− 1)]Q
Dr

+
λαz[1−B[f1(z)]][(C((z))− 1)Q]

Dr
(4.6)

In order to obtain Q, we use the normalization condition, as follows

Wq(1) + Q = 1 (4.7)

We see that at z=1, Wq(z) is indeterminate of the form 0/0. We apply L’Hospital rule in equation (4.6)

Wq(1) =
λQE(I)(α + β)[1− B̄(α)] + θαβB(α)E[V ]

(q + pθ)αβB̄(α)− λ(α + β)(1− B̄(α))E(I)− θλαβB̄(α)E(I)E[V ]
(4.8)

where B̄(0) = 1, V̄ (0) = 1,−V ′(0) = E[V ] the mean vacation time. Using equation (4.8) in equation (4.7)

Q = 1− λE(I)
q + pθ

{
1

βB̄(α)
+

1
αB̄(α)

− 1
β
− 1

α
+ θE(V )

}
(4.9)

and the the utilization factorρ of the system is given by

ρ =
λE(I)
q + pθ

{
1

βB̄(α)
+

1
αB̄(α)

− 1
β
− 1

α
+ θE(V )

}
(4.10)

where ρ < 1 is the stability condition under which the steady state exists, equation(4.9) gives the probability
that the server is idle. Substitute Q from equation (4.9) in equation (4.6) Wq(z) have been completely and
explicitly determined which is the the probability generating function of the queue size.
The average queue size and average waiting time
Let Lqdenote the mean number of customers in the queue under the steady state, then Lq = d

dz Wq(z) |z=1,since
this formula gives 0/0 form, then we write Wq(z) = N(z)

D(z) where N(z) and D(z) are the numerator and denomi-
nator of the right hand side of equation (4.5) respectively, then we use

Lq =
D′(1)N ′′(1)−N ′(1)D′′(1)

2[D′(1)]2
(4.11)

where primes and double primes in equation (4.11) denote first and second derivation at z=1 respectively.
Carrying out the derivatives at z=1, we have

N ′(1) = λE(I)Q[(α + β)− B̄(α)(θαβE(V )− α− β)] (4.12)

N ′′(1) = 2Q[λE(I)]2
{

( α
λE(I) − 1) + B̄(α)[1− α

λE(I) − θαE(V )− θβE(V )]

+ 1
2θαβE(V 2) + B̄

′
(α)(α + β − θαβE(V ))

}
+λQE(I(I − 1))

{
(α + β) + B̄(α)(θαβE(V )− α− β)

}
(4.13)

D′(1) = −λE(I)(α + β) + B̄(α) {αβ(q + pθ) + λE(I)(α + β)− θαβE(V )} (4.14)

D′′(1) = 2[λE(I)]2
{

(1− α+β
λE(I) ) + B̄(α) [−(q + pθ) + θαE(V ) + θβE(V )− 1

2αβθE(V 2)]

+B̄
′
(α)[−(q + pθ)(α + β)− αβ

λE(I) + αβθE(V )]
}

+λE(I(I − 1))
{
−(α + β) + B̄(α)(α + β − θαβE(V ))

}
(4.15)
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where E(V 2) is the second moment of the vacation time and Q has been found in equation (4.9). Then if
we substitute the values of N ′(1), N ′′(1), D′(1) and D′′(1) from equations (4.12), (4.13), (4.14) and (4.15) in
to equation (4.11), we obtain Lq in a closed form.
Mean waiting time of a customer could be found, as follows

Wq =
Lq

λ
(4.16)

by using Little’s formula.
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The finite spherical Hankel transformation is extended to generalized functions by using orthonormal series expansion

of generalized functions. A complete orthonormal family of spherical Bessel functions is derived and certain spaces of
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spherically symmetric point heat source.

Keywords: Finite spherical Hankel transform, orthonormal series expansion of generalized functions.

