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On a class of fractional q-Integral inequalities

Z. Dahmania,∗and A. Benzidaneb

a,bLaboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB University of Mostaganem, Algeria.

Abstract

In the present paper, we use the fractional q-calculus to generate some new integral inequalities for some monotonic

functions. Other fractional q-integral results, using convex functions, are also presented.

Keywords: Convex function, fractional q-calculus, q-Integral inequalities.

2010 MSC: 26D15. c©2012 MJM. All rights reserved.

1 Introduction

The study of the q-integral inequalities play a fundamental role in the theory of differential equations.
We refer the reader to [3, 8, 9, 14] for further information and applications. To motivate our work, we shall
introduce some important results. The first one is given in [13], where Ngo et al. proved that for any positive
continuous function f on [0, 1] satisfying

∫ 1

x
f(τ)dτ ≥

∫ 1

x
τdτ, x ∈ [0, 1], and for δ > 0, the inequalities

∫ 1

0

fδ+1(τ)dτ ≥
∫ 1

0

τ δf(τ)dτ (1.1)

and ∫ 1

0

fδ+1(τ)dτ ≥
∫ 1

0

τfδ(τ)dτ (1.2)

are valid.
In [11], W.J. Liu, G.S. Cheng and C.C. Li proved that

∫ b

a

fα+β(τ)dτ ≥
∫ b

a

(τ − a)αfβ(τ)dτ, (1.3)

for any α > 0, β > 0 and for any positive continuous function f on [a, b], such that∫ b

x

fγ(τ)dτ ≥
∫ b

x

(τ − a)γdτ ; γ := min(1, β), x ∈ [a, b].

Recently, Liu et al. [12] proved another interesting form of integral result, and the following inequality∫ b

a
fβ(τ)dτ∫ b

a
fγ(τ)dτ

≥
∫ b

a
(τ − a)δfβ(τ)dτ∫ b

a
(τ − a)δfγ(τ)dτ

, β ≥ γ > 0, δ > 0 (1.4)

∗Corresponding author.
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( where f is a positive continuous and decreasing function on [a, b]), was proved in this paper. Several inter-
esting inequalities can be found in [12].

Many researchers have given considerable attention to (1),(3) and (4) and a number of extensions and
generalizations appeared in the literature (e.g. [4, 5, 6, 7, 10, 11, 15, 16]).

The main purpose of this paper is to establish some new fractional q-integral inequalities on the specific
time scales Tt0 = {t : t = t0q

n, n ∈ N} ∪ {0}, where t0 ∈ R, and 0 < q < 1. Other fractional q-integral results,
involving convex functions, are also presented. Our results have some relationships with those obtained in [12].

2 Notations and Preliminaries

In this section, we provide a summary of the mathematical notations and definitions used in this paper.
For more details, one can consult [1, 2].
Let t0 ∈ R. We define

Tt0 := {t : t = t0q
n, n ∈ N} ∪ {0}, 0 < q < 1. (2.5)

For a function f : Tt0 → R, the ∇ q-derivative of f is:

∇qf(t) =
f(qt)− f(t)

(q − 1)t
(2.6)

for all t ∈ T \ {0} and its ∇q-integral is defined by:∫ t

0

f(τ)∇τ = (1− q)t
∞∑

i=0

qif(tqi) (2.7)

The fundamental theorem of calculus applies to the q-derivative and q-integral. In particular, we have:

∇q

∫ t

0

f(τ)∇τ = f(t). (2.8)

If f is continuous at 0, then ∫ t

0

∇qf(τ)∇τ = f(t)− f(0). (2.9)

Let Tt1 , Tt2 denote two time scales. Let f : Tt1 → R be continuous let g : Tt1 → Tt2 be q-differentiable, strictly
increasing, and g(0) = 0. Then for b ∈ Tt1 , we have:∫ b

0

f(t)∇qg(t)∇t =
∫ g(b)

0

(f ◦ g−1)(s)∇s. (2.10)

The q-factorial function is defined as follows:
If n is a positive integer, then

(t− s)(n) = (t− s)(t− qs)(t− q2s)...(t− qn−1s). (2.11)

If n is not a positive integer, then

(t− s)(n) = tn
∞∏

k=0

1− ( s
t )q

k

1− ( s
t )q

n+k
. (2.12)

The q-derivative of the q-factorial function with respect to t is

∇q(t− s)(n) =
1− qn

1− q
(t− s)(n−1), (2.13)
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and the q-derivative of the q-factorial function with respect to s is

∇q(t− s)(n) = −1− qn

1− q
(t− qs)(n−1). (2.14)

The q-exponential function is defined as

eq(t) =
∞∏

k=0

(1− qkt), eq(0) = 1 (2.15)

The fractional q-integral operator of order α ≥ 0, for a function f is defined as

∇−α
q f(t) = 1

Γq(α)

∫ t

0
(t− qτ)α−1f(τ)∇τ ; α > 0, t > 0, (2.16)

where Γq(α) := 1
1−q

∫ 1

0
( u
1−q )α−1eq(qu)∇u.

3 Main Results

Theorem 3.1. Let f and g be two positive and continuous functions on Tt0 such that f is decreasing and g is
increasing on Tt0 . Then for all α > 0, β ≥ γ > 0, δ > 0, we have

∇−α
q [fβ(t)]

∇−α
q [fγ(t)]

≥
∇−α

q [gδfβ(t)]

∇−α
q [gδfγ(t)]

, t > 0. (3.17)

Proof. Let us consider

H(τ, ρ) :=
(
gδ(ρ)− gδ(τ)

)(
fβ(τ)fγ(ρ)− fγ(τ)fβ(ρ)

)
, τ, ρ ∈ (0, t), t > 0. (3.18)

We have

H(τ, ρ) ≥ 0. (3.19)

Hence, we get ∫ t

0

(t− qτ)(α−1)

Γq(α)
H(τ, ρ)∇τ = gδ(ρ)fγ(ρ)∇−α

q [fβ(t)] + fβ(ρ)∇−α
q [gδ(t)fγ(t)]

−fγ(ρ)∇−α
q [gδ(t)fβ(t)]− gδ(ρ)fβ(ρ)∇−α

q [fγ(t)] ≥ 0.

(3.20)

Consequently,

2−1

∫ t

0

∫ t

0

(t− qρ)(α−1)(t− qτ)(α−1)

Γ2
q(α)

H(τ, ρ)∇τ∇ρ = ∇−α
q [fβ(t)]∇−α

q [gδ(t)fγ(t)]

−∇−α
q [fγ(t)]∇−α

q [gδ(t)fβ(t)) ≥ 0.

(3.21)

Theorem 3.1 is thus proved.

Another result which generalizes Theorem 3.1 is described in the following theorem:

Theorem 3.2. Suppose that f and g are two positive and continuous functions on Tt0 , such that f is decreasing
and g is increasing on Tt0 . Then for all α > 0, ω > 0, β ≥ γ > 0, δ > 0, we have

∇−α
q [fβ(t)]∇−ω

q [gδfγ(t)] +∇−ω
q [fβ(t)]∇−α

q [gδfγ(t)]

∇−α
q [fγ(t)]∇−ω

q [gδfβ(t)] +∇−ω
q [fγ(t)]∇−α

q [gδfβ(t)]
≥ 1; t > 0. (3.22)

Proof. The relation (3.20) allows us to obtain∫ t

0

∫ t

0

(t− qρ)(ω−1)(t− qτ)(α−1)

Γq(ω)Γq(α)
H(τ, ρ)∇τ∇ρ = ∇−α

q [fβ(t)]∇−ω
q [gδfγ(t)]

+∇−ω
q [fβ(t)]∇−α

q [gδfγ(t)]−∇−α
q [fγ(t)]∇−ω

q [gδfβ(t))−∇−ω
q [fγ(t)]∇−α

q [gδfβ(t)] ≥ 0,

(3.23)

for any ω > 0.

Hence, we have (3.22).
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Remark 3.1. It is clear that Theorem [3.1] would follow as a special case of Theorem [3.2] for α = ω.

The third result is given by the following theorem:

Theorem 3.3. Let f and g be two positive continuous functions on Tt0 , such that(
fδ(τ)gδ(ρ)− fδ(ρ)gδ(τ)

)(
fβ−γ(τ)− fβ−γ(ρ)

)
≥ 0; τ, ρ ∈ (0, t), t > 0. (3.24)

Then we have

∇−α
q [fδ+β(t)]

∇−α
q [fδ+γ(t)]

≥
∇−α

q [gδfβ(t)]

∇−α
q [gδfγ(t)]

, (3.25)

for any α > 0, β ≥ γ > 0, δ > 0.

Proof. We consider the quantity:

K(τ, ρ) :=
(
fδ(τ)gδ(ρ)− fδ(ρ)gδ(τ)

)(
fγ(ρ)fβ(τ)− fγ(τ)fβ(ρ)

)
; τ, ρ ∈ (0, t), t > 0

and we use the same arguments as in the proof of Theorem [3.1].

Using two fractional parameters, we obtain the following generalization of Theorem [3.3]:

Theorem 3.4. Let f and g be two positive continuous functions on Tt0 , such that(
fδ(τ)gδ(ρ)− fδ(ρ)gδ(τ)

)(
fβ−γ(τ)− fβ−γ(ρ)

)
≥ 0; τ, ρ ∈ (0, t), t > 0. (3.26)

Then for all α > 0, ω > 0, β ≥ γ > 0, δ > 0, we have

∇−α
q [fδ+β(t)]∇−ω

q [gδfγ(t)] +∇−ω
q [fδ+β(t)]∇−α

q [gδfγ(t)]

∇−α
q [fγ+δ(t)]∇−ω

q [gδfβ(t)] +∇−ω
q [fγ+δ(t)]∇−α

q [gδfβ(t)]
≥ 1. (3.27)

Remark 3.2. Applying Theorem [3.4], for α = ω, we obtain Theorem [3.3].

Involving convex functions, we have the following result:

Theorem 3.5. Let f and h be two positive continuous functions on Tt0and f ≤ h on Tt0 . If f
h is decreasing

and f is increasing on [0,∞[, then for any convex function φ;φ(0) = 0, the inequality

∇−α
q (f(t))

∇−α
q (h(t))

≥
∇−α

q (φ(f(t)))

∇−α
q (φ(h(t)))

, t > 0, α > 0 (3.28)

is valid.

Proof. Using the fact that on Tt0 ,
φ(f(.))

f(.) is an increasing function and f
h is a decreasing function, we can write

L(τ, ρ) ≥ 0, τ, ρ ∈ (0, t), t > 0, (3.29)

where

L(τ, ρ) :=
φ(f(τ))

f(τ)
f(ρ)h(τ) +

φ(f(ρ))
f(ρ)

f(τ)h(ρ)

−φ(f(ρ))
f(ρ) f(ρ)h(τ)− φ(f(τ))

f(τ) f(τ)h(ρ), τ, ρ ∈ (0, t), t > 0.