2010 MSC: 46F12, 44A15, 46F10, 41A58. c©2012 MJM. All rights reserved.

1 Introduction

Several authors treated the problem of expanding the elements of a distribution space using different or-
thonormal systems. Zemanian [2], [5] constructed the testing function space A for suitable complete orthonor-
mal system {Ψn} of eigenfunctions of the differential operator η. The elements of the dual space A′ are
generalized functions, each of which can be expanded into a series of eigenfunctions Ψn. As a special case of his
general theory he defined the finite Fourier, Hermite, Jacobi and finite Hankel transformations of generalized
functions where the inverse transformations are obtained by using orthonormal series expansions of generalized
functions.

Bhosale and More[3] and Panchal and More[4] extended certain finite integral transformations to generalized
functions by using the method of Zemanian. In this paper the variant of finite spherical Hankel transformation
introduced by Chen I.I.H.[1] is extended it to certain space of generalized functions whose inverse is obtained
in terms of Fourier-spherical Bessel series.

2 Preliminary Results, Notations and Terminology

Let I={x/0 ≤ x ≤ a < ∞} and N0 = N ∪{0}, where N is the set of natural numbers. Consider the self
adjoint differential operator

L0 = (x−1Dxx
2Dxx

−1)

denoting the conventional or generalized partial differential operators, where Dx = ∂
∂x . Let J 1

2
(x) and j0(x)

be the Bessel function of the first kind of order 1/2, and spherical Bessel function of order zero respectively.
Consider the eigenfunction system {ψn(x)}∞n=1 corresponding to the differential operator L0 where ψn(x) =
Cnxj0(λnx), Cn = 2

a[J
′
1
2
(λna)]

√λn

π , and the corresponding eigenvalues λn, n = 1, 2, 3, ... are the positive roots

of j0(λz) = 0 arranged in ascending order of magnitude.We see that,

 L0ψn(x) = −λ2
nψn(x). (2.1)

∗Corresponding author.
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Let L2(I) be the linear space of functions that are absolutely square integrable on I and < f, g > denote
the inner product defined by,

< f, g >= (f, g) =
∫

I

f(x)g(x)dx. (2.2)

Thus,

||f ||22 =< f, f >= (f, f) =
∫

I

|f(x)|2dx (2.3)

is the norm on L2(I). Hence

(ψm(x), ψn(x)) =

{
1 m=n

0 otherwise
(2.4)

and
∫

I
|ψn(x)|2dx = 1 implies that ψn(x) ∈ L2(I) for every n ∈ N0.

We define the finite spherical Hankel transform of f(x) ∈ L2(I) denoted by
SH[f(x)](n) = FSH(n) as,

FSH(n) = (f(x), ψn(x)) =
∫

I

f(x)ψn(x)dx. (2.5)

The following theorem provides the inversion of the transformation defined in (2.5).

Theorem 2.1. Every f(x) ∈ L2(I) admits the Fourier-spherical Bessel series expansion

f(x) =
∞∑

n=1

(f(x), ψn(x))ψn(x) (2.6)

where the series converges point-wise on I.

3 Testing Function Space S −H(I)

For n ∈ N0 we denote by S −H(I) the space all complex valued smooth functions φ(x) defined on I such
that for each non negative integers n and k.
i)

ηk(φ) = η0(Lk
0φ) =

{∫
I

[Lk
0φ(x)]2dx

} 1
2

<∞ (3.1)

ii)
(Lk

0φ, ψn(x)) = (φ,Lk
0ψn(x)) (3.2)

Obviously L2(I) ⊂ S − H(I). The space S − H(I) is a linear space and ηk is a seminorm on S − H(I).
Moreover η0 is a norm on S −H(I). Thus ηk, k ∈ N0 is a countable multi-norm on S −H(I). Also S −H(I)
is complete and hence a Frechet space. Thus S −H(I) turns out to be a testing function space.

Lemma 3.1. Every ψn(x) is a member of S −H(I).