(3.30)

Multiplying both sides of (3.29) by (t−qτ)(α−1)

Γq(α) , then integrating the resulting inequality with respect to τ over
(0, t), yields

f(ρ)∇−α
q

[φ(f(t))
f(t)

h(t)
]

+
φ(f(ρ))

f(ρ)
h(ρ)∇−α

q f(t)

−φ(f(ρ))
f(ρ) f(ρ)∇−α

q h(t)− h(ρ)∇−α
q

[
φ(f(t))

f(t) f(t)
]
≥ 0.

(3.31)
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With the same arguments as before, we obtain

∇−α
q f(t)

[φ(f(t))
f(t)

h(t)
]
−∇−α

q h(t)∇−α
q

[φ(f(t))
f(t)

f(t)
]
≥ 0. (3.32)

On the other hand, we have

φ(f(τ))
f(τ)

≤ φ(h(τ))
h(τ)

, τ ∈ (0, t), t > 0. (3.33)

Therefore,

(t− qτ)(α−1)

Γq(α)
h(τ)

φ(f(τ))
f(τ)

≤ (t− qτ)(α−1)

Γq(α)
h(τ)

φ(h(τ))
h(τ)

, τ ∈ (0, t), t > 0. (3.34)

The inequality (3.34) implies that

∇−α
q

[φ(f(t))
f(t)

h(t)
]
≤ ∇−α

q

[φ(h(t))
h(t)

h(t)
]
. (3.35)

Combining (3.32) and (3.35), we obtain (3.28).

To finish, we present to the reader the following result which generalizes the previous theorem:

Theorem 3.6. Let f and h be two positive continuous functions on on Tt0 and f ≤ h on Tt0 . If f
h is decreasing

and f is increasing on Tt0 , then for any convex function φ;φ(0) = 0, we have

∇−α
q (f(t))∇−ω

q (φ(h(t))) +∇−ω
q (f(t))∇−α

q (φ(h(t)))

∇−α
q (h(t))∇−ω

q (φ(f(t))) +∇−ω
q (h(t))∇−α

q (φ(f(t)))
≥ 1, α > 0, ω > 0, t > 0. (3.36)

Proof. The relation (3.31) allows us to obtain

∇−ω
q f(t)Jα

[φ(f(t))
f(t)

h(t)
]

+∇−ω
q

[φ(f(t))
f(t)

h(t)
]
∇−α

q f(t)

−∇−ω
q

[
φ(f(t))

f(t) f(t)
]
∇−α

q h(t)−∇−ω
q h(t)∇−α

q

[
φ(f(t))

f(t) f(t)
]
≥ 0.

(3.37)

On the other hand, we have:

(t− qτ)(ω−1)

Γq(ω)
h(τ)

φ(f(τ))
f(τ)

≤ (t− qτ)(α−1)

Γq(ω)
h(τ)

φ(h(τ))
h(τ)

, τ ∈ [0, t], t > 0. (3.38)

Integrating both sides of (3.38) with respect to τ over (0, t), yields

∇−ω
q

[φ(f(t))
f(t)

h(t)
]
≤ ∇−ω

q

[φ(h(t))
h(t)

h(t)
]
. (3.39)

By (3.35), (3.37) and (3.39), we get (3.36).

Remark 3.3. Applying Theorem [3.6], for α = ω, we obtain Theorem [3.5].
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Abstract

In the present paper, we define the nabla discrete Sumudu transform (S-transform) and present some of
its basic properties. We obtain the nabla discrete Sumudu transform of fractional sums and differences. We
apply this transform to solve some fractional difference equations with initial value problems. Finally, using
S-transforms, we prove that discrete Mittag-Leffler function is the eigen function of Caputo type fractional
difference operator ∇α.

Keywords: Difference equation, fractional difference, Caputo type, initial value problem, Sumudu transform.
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1 Introduction

In the literature there are numerous integral transforms that are widely used in physics, astronomy, as
well as engineering. In order to solve the differential equations, the integral transforms were extensively used
and thus there are several works on the theory and application of integral transforms such as the Laplace,
Fourier, Mellin, and Hankel, to name but a few. In the sequence of these transforms in early 90s, Watugala
[13] introduced a new integral transform named the Sumudu transform and further applied it to the solution
of ordinary differential equation in control engineering problems. The Sumudu transform is defined over the
set of the functions

A = {f(t) : ∃M, τ1, τ2, |f(t)| < Me
t

τj , if t ∈ (−1)j × [0,∞)}

by the following formula

G(u) = S[f(t);u)] =
∫ ∞

0

f(ut)e−tdt, t ∈ (−τ1, τ2).

The existence and uniqueness and properties of the Sumudu transform and its derivatives were discussed in [2,
3, 4, 5, 8, 9, 11]. Although the Sumudu transform of a function has a deep connection to its Laplace transform,
the main advantage of the Sumudu transform is the fact that it may be used to solve problems without resorting
to a new frequency domain because it preserves scales and unit properties. By these properties, the Sumudu
transform may be used to solve intricate problems in engineering and applied sciences that can hardly be
solved when the Laplace transform is used. Moreover, some properties of the Sumudu transform make it more
advantageous than the Laplace transform.

Fractional calculus has gained importance during the past three decades due to its applicability in diverse
fields of science and engineering, such as, viscoelasticity, diffusion, neurology, control theory, and statistics.
The analogous theory for discrete fractional calculus was initiated and properties of the theory of fractional
sums and differences were established. Recently, a series of papers continuing this research has appeared in

∗Corresponding author.

E-mail addresses: j.jaganmohan@hotmail.com (J.Jagan Mohan) and dixitgvsr@hotmail.com (G.V.S.R.Deekshitulu)
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which G.V.S.R.Deekshitulu and J.Jagan Mohan discussed some basic inequalities, comparison theorems and
qualitative properties of the solutions of fractional difference equations [6, 7].

Now, we introduce some basic definitions and results concerning nabla discrete fractional calculus. Through-
out the article, for notations and terminology we refer [1]. Let u(n) : N+

0 → R and m−1 < α < m where α ∈ R
and m ∈ Z+.

Definition 1.1. The fractional sum operator of order α is defined as

∇−αu(n) =
n−1∑
j=0

(
j + α− 1

j

)
u(n− j) =

n∑
j=1

(
n− j + α− 1

n− j

)
u(j). (1.1)

Definition 1.2. The Caputo type fractional difference operator of order α is defined as

∇αu(n) = ∇α−m[∇mu(n)] =
n−1∑
j=0

(
j − α + m− 1

j

)
∇mu(n− j) (1.2)

=
n∑

j=1

(
n− j − α− 1

n− j

)
u(j)−

m−1∑
k=0

(
n + k − α− 1

n− 1

)
[∇ku(j)]j=0. (1.3)

2 S-Transforms and Properties

Now we initiate the study of S-transforms in the present section. Let u(n), v(n) : N+
0 → R.

Definition 2.1. The S-transform of u(n) is defined as

S[u(n)] =
1
z

∞∑
j=1

u(j)(1− 1
z
)j−1 (2.1)

for each z ∈ C \ {0} for which the series converges.

Definition 2.2. A function u(n) is of exponential order r, r > 0 if there exists a constant A > 0 such that
|u(n)| ≤ Ar−n for sufficiently large n.

The following lemma discusses the convergence of S-transform.

Lemma 2.1. Suppose u(n) is of exponential order r, r > 0. Then S[u(n)] exists for all z ∈ C \ {0} such that
|1− 1

z | < r.

Now we derive some important properties of S-transforms.

Theorem 2.1. (Linearity) For any constants a and b,

S[au(n) + bv(n)] = aS[u(n)] + bS[v(n)]. (2.2)

The following lemma relates the shifted S-transform to the original.

Lemma 2.2. (Shifting Theorem) Let k ∈ N+
0 and let u(n) and v(n) are of exponential order r, r > 0. Then

for all z ∈ C \ {0} such that |1− 1
z | < r,

S[u(n− k)] = (1− 1
z
)kS[u(n)]. (2.3)

and
S[u(n + k)] = (1− 1

z
)−k 1

z

[
zS[u(n)]− u(1)− (1− 1

z
)1u(2)− .....− (1− 1

z
)k−1u(k)

]
. (2.4)

Definition 2.3. The convolution of u(n) and v(n) is defined as

u(n) ∗ v(n) =
n∑

m=1

u(m)v(n−m + 1). (2.5)
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Lemma 2.3. (Convolution Theorem) Let u(n) and v(n) are of exponential order r, r > 0. Then for all
z ∈ C \ {0} such that |1− 1

z | < r,

S[u(n) ∗ v(n)] = zS[u(n)]S[v(n)]. (2.6)

Proof. Consider

S[u(n) ∗ v(n)] =
1
z

∞∑
j=1

[u(j) ∗ v(j)] (1− 1
z
)j−1

=
1
z

∞∑
j=1

[ j∑
m=1

u(m)v(j −m + 1)
]

(1− 1
z
)j−1

= z
[1
z

∞∑
m=1

u(m)(1− 1
z
)m−1

][1
z

∞∑
j=1

v(j −m + 1)(1− 1
z
z)j−m

]
.

Take j −m + 1 = i then i varies from 1 to ∞. Then

S[u(n) ∗ v(n)] = z
[1
z

∞∑
m=1

u(m)(1− z)m−1
][1

z

∞∑
i=1

v(i)(1− z)i−1
]

= zS[u(n)]S[v(n)].

Henry L Gray and Nien fan Zhang [10] defined the following function, which is very useful in solving initial
value problems

Definition 2.4. For any complex numbers α and β, (α)β be defined as follows.

(α)β =


Γ(α+β)

Γ(α) when α and α + β are neither zero nor negative integers,
1 when α = β = 0,
0 when α = 0, β is neither zero nor negative integer,
undefined otherwise.

Remark 2.1. It is clear from the above definition that

(α)β = Γ(β + 1)
(

α + β − 1
α− 1

)
= Γ(β + 1)

(
α + β − 1

β

)
. (2.7)

Lemma 2.4. Let a ∈ R \ {.....,−2,−1} and n ∈ N+
0 . Then for all z ∈ C \ {0} such that |1− 1

z | < r,

S[(n)a] = Γ(a + 1)za. (2.8)

Proof. Consider

S[(n)a] = S
[Γ(n + a)

Γ(n)

]
=

1
z

∞∑
j=1

Γ(j + a)
Γ(j)

(1− 1
z
)j−1

=
Γ(a + 1)

z

∞∑
j=1

(
j + a− 1

j − 1

)
(1− 1

z
)j−1

=
Γ(a + 1)

z

[
1 + (1 + a) +

(1 + a)(2 + a)
2!

(1− 1
z
)1 + .....

]
=

Γ(a + 1)
z

[1− (1− 1
z
)]−a−1 = Γ(a + 1)za.

Remark 2.2. From the above lemma, we get

S
[(n + a− 1

n− 1

)]
= za. (2.9)
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Lemma 2.5. Suppose u(n) is of exponential order r, r > 0 and let α ∈ R. Then for all z ∈ C \ {0} such that
|1− 1

z | < r,

S
[
∇−αu(n)

]
= zαS[u(n)]. (2.10)

Proof. Consider

S
[
∇−αu(n)

]
= S

[ n∑
j=1

(
n− j + α− 1

n− j

)
u(j)

]
=

1
Γ(α)

S
[ n∑

j=1

Γ(n− j + α)
Γ(n− j + 1)

u(j)
]

=
1

Γ(α)
S

[ n∑
j=1

(n− j + 1)α−1u(j)
]

=
1

Γ(α)
S

[
u(n) ∗ (n)α−1

]
=

z

Γ(α)
S[u(n)]S

[
(n)α−1

]
= zαS[u(n)].

Lemma 2.6. Suppose u(n) is of exponential order r, r > 0 and let α ∈ R, m ∈ Z+ such that m− 1 < α < m.
Then for all z ∈ C \ {0} such that |1− 1

z | < r,

S
[
∇αu(n)

]
= z−α

[
S[u(n)]−

m−1∑
k=0

zk[∇ku(j)]j=0

]
. (2.11)

Proof. Consider

S
[
∇αu(n)

]
= S

[ n∑
j=1

(
n− j − α− 1

n− j

)
u(j)−

m−1∑
k=0

(
n + k − α− 1

n− 1

)
[∇ku(j)]j=0

]
= S1 + S2

where

S1 = S
[ n∑

j=1

(
n− j − α− 1

n− j

)
u(j)

]
= z−αS[u(n)]

and

S2 = S
[ m−1∑

k=0

(
n + k − α− 1

n− 1

)
[∇ku(j)]j=0

]
=

m−1∑
k=0

S
[(n + k − α− 1

n− 1

)]
[∇ku(j)]j=0.

Now we consider

S
[(n + k − α− 1

n− 1

)]
=

1
Γ(k − α + 1)

S
[
(n)k−α

]
= zk−α.

Thus

S
[
∇αu(n)

]
= z−α

[
S[u(n)]−

m−1∑
k=0

zk[∇ku(j)]j=0

]
.

3 Solutions of fractional difference equations using S-transforms

In this section, we will illustrate the possible use of the S-transform by applying it to solve some fractional
order initial value problems.

In 2003, Atsushi Nagai [12] defined the discrete Mittag-Leffler function

Fα(a, n) =
∞∑

j=0

[
aj

(
n + jα− 1

n− j

)]
(3.1)

which is a generalization of nabla exponential function on the time scale of integers. He also proved that
Fα(a, n) is an eigen function of Caputo type fractional difference operator defined in (1.3), that is,

∇αFα(a, n) = aFα(a, n). (3.2)

Now we prove the same using S-transforms.



J.Jagan Mohan et al. / Solutions of fractional ... 11

Example 3.1. Let u(n) is of exponential order r, r > 0 and let α ∈ R such that 0 < α < 1. Then the solution
of

∇αu(n) = au(n), (3.3)

u(0) = a0 (3.4)

is Fα(a, n), where a and a0 are constants.

Solution: Taking S-transforms on both sides of (3.3), we have

S[∇αu(n)] = aS[u(n)]

or z−α
[
S[u(n)]− u(0)

]
= aS[u(n)]

or S[u(n)] = a0

[ z−α

z−α − a

]
or S[u(n)] = a0

[
1 + azα + a2z2α + ................

]
.

Applying inverse S-transforms on both sides, we get

u(n) = a0S
−1

[
1 + azα + a2z2α + ................

]
= a0

[
S−1

(
1
)

+ aS−1
(
zα

)
+ a2S−1

(
z2α

)
+ ................

]
= a0

[
1 + a

(
n + α− 1

n− 1

)
+ a2

(
n + 2α− 1

n− 2

)
+ ................

]
or u(n) = a0

∞∑
j=0

[
aj

(
n + jα− 1

n− j

)]
= a0Fα(a, n).

Thus the solution of (3.3) is the discrete Mittag-Leffler function defined in (3.1).

Remark 3.3. It is clear from the above example that

S
[
Fα(a, n)

]
=

z−α

z−α − a
. (3.5)

Example 3.2. Let u(n) and v(n) are of exponential order r, r > 0 and let α ∈ R such that 0 < α < 1. Find
the solution of

∇αu(n) = av(n), (3.6)

u(0) = a0 (3.7)

where a and a0 are constants.

Solution: Taking S-transforms on both sides of (3.6), we have

z−α
[
S[u(n)]− u(0)

]
= aS[v(n)]

or S[u(n)] = a0 + a
[
S[v(n)]× zα

]
.

Applying inverse S-transforms on both sides and applying convolution theorem, we get

u(n) = a0 + S−1
[
z × S[v(n)]× zα−1

]
= a0 +

[
v(n) ∗

(
n + α− 2

n− 1

)]
or u(n) = a0 +

n∑
j=1

[
v(j)

(
n− j + α− 1

n− j

)]
.
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Example 3.3. Let u(n) and v(n) are of exponential order r, r > 0 and let α ∈ R such that 0 < α < 1. Find
the solution of

∇αu(n) = au(n) + bv(n), (3.8)

u(0) = a0 (3.9)

where a, b and a0 are constants.

Solution: Taking S-transforms on both sides of (3.8), we have

z−α
[
S[u(n)]− u(0)

]
= aS[u(n)] + bS[v(n)]

or S[u(n)] = a0

[ z−α

z−α − a

]
+ b

[
S[v(n)]× zα

]
.

Applying inverse S-transforms on both sides and applying convolution theorem, we get

u(n) = a0S
−1

[ z−α

z−α − a

]
+ bS−1

[
z × S[v(n)]× zα−1

]
= a0Fα(a, n) + b

n∑
j=1

[
v(j)

(
n− j + α− 1

n− j

)]
.
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Abstract

In this paper we are concerned with the definition and some properties of the discontinuous dynamical systems

generated by piecewise constant arguments. Then we study two discontinuous dynamical system of the Logistic equation

as an example. The local stability at the fixed points is studied. The bifurcation analysis and chaos are discussed. In

addition, we compare our results with the discrete dynamical systems of the Logistic equation.
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1 Introduction

The discontinuous dynamical systems generated by the retarded functional equations have been defined in
[1]-[4]. The dynamical systems with piecewise constant arguments have been studied in [5]-[8] and the references
therein. In this work we define the discontinuous dynamical systems generated by functional equations with
piecewise constant arguments. The dynamic properties of two discontinuous dynamical systems of the Logistic
equation will be discussed. Comparison with the corresponding discrete dynamical systems of the Logistic
equation

xn = ρxn−1(1− xn−1), n = 1, 2, 3, ...,

and
xn+1 = ρxn(1− xn−1), n = 1, 2, 3, ...,

will be given.

1.1 Piecewise constant arguments

Consider the problem of functional equation with piecewise constant arguments

x(t) = f(x(r[
t

r
])), t > 0, r > 0. (1.1)

x(0) = x0, (1.2)

where [.] denotes the greatest integer function.
Let n = 1, 2, 3, ... and t ∈ [nr, (n + 1)r), then

x(t) = f(x(nr)), t ∈ [nr, (n + 1)r).

∗Corresponding author.

E-mail addresses: amasayed@gmail.com (A.M.A. El-Sayed) and samastars9@gmail.com (S.M. Salman).
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Let r = 1 and take the limit as t → n + 1, we get

xn+1 = f(xn), n = 0, 1, 2, ...

This shows that the discrete dynamical system

xn = f(n, xn−1), n = 1, 2, 3, ..., T.

x(0) = xo,

is a special case of the problem of functional equation with piecewise constant arguments (1.1)-(1.2).
Now let t ∈ [0, r), then t

r ∈ [0, 1), x(r[ t
r ]) = x(0) and the solution of (1.1)-(1.2) is given by

x(t) = x1(r) = f(x(0)), t ∈ [0, r),

with
x1(r) = lim

t→r−
x(t) = f(x(0)).

For t ∈ [r, 2r), then t
r ∈ [1, 2), x(r[ t

r ]) = x(r) and the solution of (1.1)-(1.2) is given by

x(t) = x2(t) = f(x1(r)), t ∈ [r, 2r).

Repeating the process we can easily deduce that the solution of (1.1)-(1.2) is given by

x(t) = x(n+1)(t) = f(xn(nr)), t ∈ [nr, (n + 1)r),

which is continuous on each subinterval [k, (k + 1)), k = 1, 2, 3, ..., n, but

lim
t→kr+

x(k+1)(t) = f(xk(kr)) 6= xk(kr).

Hence the problem (1.1)-(1.2) is piecewise continuous which we call it “discontinuous” and we have proved the
following theorem

Theorem 1.1. The solution of the problem of functional equation with piecewise constant arguments (1.1)-(1.2)
is discontinuous (sectionally continuous) even if the function f is continuous.

Now let f : [0, T ]× Rn+1 → R and r ∈ R+. Then, the following definition can be given

Definition 1.1. The discontinuous dynamical system generated by piecewise constant arguments is the problem

x(t) = f(t, x(r[
t

r
]), x(r[

t− 1
r

]), ..., x(r[
t− n

r
])), t ∈ [0, T ], (1.3)

x(t) = x0, t ≤ 0. (1.4)

Definition 1.2. The fixed points of the discontinuous dynamical system (1.3) and (1.4) are the solution of the
equation

x(t) = f(t, x, x, ..., x).

2 Main problems

Consider the discontinuous dynamical systems generated by piecewise constant arguments of Logistic equa-
tion

x(t) = ρx(r[
t

r
])(1− x(r[

t

r
])), t, r > 0, and x(0) = x0. (2.1)

and
x(t) = ρx(r[

t

r
])(1− x(r[

t− r

r
])), t, r > 0, and x(0) = x0. (2.2)

Here we study the stability at the fixed points. In order to study bifurcation and chaos we take firstly r = 1
and we compare the results with the results of the discrete dynamical systems of Logistic difference equation

xn+1 = ρxn(1− xn), n = 1, 2, 3, ..., and x0 = xo. (2.3)

and
xn+1 = ρxn(1− xn−1) n = 1, 2, 3, ..., and x0 = xo. (2.4)

Secondly, we take some other values of r and T and study some examples.
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2.1 Fixed points and stability

As in the case of discrete dynamical systems, the fixed points of the dynamical systems (2.1) and (2.2) are
the solution to the equation f(x) = x. Thus there are two fixed points which are

(xfixed)1 = 0,

(xfixed)2 = 1− 1
ρ
.