Proof. For each k ∈ N0, from equations (2.1) and (3.1) we have

|ηk[ψn(x)]|2 ≤
∫

I

|Lk
0ψn(x)|2dx

≤ |λn|2k

∫
I

|ψn(x)|2dx

= |λn|2k <∞.

Next since λn are real then for m 6= n, we have

(Lk
0ψn(x), ψm(x)) = λk

n(ψn(x), ψm(x))

= 0 = λk
m(ψn(x), ψm(x)) = (ψn(x), λk

mψm(x))

= (ψn(x), Lk
0ψm(x))

and for m = n

(Lk
0ψn(x), ψn(x)) = (λk

nψn(x), ψn(x)) = (ψn(x), λk
nψn(x)) = (ψn(x), Lk

0ψn(x)).

Hence ψn(x) ∈ S-H(I) for all n ∈ N0.
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Lemma 3.2. Every φ(x) ∈ S −H(I) can be expanded into the series

φ(x) =
∞∑

n=0

(φ(x), ψn(x))ψn(x) (3.3)

where the series converges in S −H(I).

Proof. Let φ(x) ∈ S −H(I) , then Lk
0φ(x) ∈ L2(I) and from theorem (2.1), we have

 Lk
0φ(x) =

∞∑
n=0

(Lk
0φ(x), ψn(x))ψn(x)

=
∞∑

n=0

(φ,Lk
0ψn(x))ψn(x)

=
∞∑

n=0

(φ, ψn(x))λk
nψn(x)

=
∞∑

n=0

(φ, ψn(x))Lk
0ψn(x)

which implies that ηk[φ(x)−
∑N

n=0(φ(x), ψn(x))ψn(x)] → 0 as N →∞ independently. Thus the series in (3.3)
converges to φ(x) in S −H(I).

4 The Generalized Function Space S −H ′(I)

The space of all continuous linear functions on S−H(I), denoted by S−H ′(I) is called the dual of S−H(I)
and members of S−H ′(I) are called generalized functions on I. The number that f ∈ S−H ′(I) assigns to φ ∈
S−H(I) is denoted by < f, φ >. Since the testing function space S−H(I) is complete, so also is S−H ′(I)[5].
Let f(x) be a real valued continuous function locally integrable on I such that∫

I

|f(x)|2dx <∞,

then f generates a member of S −H ′(I) through the definition

< f, φ >=
∫

I

f(x)φ(x)dx. (4.1)

Clearly (4.1) defines a linear function f on S−H(I) and the continuity of f can be verified by using Schwarz’s
inequality. Such members of S−H ′(I) are called regular generalized functions in S−H ′(I). All other generalized
functions in S−H ′(I) are called singular generalized functions. Now we define a generalized differential operator
L0 on S −H ′(I) through the relationship

(f, L0φ) =< f,L0φ >=< L0
′
f, φ >= (L0

′
f, φ) (4.2)

where L0
′

is obtained from L0 by reversing the order in which the differentiation and multiplication by smooth
functions occurring in L0, replacing each Dx by −Dx and then taking the complex conjugate of the result.
But this is precisely the same expression for L0 [[5], sec 9.2, eq 4]. Thus L0 = L0

′
is defined as the generalized

differential operator on S −H ′(I) through the equation

< L0f, φ >=< f,L0φ >, (4.3)

where f ∈ S −H ′(I), φ ∈ S −H(I).
Some properties of S −H(I) and S −H ′(I)

I) D(I) ⊂ S−H(I) ⊂ E (I) and since D(I) is dense in E (I), S−H(I) is also dense in E (I). It follows E ′(I)
is a subspace of S −H ′(I). The convergence of a sequence in D(I) implies its convergence in S −H(I).
The restriction of any f ∈ S −H ′(I) to D(I) is in D ′(I). Moreover the convergence in S −H ′(I) implies
convergence in D ′(I).
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II) For each f ∈ S −H ′(I) there exists a non negative integer r and a positive constant C such that

| < f, φ > | ≤ C max
0≤k≤r

ηk(φ)

for every φ ∈ S −H(I). Here r and C depends on f but not on φ.