To study the stability of these fixed points we take into account the following theorem.

Theorem 2.1. [9] Let f be a smooth map on R, and assume that x0 is a fixed point of f.
1. If |f ′

(x0)| < 1, then x0 is stable.
2. If |f ′

(x0)| > 1, then x0 is unstable.

Now since in our case f(x) = ρx(1− x), the first fixed point (xfixed)1 = 0 is stable if

|ρ| < 1,

that is, −1 < ρ < 1.
The second fixed point (xfixed)2 = 1− 1

ρ is stable if

|2− ρ| < 1,

that is, 1 < ρ < 3.
Figures (1) and (2) show the trajectories of (2.1) and (2.2) when r = 1 respectively, while Figures (3) and (4)
show the trajectories of (2.3) and (2.4), respectively.

Figure 1: Trajectories of (2.1), r=1. Figure 2: Trajectories of (2.2), r=1.

Figure 3: Trajectories of (2.3). Figure 4: Trajectories of (2.4).
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3 Bifurcation and Chaos

In this section, the numerical experiments show that the dynamical behaviors of the discontinuous dynamical
systems (2.1) and (2.2) change when we change both r and T as follows

1. Take r = 1 and t ∈ [0, 30], in this case the dynamical behaviors of the two dynamical systems (2.1 and
(2.3) are identical (Figure 5).

2. Take r = 1 and t ∈ [0, 30], in this case the dynamical behaviors of the two dynamical systems (2.2) and
(2.4) are identical (Figure 6).

3. Take r = 0.25 and t ∈ [0, 2] in the dynamical system (2.1) (Figure 7).

4. Take r = 0.5 and t ∈ [0, 2] in the dynamical system (2.1) (Figure 8).

5. Take r = 0.25 and t ∈ [0, 3] in the dynamical system (2.2) (Figure 9).

6. Take r = 0.5 and t ∈ [0, 3] in the dynamical system (2.2) (Figure 10).

7. Take r = 0.25 and T = N = 13 in the dynamical system (2.1) (Figure 11).

8. Take r = 0.5 and T = N = 35 in the dynamical system (2.1) (Figure 12).

9. Take r = 0.25 and T = N = 13 in the dynamical system (2.2) (Figure 13).

10. Take r = 0.5 and T = N = 35 in the dynamical system (2.2) (Figure 14).

Figure 5: Bifurcation diagram of the dynam-
ical systems (2.1) with r = 1 and (2.3) where
N = T = 70.

Figure 6: Bifurcation diagram of the dynam-
ical systems (2.2) with r = 1 and (2.4) where
N = T = 70.
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Figure 7: Bifurcation diagram for (2.1), r =
0.25, t = [0, 3].

Figure 8: Bifurcation diagram for (2.1), r =
0.5, t = [0, 3].

Figure 9: Bifurcation diagram for (2.2), r =
0.25, t = [0, 3].

Figure 10: Bifurcation diagram for (2.2), r =
0.5, t = [0, 3].

Figure 11: Bifurcation diagram for (2.1), r =
0.25, T = N = 13.

Figure 12: Bifurcation diagram for (2.1), r =
0.5, T = N = 35.



A.M.A. El-Sayed et al. / Chaos and bifurcation of ... 19

Figure 13: Bifurcation diagram for (2.2), r =
0.25, T = N = 13.

Figure 14: Bifurcation diagram for (2.2), r =
0.5, T = N = 35.

4 Conclusion

The discontinuous dynamical system models generated by piecewise constant arguments have the same
behavior as its discrete version when r = 1.
On the other hand, changing the parameter r together with the time t ∈ [0, T ] affects the chaotic behavior of
the dynamical system generated by the piecewise constant arguments model as it is shown clearly in the above
figures.
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1 Introduction

Let us consider the functional (see[2]):

T (f, g) :=
1

b− a

∫ b

a

f(x)g(x)dx −

(
1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

g(x)dx

)
(1.1)

where f and g are two integrable functions on [a, b].
In [11], Gruss proved the well known inequality:

|T (f, g)| ≤ (Φ− ϕ)(Ψ− ψ)
4

, (1.2)

where f and g are two integrable functions on [a, b] satisfying the conditions

ϕ ≤ f(x) ≤ Φ, ψ ≤ g(x) ≤ Ψ, ϕ,Ψ,Φ, ψ ∈ R, x ∈ [a, b]. (1.3)

In the case of f
′
, g

′ ∈ L∞(a, b), S. S. Dragomir (see[6]) proved that

|S(f, p, g)| ≤ ‖f
′
‖∞‖g

′
‖∞

∫ b

a

p(x)dx
∫ b

a

x2p(x)dx−

(∫ b

a

xp(x)dx

)2
 , (1.4)

where

S(p, f, g) :=
1
2
T (f, g, p, q) =

∫ b

a

p(x)
∫ b

a

p(x)f(x)g(x)dx− (∫ b

a

p(x)f(x)dx

)(∫ b

a

p(x)g(x)dx

)
. (1.5)

If f is M -g-Lipschitzian on [a, b] : i.e.

|f(x)− f(y)| ≤M |g(x)− g(y)|;M > 0, x, y ∈ [a, b], (1.6)

∗Corresponding author.
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Dragomir [6] proved that

|S(f, p, g)| ≤M

∫ b

a

p(x)dx
∫ b

a

p(x)g2(x)dx−

(∫ b

a

g(x)p(x)dx

)2
 , (1.7)

and if f is an L1- lipschitzian function on [a, b] and g is an L2-lipschitzian function on [a, b], the author proved
that [6]

|S(p, f, g)| ≤ L1L2

∫ b

a

p(x)
∫ b

a

x2p(x)dx−

(∫ b

a

xp(x)

)2
 . (1.8)

Using the Riemann-Liouville fractional integral, many authors have studied the fractional integral inequalities
and their applications( see[1, 3, 4, 5, 6]).
In [5], Dahmani et al. gave the following fractional integral inequalities, using the Riemann-Liouville fractional
integral :
let f and g be two integrable functions on [0,∞[ and p, q two positive functions, then for all t > 0, α > 0,

|Jαq(t)Jαpfg(t) + Jαp(t)Jαqfg(t)− Jαpf(t)Jαqg(t)− Jαqf(t)Jαpg(t)|
≤ Jαp(t)Jαq(t)(Φ− ϕ)(Ψ− ψ)

Morever, if f and g are two lipschitzian functions on [0,∞[, we have

|Jαq(t)Jαpfg(t) + Jαp(t)Jαqfg(t)− Jαqf(t)Jαpg(t)− Jαpf(t)Jαqg(t)|
≤ L1L2(Jαq(t)Jαt2p(t) + Jαp(t)Jαt2q(t)− Jαtq(t)Jαtp(t)).

In [4], Dahmani established a new class of inequalities for the extended Chebyshev functional as follows:
let f and g two differentiable functions on [0,∞[ and p, q two positive functions. If f

′
, g

′ ∈ L∞([0,∞[), then

|Jβq(t)Jαpfg(t) + Jαp(t)Jβqfg(t)− Jαpf(t)Jβqg(t)− Jβqf(t)Jαpg(t)|
≤ ‖f

′
‖∞‖g

′
‖∞(Jαp(t)Jβt2q(t) + Jβq(t)Jαt2p(t)− 2(Jαtp(t))(Jβtq(t)),

for all t > 0, α > 0, and β > 0.
The main aim of this paper is to establish some generalization of these inequalities using q-fractional integrals.

2 Basic Definitions

Throughout this paper, we will fix q ∈ (0, 1). For the convenience of the reader, we provide in this section a
summary of the mathematical notations and definitions used in this paper (see [7] and [9] and [12]). We write
for a, b ∈ C,

(a; q)∞ =
∞∏

k=0

(1− aqk), (a− b)(α) = aα ( b
a ; q)∞

(qα b
a ; q)∞

.

The q-Jackson integral from 0 to a is defined by (see [8])∫ a

0

f(x)dqx = (1− q)a
∞∑

n=0

f(aqn)qn, (2.1)

provided the sum converges absolutely.
The q-Jackson integral in a generic interval [a, b] is given by (see [8])∫ b

a

f(x)dqx =
∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx. (2.2)

The fractional q-integral of the Riemann-Liouville type is (see [12])

(
Jα

q,af
)
(x) =

1
Γq(α)

∫ x

a

(x− qt)(α−1)f(t)dqt; α > 0 (2.3)
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where

Γq(α) =
1

1− q

∫ 1

0

(
u

1− q

)α−1

eq(qu)dqu, and eq(t) =
∞∏

k=0

(1− qkt).

The q-fractional integration has the following semi-group property(
Jβ

q,aJ
α
q,af

)
(x) =

(
Jα+β

q,a f
)
(x); α > 0, β > 0. (2.4)

Finally, for b > 0 and a = bqn, n = 1, 2, . . . ,∞, we write

[a, b]q = {bqk : 0 ≤ k ≤ n}.

3 Main results

Theorem 3.1. Let f and g be two functions defined on [a, b]q satisfying the condition (1.3) and let v, w be two
positive functions on [a, b]q.
Then

|Jα
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

α
q,awfg(b)− Jα

q,avf(b)Jα
q,awg(b)− Jα

q,awf(b)Jα
q,avg(b)|

≤ Jα
q,av(b)J

α
q,aw(b)(Φ− ϕ)(Ψ− ψ). (3.1)

Proof. From the condition (1.3), we have

|f(τ)− f(ρ)| ≤ Φ− ϕ, |g(τ)− g(ρ)| ≤ Ψ− ψ, τ, ρ ∈ [a, b]q, (3.2)

which implies that
| (f(τ)− f(ρ)) (g(τ)− g(ρ)) | ≤ (Φ− ϕ)(Ψ− ψ). (3.3)

Define
H(τ, ρ) = f(τ)g(τ) + f(ρ)g(ρ)− f(τ)g(ρ)− f(ρ)g(τ), τ, ρ ∈ [a, b]q. (3.4)

Multiplying (3.4) by (b−qτ)(α−1)

Γq(α) v(τ) and integrating with respect to τ from a to b, we get

1
Γq(α)

∫ b

a

(b− qτ)(α−1)v(τ)H(τ, ρ)dqτ

= Jα
q,avfg(b) + f(ρ)g(ρ)Jα

q,av(b)− g(ρ)Jα
q,avf(b)− f(ρ)Jα

q,avg(b). (3.5)

Now, multiplying (3.5) by (b−qρ)(α−1)

(Γq(α)) w(ρ) and integrating with respect to ρ from a to b, we can state that

1
(Γq(α))2

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(α−1)v(τ)w(ρ)H(τ, ρ)dqτdqρ

= Jα
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

α
q,awfg(b)− Jα

q,avf(b)Jα
q,awg(b)− Jα

q,awf(b)Jα
q,avg(b). (3.6)

Using (3.3), we can estimate (3.6) as follows

| 1
(Γq(α))2

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(α−1)v(τ)w(ρ)H(τ, ρ)dqτdqρ|

≤ (Φ− ϕ)(Ψ− ψ)
(Γq(α))2

∫ b

a

∫ b

a

(b− qτ)α−1(b− qρ)α−1v(τ)w(ρ)dqτdqρ. (3.7)

Consequently,

| 1
(Γq(α))2

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(α−1)v(τ)w(ρ)H(τ, ρ)dqτdqρ|

≤ Jα
q,av(b)J

α
q,aw(b)(Φ− ϕ)(Ψ− ψ).

Theorem (3.1) is thus proved.



24 Kamel Brahim et al. / On some fractional ...

Theorem 3.2. Let f and g be two functions defined on [a, b]q satisfying the condition (1.3) and let v, w be two
positive functions on [a, b]q.
Then

|Jβ
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

β
q,awfg(b)− Jα

q,avf(b)Jβ
q,awg(b)− Jβ

q,awf(b)Jα
q,avg(b)|

≤ Jα
q,av(b)J

β
q,aw(b)(Φ− ϕ)(Ψ− ψ). (3.8)

Proof. Multiplying (3.5) by (b−qρ)(β−1)

Γq(β) w(ρ) and integrating with respect to ρ from a to b, we get

1
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(β−1)v(τ)w(ρ)H(τ, ρ)dqτdqρ

= Jβ
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

β
q,awfg(b)− Jα

q,avf(b)Jβ
q,awg(b)− Jβ

q,awf(b)Jα
q,avg(b). (3.9)

On the other hand

(Φ− ϕ)(Ψ− ψ)
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)β−1v(τ)w(ρ)dqτdqρ

= Jα
q,av(b)J

β
q,aw(b)(Φ− ϕ)(Ψ− ψ). (3.10)

Hence

| 1
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(β−1)v(τ)w(ρ)H(τ, ρ)dqτdqρ|

≤ Jα
q,av(b)J

β
q,aw(b)(Φ− ϕ)(Ψ− ψ). (3.11)

This ends the proof.

Remark 3.1. Applying Theorem (3.2) for α = β, we obtain Theorem (3.1).

Theorem 3.3. Let f and g be two functions defined on [a, b]q satisfying the condition (1.6) and let v, w be two
positive functions on [a, b]q. Then the inequality

|Jβ
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

β
q,awfg(b)− Jα

q,avf(b)Jβ
q,awg(b)− Jβ

q,awf(b)Jα
q,avg(b)|

≤M [Jα
q,av(b)J

β
q,awg

2(b) + Jβ
q,aw(b)Jα

q,avg
2(b)− 2Jα

q,avg(b)J
β
q,awg(b)] (3.12)

is valid.

Proof. Multiplying (3.4) by (b−qτ)(α−1)v(τ)
Γq(α) and integrating the resulting identity with respect to τ from a to b,

we obtain

1
Γq(α)

∫ b

a

(b− qτ)(α−1)v(τ)H(τ, ρ)dqτ

= Jα
q,avfg(b)− f(ρ)Jα

q,avg(b)− g(ρ)Jα
q,avf(b) + f(ρ)g(ρ)Jα

q,av(b). (3.13)

Multiplying (3.13) by (b−qρ)(β−1)w(ρ)
Γq(β) and integrating the resulting identity with respect to ρ from a to b, we get

1
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(β−1)v(τ)w(ρ)H(τ, ρ)dqτdqρ

= Jβ
q,aw(b)Jα

q,avfg(b)− Jβ
q,awf(b)Jα

q,avg(b)− Jα
q,avf(b)Jβ

q,awg(b) + Jα
q,av(b)J

β
q,awfg(b). (3.14)

On the other hand, we have
|f(τ)− f(ρ)| ≤M |g(τ)− g(ρ)|. (3.15)

This implies that
|H(τ, ρ)| ≤M(g(τ)− g(ρ))2, τ, ρ ∈ [a, b]q. (3.16)
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Hence, it follows that

1
Γq(α)

∫ b

a

(b− qτ)(α−1)v(τ)|H(τ, ρ)|dqτ

≤M
(
Jα

q,avg
2(b)− 2g(ρ)Jα

q,avg(b) + g2(ρ)Jα
q,av(b)

)
. (3.17)

Consequently,

1
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(β−1)v(τ)w(ρ)|H(τ, ρ)|dqτdqρ

≤ M

Γq(β)

∫ b

a

(
(b− qρ)β−1w(ρ)

[
Jα

q,avg
2(b)− 2g(ρ)Jα

q,avg(b) + g2(ρ)Jα
q,av(b)

])
dqρ. (3.18)

So,

1
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(β−1)v(τ)w(ρ)|H(τ, ρ)|dqτdqρ

≤M [Jα
q,av(b)J

β
q,awg

2(b) + Jβ
q,aw(b)Jα

q,avg
2(b)− 2Jα

q,avg(b)J
β
q,awg(b)]. (3.19)

Theorem (3.3) is thus proved.

In the particular case β = α, we have the following result.

Corollary 3.1. Under the assumptions of Theorem 3.3, we have

|Jα
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

α
q,awfg(b)− Jα

q,avf(b)Jα
q,awg(b)− Jα

q,awf(b)Jα
q,avg(b)| ≤

M [Jα
q,av(b)J

α
q,awg

2(b) + Jα
q,aw(b)Jα

q,avg
2(b)− 2Jα

q,avg(b)J
α
q,awg(b)]. (3.20)

Theorem 3.4. Let f and g be two lipschitzian functions on [a, b]q with the constants L1 and L2 and let v, w
be two positive functions on [a, b]q. Then, the inequality

|Jβ
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

β
q,awfg(b)− Jα

q,avf(b)Jβ
q,awg(b)− Jα

q,avf(b)Jβ
q,awg(b)|

≤ L1L2(Jα
q,av(b)J

β
q,a(τ2w)(b) + Jβ

q,aw(b)Jα
q,a(τ2v)(b)− 2Jα

q,a(τv)(b)Jβ
q,a(τw)(b))

is valid.

Proof. For all τ, ρ ∈ [a, b]q, we have

|f(τ)− f(ρ)| ≤ L1|τ − ρ|, |g(τ)− g(ρ)| ≤ L2|τ − ρ|. (3.21)

Hence
|H(τ, ρ)| ≤ L1L2(τ − ρ)2. (3.22)

Setting
R(τ, ρ) := L1L2(τ − ρ)2, (3.23)

then, multiplying (3.23) by (b−qτ)(α−1)(b−qρ)(β−1)

Γq(α)Γq(β) v(τ)w(ρ) and integrating with respect to τ and ρ on [a, b]2q, we
get

| 1
Γq(α)Γq(β)

∫ b

a

∫ b

a

(b− qτ)(α−1)(b− qρ)(β−1)v(τ)w(ρ)R(τ, ρ)dqτdqρ|

= L1L2

(
Jα

q,av(b)J
β
q,a(τ2w)(b) + Jβ

q,aw(b)Jα
q,a(τ2v)(b)− 2Jα

q,a(τv)(b)Jβ
q,a(τw)(b)

)
.

The result is thus proved.

Theorem 3.5. Let f and g be two lipschitzian functions on [a, b]q with the constants L1 and L2 and let v, w
be two positive functions on [a, b]q. The inequality

|Jα
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

α
q,awfg(b)− Jα

q,awf(b)Jα
q,avg(b)− Jα

q,avf(b)Jα
q,awg(b)|

≤ L1L2(Jα
q,aw(b)Jα

q,a(τ2v)(b) + Jα
q,av(b)J

α
q,a(τ2w)(b)− Jα

q,a(τw)(b)Jα
q,a(τv)(b)). (3.24)

is valid.
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Proof. same approach, we take α = β in Theorem 3.4.

Corollary 3.2. Let f and g be two functions defined on [a, b]q and let v, w be two positive functions on [a, b]q.
Then, the inequality

|Jβ
q,aw(b)Jα

q,avfg(b) + Jα
q,av(b)J

β
q,awfg(b)− Jα

q,avf(b)Jβ
q,awg(b)− Jα

q,avf(b)Jβ
q,awg(b)|

≤ ‖Dqf‖∞‖Dqg‖∞(Jα
q,av(b)J

β
q,a(τ2w)(b) + Jβ

q,aw(b)Jα
q,a(τ2v)(b)− 2Jα

q,a(τv)(b)Jβ
q,a(τw)(b))

is valid, where ‖Dqh‖∞ = supx∈[a,b]q |Dqh(x)|.

Proof. We have

f(τ)− f(ρ) =
∫ τ

ρ

Dqf(t)dqt, g(τ)− g(ρ) =
∫ τ

ρ

Dqg(t)dqt

so
|f(τ)− f(ρ)| ≤ ‖Dqf‖∞|τ − ρ| and |g(τ)− g(ρ)| ≤ ‖Dqg‖∞|τ − ρ|

and the result follows from Theorem 3.4.
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Abstract

In the present paper, we investigate the existence, uniqueness and continuous dependence on initial data of
mild solutions of first order nonlocal semilinear functional integro-differential equations of more general type
with delay in Banach spaces. Our analysis is based on semigroup theory and modified version of Banach
contraction theorem.
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1 Introduction

In the present paper we consider semilinear functional integro-differential equation of first order of the type:

x′(t) = Ax(t) + f(t, xt,

∫ t

0

k(t, s)h(s, xs)ds), t ∈ [0, T ], (1.1)

x(t) + (g(xt1 , ..., xtp
))(t) = φ(t), −r ≤ t ≤ 0, (1.2)

where 0 < t1 < t2 < ... < tp ≤ T , p ∈ N ; A is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators T (t), t ≥ 0 on X; f , g, h, k and φ are given functions satisfying some assumptions
and xt(θ) = x(t+ θ), for θ ∈ [−r, 0] and t ∈ [0, T ].