III) The mapping φ → L0φ is continuous linear mapping of S −H(I) into itself. It follows that f → L0f is
also a continuous linear mapping of S −H ′(I) whenever f is a regular generalized function in S −H ′(I).

5 Finite Spherical Hankel transformation of generalized functions

We define the finite spherical Hankel transform of generalized function f ∈ L−H ′(I), denoted by SH[f ] =
FSH(n) as,

SH[f(x)](n) = FSH(n) = (f(x), ψn(x)) (5.1)

where ψn(x) ∈ S −H(I) for n ∈ N0. We see that SH is a linear and continuous mapping on S-H’(I), which
maps f ∈ S −H ′(I) into a function FSH(n) defined on N0. The following theorem provides the inversion of
the transformation defined in (5.1).

Theorem 5.1. Let f ∈ S-H’(I), then the series

∞∑
n=0

(f(x), ψn(x))ψn(x) (5.2)

converges to f in S −H ′(I).

Proof. From lemma 3.2 we have for every φ ∈ S − H(I), the series
∑∞

n=0(φ, ψn(x))ψn(x) converges to φ in
S −H(I), then for f ∈ S −H ′(I), we write

(f, φ) = (f,
∞∑

n=0

(φ, ψn(x)), ψn(x))

=
∞∑

n=0

(φ, ψn(x))(f, ψn(x))

=
∞∑

n=0

(f, ψn(x))(ψn(x), φ(x))

=
∞∑

n=0

((f, ψn(x))ψn(x), φ(x))

=

( ∞∑
n=0

(f, ψn(x))ψn(x), φ(x)

)
.

Thus the series
∑∞

n=0(f, ψn(x))ψn(x) converges weakly to f in S-H’(I).

The above theorem lead to define the inverse of the finite spherical Hankel transformation of f ∈ S −H ′(I),
denoted by SH−1FSH(n) = f(x), as

SH−1FSH(n) = f(x) =
∞∑

n=0

FSH(n)ψn(x)

=
∞∑

n=0

(f(x), ψn(x))ψn(x).

(5.3)

Theorem 5.2. (Uniqueness Theorem): Let f, g ∈ S-H’(I) are such that
SH[f ](n) = FSH(n) = GSH(n) = SH[g](n) for every n ∈ N0, then f = g in the sense of equality in S −H ′(I).
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Proof. Let φ ∈ S −H(I), and f, g ∈ S −H ′(I) then

< f, φ > − < g, φ > =<
∞∑

n=0

(f, ψn(x))ψn(x), φ(x) >

− <
∞∑

n=0

(g, ψn(x))ψn(x), φ(x) >

=<
∞∑

n=0

FSH(n)ψn(x), φ(x) >

− <
∞∑

n=0

GSH(n)ψn(x), φ(x) >

=<
∞∑

n=0

[FSH(n)− GSH(n)]ψn(x), φ(x) >

= 0

for all n ∈ N0. Hence f = g in S −H ′(I).

6 An Operational Calculus

Let f(x) ∈ S−H ′(I), ψn(x) ∈ S−H(I) and since the differential operator L0 is a continuous linear mapping
of S −H ′(I) into itself, then from equation (4.3), we have

SH[Lk
0f ](n) =< Lk

0f, ψn(x) > =< f,Lk
0ψn(x) >

=< f,−λ2k
n ψn(x) >

= −λ2k
n < f, ψn(x) >

= −λ2k
n SH[f ](n)

= −λ2k
n FSH(n).