Equations of the form (1.1)-(1.2) or their special forms serve as an abstract formulation of partial integro-
differential equations which arise in the problems with memory visco-elasticity and many other physical phe-
nomena, see [1],[5],[8],[15] and the references given therein. The problems of existence, uniqueness and other
qualitative properties of solutions for semilinear differential equations in Banach spaces has been studied ex-
tensively in the literature for last many years, see[1]-[11],[14],[15]. On the other hand, as nonlocal condition is
more precise to describe natural phenomena than classical initial condition, the Cauchy problem with nonlocal
condition also received much attention in recent years, see [2]-[4],[9],[10],[12],[17],[18].

L.Byzewski and H.Acka[3] studied existence,uniqueness and continuous dependence of a mild solution on
initial data of problem (1.1)-(1.2) by Banach contraction theorem. The objective of this paper is to generalize
and improve their results. We are achieving the same results with less restrictions by using modified version of
Banach contraction principle.

The paper is organized as follows: Section 2 presents preliminaries and hypotheses. In section 3, we prove
existence and uniqueness of solutions. Section 4, deals with continuous dependence on initial data of mild
solutions . Finally in section 5, we give application based on our result.

∗Corresponding author.

E-mail addresses: rupalisjain@gmail.com (Rupali S. Jain) and mbdhakne@yahoo.com (M. B. Dhakne)
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2 Preliminaries and Hypotheses

Let X be a Banach space with the norm ‖ · ‖. Let C = C([−r, 0], X), 0 < r <∞, be the Banach space of all
continuous functions ψ : [−r, 0] → X endowed with supremum norm

‖ψ‖C = sup{‖ψ(t)‖ : −r ≤ t ≤ 0}.

Let B = C([−r, T ], X), T > 0, be the Banach space of all continuous functions x : [−r, T ] → X with the
supremum norm ‖x‖B = sup{‖x(t)‖ : −r ≤ t ≤ T}. For any x ∈ B and t ∈ [0, T ], we denote xt the element of
C given by xt(θ) = x(t+ θ), for θ ∈ [−r, 0] and φ is a given element of C.

In this paper, we assume that, there exist positive constant K ≥ 1 such that ‖T (t)‖ ≤ K, for every t ∈ [0, T ]
. Also k : [0, T ]× [0, T ] → R and since k is continuous on compact set [0, T ]× [0, T ], there is constant L1 > 0
such that |k(t, s)| ≤ L1, for 0 ≤ s ≤ t ≤ T .

Definition 2.1. A function x ∈ B satisfying the equations:

x(t) = T (t)φ(0)− T (t)(g(xt1 , ..., xtp
))(0) +

∫ t

0

T (t− s)f(s, xs,

∫ s

0

k(s, τ)h(τ, xτ )dτ)ds, t ∈ [0, T ],

x(t) + (g(xt1 , ..., xtp))(t) = φ(t), −r ≤ t ≤ 0,

is said to be the mild solution of the initial value problem (1.1)-(1.2).

The following Lemma is known as Pachpatte’s inequality .

Lemma 2.1. [13, p.33] Let u, f and g be nonnegative continuous functions defined on R+, for which the
inequality

u(t) ≤ u0 +
∫ t

0

f(s)u(s)ds+
∫ t

0

f(s)(
∫ s

0

g(σ)u(σ)dσ)ds, t ∈ R+,

holds, where u0 is nonnegative constant. Then

u(t) ≤ u0[1 +
∫ t

0

f(s)exp(
∫ s

0

[f(σ) + g(σ)]dσ)ds], t ∈ R+

Our results are based on the modified version of Banach contraction principle.

Lemma 2.2. [16, p.196] Let X be a Banach space. Let D be an operator which maps the elements of X into
itself for which Dr is a contraction, where r is a positive integer. Then D has a unique fixed point.

We list the following hypotheses for our convenience.

(H1) Let f : [0, T ] × C ×X → X such that for every w ∈ B ,x ∈ X and t ∈ [0, T ], f(., wt, x) ∈ B and there
exists a constant L > 0 such that

‖f(t, ψ, x)− f(t, φ, y)‖ ≤ L(‖ψ − φ‖C + ‖x− y‖), φ, ψ ∈ C, x, y ∈ X.

(H2) Let h : [0, T ]× C → X such that for every w ∈ B and t ∈ [0, T ], h(., wt) ∈ B and there exists a constant
H > 0 such that

‖h(t, ψ)− h(t, φ)‖ ≤ H‖ψ − φ‖C , φ, ψ ∈ C.

(H3) Let g : Cp → C such that exists a constant G ≥ 0 satisfying

‖(g(xt1 , xt2 , ..., xtp
))(t)− (g(yt1 , yt2 , ..., ytp

))(t)‖ ≤ G‖x− y‖B , t ∈ [−r, 0].
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3 Existence and Uniqueness

Theorem 3.1. Suppose that the hypotheses (H1) - (H3) are satisfied. Then the initial-value problem (1.1)-(1.2)
has a unique mild solution x on [−r, T ].

Proof. Let x(t) be a mild solution of the problem (1.1)-(1.2) then it satisfies the equivalent integral equation

x(t) = T (t)φ(0)− T (t)(g(xt1 , ..., xtp
))(0) +

∫ t

0

T (t− s)f(s, xs,

∫ s

0

k(s, τ)h(τ, xτ )dτ)ds, t ∈ [0, T ], (3.1)

x(t) + (g(xt1 , ..., xtp
))(t) = φ(t), −r ≤ t ≤ 0. (3.2)

Now, we rewrite solution of initial value problem (1.1)-(1.2) as follows: For φ ∈ C, define φ̂ ∈ B by

φ̂(t) =

{
φ(t)− (g(xt1 , ..., xtp))(t) if −r ≤ t ≤ 0

T (t)[φ(0)− (g(xt1 , ..., xtp))(0)] if 0 ≤ t ≤ T

If y ∈ B and x(t) = y(t) + φ̂(t), t ∈ [−r, T ], then it is easy to see that y satisfies

y(t) = 0; −r ≤ t ≤ 0 and (3.3)

y(t) =
∫ t

0

T (t− s)f
(
s, ys + φ̂s,

∫ s

0

k(s, τ)h(τ, yτ + φ̂τ )dτ
)
ds, t ∈ [0, T ] (3.4)

if and only if x(t) satisfies the equations (3.1)-(3.2).
We define the operator F : B → B, by

(Fy)(t) =

0 if −r ≤ t ≤ 0∫ t

0
T (t− s)f

(
s, ys + φ̂s,

∫ s

0
k(s, τ)h(τ, yτ + φ̂τ )dτ

)
ds if t ∈ [0, T ].

(3.5)

From the definition of an operator F defined by the equation (3.5), it is to be noted that the equations
(3.3)-(3.4) can be written as

y = Fy.

Now we show that Fn is a contraction on B for some positive integer n. Let y, w ∈ B and using hypotheses
(H1) - (H3) , we get,

‖(Fy)(t)− (Fw)(t)‖ ≤
∫ t

0

‖T (t− s)‖‖f(s, ys + φ̂s,

∫ s

0

k(s, τ)h(τ, yτ + φ̂τ )dτ)

− f(s, ws + φ̂s,

∫ s

0

k(s, τ)h(τ, yτ + φ̂τ )dτ)‖ds

≤
∫ t

0

KL[‖(ys + φ̂s)− (ws + φ̂s)‖C + L1

∫ s

0

‖h(τ, yτ + φ̂τ )− h(τ, wτ + φ̂τ )‖dτ ]ds

≤ KL

∫ t

0

‖ys − ws‖Cds+KL

∫ t

0

L1H

∫ s

0

‖yτ − wτ‖Cdτds

≤ KL

∫ t

0

‖y − w‖Bds+KL

∫ t

0

L1H

∫ s

0

‖y − w‖Bdτds

≤ KL‖y − w‖Bt+KLL1H‖y − w‖B
t2

2

≤ KL‖y − w‖Bt+KLL1HT‖y − w‖B
t

2
≤ KL‖y − w‖Bt+KLL1HT‖y − w‖Bt

≤ KL(1 + L1HT )‖y − w‖Bt
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‖(F 2y)(t)− (F 2w)(t)‖
= ‖(F (Fy))(t)− (F (Fw))(t)‖
= ‖(F (y1))(t)− (F (w1))(t)‖

≤
∫ t

0

‖T (t− s)‖‖f(s, y1s + φ̂s,

∫ s

0

k(s, τ)h(τ, y1τ + φ̂τ ))

− f(s, w1s + φ̂s,

∫ s

0

k(s, τ)h(τ, w1τ + φ̂τ ))‖ds

≤
∫ t

0

KL‖y1s − w1s‖C +KL

∫ t

0

L1H‖y1τ − w1τ‖Cdτds

≤ KL

∫ t

0

‖y1 − w1‖C([−r,s],X)ds+KL

∫ t

0

L1H

∫ s

0

‖y1 − w1‖C([−r,τ ],X)dτds

≤ KL

∫ t

0

sup
τ∈[−r,s]

‖y1(τ)− w1(τ)‖ds+KLL1H

∫ t

0

∫ s

0

sup
η∈[−r,τ ]

‖y1(η)− w1(η)‖dτds

≤ KL

∫ t

0

sup
τ∈[−r,s]

‖Fy(τ)− Fw(τ)‖ds+KLL1H

∫ t

0

∫ s

0

sup
η∈[−r,τ ]

‖Fy(η)− Fw(η)‖dτds

≤ KL

∫ t

0

sup
τ∈[−r,s]

(KL[1 + L1HT ]‖y − w‖Bτ)ds

+KLL1H

∫ t

0

∫ s

0

sup
η∈[−r,τ ]

(KL[1 + L1HT ]‖y − w‖Bη)dτds

≤ K2L2[1 + L1HT ]‖y − w‖B [
∫ t

0

( sup
τ∈[−r,s]

τ)ds+
∫ t

0

L1H

∫ s

0

( sup
η∈[−r,τ ]

η)dτds]

≤ K2L2[1 + L1HT ]‖y − w‖B [
∫ t

0

sds+
∫ t

0

L1H

∫ s

0

τdτds]

≤ K2L2[1 + L1HT ]‖y − w‖B [
t2

2
+ L1H

t3

3!
]

≤ K2L2[1 + L1HT ]2‖y − w‖B [
t2

2
+ L1HT

t2

3!
]

≤ K2L2[1 + L1HT ]2‖y − w‖B [
t2

2!
+ L1HT

t2

2!
]

≤ (KL[1 + L1HT ]t)2

2!
‖y − w‖B

Continuing in this way, we get,

‖(Fny)(t)− (Fnw)(t)‖ ≤ (KL[1 + L1HT ]t)n

n!
‖y − w‖B .

For n large enough, (KL[1+L1HT ]t)n

n! < 1. Thus there exist a positive integer n such that Fn is a contraction in
B. By virtue of Lemma 2.2, the operator F has a unique fixed point ỹ in B. Then x̃ = ỹ + φ̂ is a solution of
the Cauchy problem (1.1)-(1.2). This completes the proof.

4 Continuous Dependence on Initial Data

Theorem 4.1. Suppose that the functions f , h and g satisfies the hypotheses (H1) - (H3). Then for each
φ1, φ2 ∈ C and for the corresponding mild solutions x1, x2 of the problems

x′(t) = Ax(t) + f(t, xt,

∫ t

0

k(s, t)h(t, xt)dt), t ∈ [0, T ], (4.1)

x(t) + (g(xt1 , ..., xtp
))(t) = φi(t), −r ≤ t ≤ 0, (i = 1, 2) (4.2)

the inequality

‖x1 − x2‖B ≤ [K‖φ1 − φ2‖C +KG‖x1 − x2‖B ]
[
1 +KLTe(KL+L1H)T

]
. (4.3)
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is true.
Moreover, if G = 0, then it reduces to classical inequality

‖x1 − x2‖B ≤ K
[
1 +KLTe(KL+L1H)T

]
‖φ1 − φ2‖C . (4.4)

.

Proof. Let φi(i = 1, 2) be arbitrary functions in C and let xi(i = 1, 2) be the mild solutions of the problem
(4.1)-(4.2).
Then for t ∈ [−r, 0],

x1(t)− x2(t) = φ1(t)− (g(x1t1 , ..., x1tp))(t)− φ2(t) + (g(x2t1 , ..., x2tp))(t) (4.5)

and for t ∈ [0, T ],

x1(t)− x2(t) =T (t)[φ1(0)− φ2(0)− (g(x1t1 , ..., x1tp))(0) + (g(x2t1 , ..., x2tp))(0)]

+
∫ t

0

T (t− s)[f(s, x1s,

∫ s

0

k(s, τ)h(τ, x1τ )dτ)

− f(s, x2s,

∫ s

0

k(s, τ)h(τ, x2τ )dτ)]ds (4.6)

From (4.6) and hypotheses (H1) - (H3), we get, for t ∈ [0, t],

‖x1(t)− x2(t)‖ = ‖T (t)‖‖φ1 − φ2‖C +G‖T (t)‖‖x1 − x2‖B

+
∫ t

0

‖T (t− s)‖‖f(s, x1s,

∫ s

0

k(s, τ)h(τ, x1τ )dτ)

− f(s, x2s,

∫ s

0

k(s, τ)h(τ, x2τ )dτ)‖ds

≤ K‖φ1 − φ2‖C +KG‖x1 − x2‖B

+
∫ t

0

KL

[
‖x1s − x2s‖C + L1H

∫ s

0

‖x1τ − x2τ‖Cdτ

]
ds (4.7)

Define the function z : [−r, T ] → R by z(t) = sup{‖x1(s)− x2(s)‖ : −r ≤ s ≤ t}, t ∈ [0, T ]. Let t∗ ∈ [−r, t] be
such that z(t) = ‖x1(t∗)− x2(t∗)‖. If t∗ ∈ [0, t], then from inequality (4.7),we have

z(t) = ‖x1(t∗)− x2(t∗)‖ ≤ K‖φ1 − φ2‖C +KG‖x1 − x2‖B

+
∫ t∗

0

KL

[
‖x1s − x2s‖C + L1H

∫ s

0

‖x1τ − x2τ‖Cdτ

]
ds

≤ K‖φ1 − φ2‖C +KG‖x1 − x2‖B

+
∫ t

0

KL

[
‖x1s − x2s‖C + L1H

∫ s

0

‖x1τ − x2τ‖Cdτ

]
ds

≤ K‖φ1 − φ2‖C +KG‖x1 − x2‖B +
∫ t

0

KL

[
z(s) + L1H

∫ s

0

z(τ)dτ
]
ds (4.8)

If t∗ ∈ [−r, 0] then z(t) ≤ ‖φ1 − φ2‖C +G‖x1 − x2‖B and since K > 1 the inequality (4.8) holds good. Thus
t∗ ∈ [−r, T ] the inequality (4.8) holds good. Thanks to Pachpatte’s inequality given in Lemma 2.1 and applying
it to inequality (4.8) we get,

z(t) ≤ [K‖φ1 − φ2‖C +KG‖x1 − x2‖B ]
[
1 +

∫ t

0

KLe
∫ s
0 (KL+L1H)dτds

]
≤ [K‖φ1 − φ2‖C +KG‖x1 − x2‖B ]

[
1 +

∫ t

0

KLe(KL+L1H)T ds

]
≤ [K‖φ1 − φ2‖C +KG‖x1 − x2‖B ]

[
1 +KLTe(KL+L1H)T

]
Consequently,

‖x1 − x2‖B ≤ [K‖φ1 − φ2‖C +KG‖x1 − x2‖B ]
[
1 +KLTe(KL+L1H)T

]
. (4.9)

Hence the inequality (4.3) holds. Finally inequality (4.4) is a consequence of the inequality (4.9). Hence the
proof is complete.
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5 Applications

To illustrate the application of our result proved in section 3, consider the following semilinear partial
functional differential equation of the form

∂

∂t
w(u, t) =

∂2

∂u2
w(u, t) +H

(
t, w(u, t− r),

∫ t

0

k(t, s)P (s, w(s− r))ds
)
, 0 ≤ u ≤ π, t ∈ [0, T ] (5.1)

w(0, t) = w(π, t) = 0, 0 ≤ t ≤ T, (5.2)

w(u, t) +
p∑

i=1

w(u, ti + t) = φ(u, t), 0 ≤ u ≤ π, −r ≤ t ≤ 0, (5.3)

where 0 < t1 ≤ t2 ≤ tp ≤ T , the function H : [0, T ]×R×R → R is continuous . We assume that the functions
H and P satisfy the following conditions:
For every t ∈ [0, T ] and u, v, x, y ∈ R, there exists a constant l, p > 1 such that

|H(t, u, x)−H(t, v, y)| ≤ l(|u− v|+ |x− y|)
|P (t, u)− P (t, v)| ≤ p(|u− v|).

Let us take X = L2[0, π]. Define the operator A : X → X by Az = z
′′

with domain D(A) = {z ∈ X : z, z
′

are absolutely continuous, z
′′ ∈ X and z(0) = z(π) = 0}. Then the operator A can be written as

Az =
∞∑

n=1

−n2(z, zn)zn, z ∈ D(A)

where zn(u) = (
√

2/π) sinnu, n = 1, 2, .. is the orthogonal set of eigenvectors of A and A is the infinitesimal
generator of an analytic semigroup T (t), t ≥ 0 and is given by

T (t)z =
∞∑

n=1

exp(−n2t)(z, zn)zn, z ∈ X.

Now, the analytic semigroup T (t) being compact, there exists constant K such that

|T (t)| ≤ K, for each t ∈ [0, T ].

Define the function f : [0, T ]× C ×X → X, as follows

f(t, ψ, x)(u) = H(t, ψ(−r)u, x(u)),
h(t, φ)(u) = P (t, φ(−r)u)

for t ∈ [0, T ], ψ, φ ∈ C, x ∈ X and 0 ≤ u ≤ π. With these choices of the functions the equations (5.1)-(5.3) can
be formulated as an abstract integro-differential equation in Banach space X:

x′(t) = Ax(t) + f
(
t, xt,

∫ t

0

k(t, s)h(s, xs)ds
)
, t ∈ [0, T ]

x(t) + (g(xt1 , ..., xtp
))(t) = φ(t), t ∈ [−r, 0].

Since all the hypotheses of the theorem 3.1 are satisfied, the theorem 3.1, can be applied to guarantee the
existence of mild solution w(u, t) = x(t)u, t ∈ [0, T ], u ∈ [0, π], of the semilinear partial integro-differential
equation (5.1)-(5.3).
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Abstract

In this paper some new sufficient conditions for the oscillatory behavior of second order nonlinear neutral
type difference equation of the form

∆
(
an∆(xn + pnxn−k)

)
+ qnf(xσ(n+1)) = 0

where {an}, {pn} and {qn} are real sequences, {σ(n)} is a sequence of integers, k is a positive integer and
f : R → R is continuous with uf(u) > 0 for u 6= 0 are established. Examples are provided to illustrate the
main results.

Keywords: Second order, nonlinear, neutral type difference equation, oscillation.
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1 Introduction

In this paper we study the oscillatory behavior of second order neutral type difference equation of the form

∆
(
an∆(xn + pnxn−k)

)
+ qnf(xσ(n+1)) = 0, n ∈ N(n0) (1.1)

where k is a positive integer, {an}, {pn}, {qn} are real sequences defined on N(n0) and σ(n + 1) is a sequence
of integers. We assume the following conditions without further mention:

(H1) {an} is a positive real sequence with
∞∑

n=n0

1
an

<∞;

(H2) {pn} is a real sequence with pn ≥ 1 for all n ∈ N(n0);
(H3) {qn} is a positive real sequence for all n ∈ N(n0);
(H4) {σ(n)} is an increasing sequence of integers such that σ(n) ≤ n and σ(n)→∞ as n →∞;
(H5) f : R → R is a continuous function and there exists a constant L > 0 such that f(u)

uα ≥ L for all u 6= 0,
where α is a ratio of odd positive integers.

Let θ = max
{

k, minn∈N(n0)σ(n)
}

. By a solution of equation (1.1), we mean a nontrivial real sequence {xn}
defined for all n ≥ n0 − θ, and satisfying the equation (1.1) for all n ∈ N(n0). A solution of equation (1.1) is
said to be oscillatory if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

In recent years, there has been much research concerning the oscillation of delay and neutral type difference
equations. In most of the papers, the authors considered the case

∑∞
n=n0

1
an

=∞ and either −1 < p ≤ pn ≤ 0
or 0 ≤ pn ≤ p < 1, see for example [3-6, 9, 10, 13-16]. In [7, 8, 11, 12] the authors considered equation
(1.1) under the assumptions

∑∞
n=n0

1
an

< ∞ and 0 ≤ pn ≤ p < 1 and established sufficient conditions for the

∗Corresponding author.
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oscillation of all solutions of equation (1.1).
Motivated by this observation in this paper we present some sufficient conditions for the oscillation of all

solutions of equation (1.1) under the conditions
∑∞

n=n0

1
an

<∞ and pn ≥ 1 for all n ∈ N(n0). In Section 2, we
present some preliminary lemmas, and in Section 3 we obtain some sufficient conditions for the oscillation of
all solutions of equation (1.1). In Section 4, we provide some examples to illustrate the main results.