(6.1)

We can use this fact to solve the distributional differential equations of the form

P (L0)u = g (6.2)

where P is a polynomial and the given g and unknown u are the generalized functions in S-H’(I). Applying the
finite spherical Hankel transformation defined in (5.1) to the differential equation (6.2), we get

P (−λ2
n)SH[u](n) = SH[g](n), n ∈ N0. (6.3)

If P (−λ2
n) 6= 0 for all n ∈ N0, we divide (6.3) by P (−λ2

n) and apply inverse finite spherical Hankel transform
defined in (5.3), and get

u(x) =
∞∑

n=0

SH[g](n)
P (−λ2

n)
ψn(x) (6.4)

where the series converges in S − H ′(I). In view of Theorem (5.1) and (5.2) the solution u(x) in S − H ′(I)
exists and is unique.

7 Application of finite spherical Hankel transform

The propagation of heat released from a spherically symmetric point heat source is governed by the heat
conduction equation of the form

x−1 ∂
2(xu)
∂x2

= k−1 ∂u

∂t
(7.1)
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where k = K/ρCν is the thermal diffusivity for conductivity K, ρ is density, and Cν is the heat capacity,
respectively. We consider the folllowing initial and boundary conditions:

u(x, t) = f(x) when t = 0 at x = 0;

u(x, t) = 0 at x = a, t > 0.

(7.2)

We now find the generalized solution u(x, t) of this problem in the space S−H ′(I). Multiplying equation (7.1)
by x2, substituting u = x−1v(x, t) and then multiplying by x−1 we get

x−1(x2 ∂
2

∂x2
+ 2x

∂

∂t
)(x−1v) = (1/k)

∂v

∂t
(7.3)

Now applying the finite spherical Hankel transform defined in (5.1) to (7.3) we get

dVSH

dt
+ λ2

nkVSH = 0, (7.4)

where VSH is a finite spherical Hankel transform of v(x, t). The solution of this equation is given by

VSH(λn, t) = Cexp(−λ2
nkt) (7.5)

where the constant C can determined from the inial and boundary conditions given in (7.2) . Hence we have

VSH(λn, t) = FSH(n)exp(−λ2
nkt) (7.6)

where FSH(n) is the finite spherical Hankel transform of f(t). Applying inverse finite spherical Hankel transform
defined in (5.3), we get

v(x) =
∞∑

n=0

FSH(n)exp(−λ2
nkt)ψn(x) (7.7)

where the series converges in S − H ′(I). In view of Theorem (5.1) and (5.2) the solution v(x) in S − H ′(I)
exists and is unique. Thus u(x, t) = x−1v(x, t) is the required solution.

References

[1] I. Isaac, H. Chen, Modified Fourier-Bessel Series and finite Spherical Hankel Transform, Int. J. Math.
Educ. Sci. Technology, 13(3)(1982), 281–283.

[2] A. H. Zemanian, Orthonormal series expansions of certain distributions and distributional transform
calculus, J. Math. Anal. Appl., 14(1966), 263–275.

[3] S. D. Bhosale and S. V. More, On Marchi-Zgrablich transformation of generalized functions, IMA J.
Appl. Maths., 33(1984), 33–42.

[4] S. K. Panchal and S. V. More, On modified Marchi-Zgrablich transformation of generalized functions,
J. Indian Acad. Math., 17(1)(1995), 13–26.

[5] A. H. Zemanian, Generalized Integral Transformations, Interscience Publisher, New York, 1968.

Received: November 14, 2012; Accepted: April 17, 2013

UNIVERSITY PRESS


	Introduction
	Known Theorems
	Main Theorem
	Required Lemmas
	Proof of Theorem 3.1
	Introduction
	Preliminaries
	Existence Results
	Example
	Introduction
	Preliminaries
	Application to a random nonlinear integral equation
	Introduction
	Preliminaries
	Existence of positive periodic solutions
	Introduction
	Mathematical description of the queuing model
	Definitions and Equations governing the system
	The steady state analysis
	Introduction
	Preliminary Results, Notations and Terminology
	Testing Function Space S-H(I)
	The Generalized Function Space S-H'(I)
	Finite Spherical Hankel transformation of generalized functions
	An Operational Calculus
	Application of finite spherical Hankel transform