2 Some preliminary lemmas

Throughout this paper we use the following notation without further mention:

zn = xn + pnxn−k ,

A(n) = aσ(n)

n∑
s=n0

1
aσ(s)

, R(n) =
n−1∑
s=n0

1
as

,

B(n) =
1

pn+k

(
1− R(n + 2k)

R(n + k)pn+2k

)
> 0 ,

C(n) =
1

pn+k

(
1− 1

pn+2k

)
, and E(n) =

∞∑
s=τ(n)

1
as

,

where {τ(n)} is defined later. Note that from the assumptions it is enough to state and prove the lemmas and
theorems for the case {xn} is eventually positive since the opposite case is proved similarly. To prove our main
results we need the following lemmas.

Lemma 2.1. Let {xn} be an eventually positive solution of equation (1.1). Then one of the following two cases
holds for all sufficiently large n:

(I) zn > 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(II) zn > 0, an∆zn < 0, ∆(an∆zn) ≤ 0.

Proof. The proof of the lemma can be found in [11].

Lemma 2.2. Let {xn} be an eventually positive solution of equation (1.1) and suppose case (I) of Lemma 2.1
holds. Then there exists N ∈ N(n0) such that

xn ≥ B(n)zn, for all n ≥ N. (2.1)

Proof. From the definition of zn, we have
zn+k

pn+k
=

xn+k

pn+k
+ xn

or
xn =

1
pn+k

(zn+k − xn+k). (2.2)

On the other hand

zn = zn0 +
n−1∑
s=n0

as∆zs

as
≥ anR(n)∆zn

or
R(n)∆zn − zn∆R(n) ≤ 0.

or
R(n)∆zn − zn∆R(n)

R(n)R(n + 1)
≤ 0.

or
∆

( zn

R(n)

)
≤ 0.

Thus zn is increasing and zn

R(n) is nonincreasing. Further

xn+k ≤
1

pn+2k
R(n + 2k)

zn+2k

R(n + 2k)
≤ R(n + 2k)

pn+2k

( zn+k

R(n + k)

)
. (2.3)

From (2.2) and (2.3) we obtain (2.1). This completes the proof.
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Lemma 2.3. Let {xn} be an eventually positive solution of equation (1.1) and suppose case (II) of Lemma 2.1
holds. Then there exists N ∈ N(n0) such that

xn ≥ C(n)zn+k, for all n ≥ N. (2.4)

Proof. From the proof of Lemma 2.2, we have (2.2). From ∆zn < 0 we have

xn+k ≤
zn+2k

pn+2k
≤ zn+k

pn+2k
. (2.5)

Using (2.5) in (2.2), we obtain (2.4). This completes the proof.

Lemma 2.4. Let {xn} be an eventually positive solution of equation (1.1) and suppose case (I) of Lemma 2.1
holds. Then there exists N ∈ N(n0) such that

zσ(n+1) ≥ A(n)∆zσ(n), forall n ≥ N. (2.6)

Proof. Since ∆(an∆zn) ≤ 0 and ∆σ(n) > 0, we see that

zσ(n+1) = zσ(N) +
n∑

s=N

∆zσ(s) ≥ aσ(n)∆zσ(n)

n∑
s=N

1
aσ(s)

.

The proof is now complete.

3 Oscillation results

In this section we obtain some new sufficient conditions for the oscillation of all solutions of equation (1.1).

Theorem 3.1. Assume that α ≥ 1, and there exists a sequence of integers {τ(n)} such that τ(n) ≥ n,
∆τ(n) > 0 and σ(n) ≤ τ(n) − k. If there exists a positive increasing real sequence {ρn} such that for all
constants M > 0 and D > 0 one has

∞∑
n=N

[
LρnqnBα(σ(n + 1))− 1

4αMα−1

(∆ρn)2aσ(n)

ρn

]
=∞ (3.1)

and
∞∑

n=N

[
LqnEα(n + 1)Cα(σ(n + 1))− α

Dα−1E(n)aτ(n)

]
=∞ (3.2)

then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that there exists a nonoscillatory solution {xn} of equation (1.1). Without loss
of generality we may assume that xn−θ > 0 for all n ≥ N ∈ N(n0), where N is chosen so that one of the cases
of Lemma 2.1 hold for all n ≥ N . We shall show that in each case we are led to a contradiction.
Case(I). From Lemma 2.2 and equation (1.1), we have

∆(an∆zn) + LqnBα(σ(n + 1))zα
σ(n+1) ≤ 0, n ≥ N. (3.3)

Define
wn = ρn

an∆zn

zα
σ(n)

, n ≥ N ,

we have

∆wn =
ρn∆(an∆zn)

zα
σ(n+1)

+ ∆ρnan+1∆zn+1
zα

σ(n+1)

− ρn
an∆zn

zα
σ(n+1)z

α
σ(n)

∆zα
σ(n) − LρnqnBα(σ(n + 1)) +

∆ρn

ρn+1
wn+1

− ρn

ρn+1
wn+1

∆zα
σ(n)

zα
σ(n)

(3.4)

for n ≥ N . By Mean value theorem
∆zα

σ(n) = αtα−1∆zσ(n),
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where zσ(n) < t < zσ(n+1). Since α ≥ 1, we have

∆zα
σ(n) ≥ αzα−1

σ(n)∆zσ(n). (3.5)

Using (3.5) in (3.3) we obtain for n ≥ N

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρn

ρn+1
wn+1 −

αρn

ρn+1
wn+1

zα−1
σ(n)∆zσ(n)

zα
σ(n)

. (3.6)

Since zn increasing and an∆zn is nonincreasing we have from (3.6)

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρn

ρn+1
wn+1 −

αρn

ρ2
n+1

Mα−1

aσ(n)
w2

n+1 (3.7)

where M = zσ(N). Summing the last inequality from N to n− 1 and using completing the square we have

0 < wn ≤ wN −
n−1∑
s=N

[
LρsqsB

α(σ(s + 1))− 1
4αMα−1

(∆ρs)2aσ(s)

ρs

]
.

Letting n →∞ in the last inequality, we obtain a contradiction to (3.1).
Case(II). Define

vn =
an∆zn

zα
σ(n)

, n ≥ N. (3.8)

Then vn < 0 for n ≥ N . Since {an∆zn} is nonincreasing, we have

∆zs ≤
an∆zn

as
, s ≥ n.

Summing the last inequality from τ(n) to ∞, we obtain

z∞ ≤ zτ(n) + an∆zn

∞∑
s=τ(n)

1
as

.

Since zn > 0 for all sufficiently large n we have

0 ≤ z∞ ≤ zτ(n) + an∆znE(n) , n ≥ N,

or
an∆znE(n)

zτ(n)
≥ −1 , n ≥ N.

Thus

− an∆zn(−an∆zn)α−1

zα
τ(n)

Eα(n) ≤ 1.

So, by ∆(−an∆zn) > 0 and (3.8), we have

− 1
Dα−1

≤ vnEα(n) ≤ 0 , n ≥ N, (3.9)

where D = −aN∆zN . From (3.8), we have

∆vn =
∆(an∆zn)

zα
τ(n+1)

− an∆zn

zα
τ(n)z

α
τ(n+1)

∆zα
τ(n).

By Mean Value Theorem,
∆zα

τ(n) = αtα−1∆zτ(n)

where zτ(n+1) < t < zτ(n). Since α ≥ 1 and ∆zτ(n) < 0, we have

∆zα
τ(n) ≤ αzα−1

τ(n+1)∆zτ(n).
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Therefore

∆vn ≤ −
Lqnxα

σ(n+1)

zα
τ(n+1)

− αan∆zn

zα
τ(n)zτ(n+1)

∆zτ(n). (3.10)

From (2.4) and by σ(n) ≤ τ(n)− k, we have

xα
σ(n+1)

zα
τ(n+1)

≥ Cα(σ(n + 1)). (3.11)

From (3.10) and (3.11), we obtain

∆vn + LqnCα(σ(n + 1)) ≤ 0, n ≥ N. (3.12)

Multiplying (3.12) by Eα(n + 1) and then summing it from N to n− 1, we have

n−1∑
s=N

Eα(s + 1)∆vs +
n−1∑
s=N

LEα(s + 1)qsC
α(σ(s + 1)) ≤ 0.

Summation by parts formula yields

n−1∑
s=N

Eα(s + 1)∆vs = Eα(n)vn − Eα(N)vN −
n−1∑
s=N

vs∆Eα(s).

Using Mean Value Theorem, we obtain

∆Eα(s) ≥ −αEα−1(s)
aτ(s)

.

Since vn < 0, we have

n−1∑
s=N

Eα(s + 1)∆vs ≥ Eα(n)vn − Eα(N)vN +
n−1∑
s=N

αvsE
α−1(s)

aτ(s)
,

or

Eα(n)vn − Eα(N)vN +
n−1∑
s=N

αvsE
α−1(s)

aτ(s)
+

n−1∑
s=N

LqsE
α(s + 1)Cα(σ(s + 1)) ≤ 0. (3.13)

Therefore, from (3.9) and (3.13), we obtain

− 1
Dα−1

≤ Eα(n)vn ≤ Eα(N)vN −
n−1∑
s=N

[
LqsE

α(s + 1)Cα(σ(s + 1))− α

Dα−1E(s)aτ(s)

]
.

Letting n →∞ in the last inequality, we obtain a contradiction to (3.2). This completes the proof.

Theorem 3.2. Assume that α ≥ 1 and there exists a sequence {τ(n)} of integers such that τ(n) ≥ n, ∆τ(n) > 0
and τ(n) ≤ σ(n) − k. If there exists a positive increasing real sequence {ρn} such that for every constants
M > 0,and D > 0, (3.1) holds, and

∞∑
n=N

[
qnEα+1(n + 1)Cα(σ(n + 1))− α + 1

Dα−1aτ(n)

]
=∞, (3.14)

then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that Lemma 2.1 holds for n ≥ N ∈ N(n0).
Case(I). Proceeding as in the proof of Theorem 3.1(Case(I)) we obtain a contradiction to (3.1).
Case(II). Proceeding as in the proof of Theorem 3.1(Case(II)) we obtain (3.9) and (3.12). Multiplying (3.12)
by Eα+1(n + 1) and then summing it from N to n− 1 we have

n−1∑
s=N

Eα+1(s + 1)∆vs +
n−1∑
s=N

LqsE
α+1(s + 1)Cα(σ(s + 1)) ≤ 0.
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Using the summation by parts formula in the first term of the last inequality and then rearranging, we obtain

Eα+1(n)vn − Eα+1(N)vN +
n−1∑
s=N

(α + 1)vsE
α(s)

aτ(s)
+

n−1∑
s=N

LqsE
α+1(s + 1)Cα(σ(s + 1)) ≤ 0. (3.15)

In view of (3.9), we have −vnEα+1(n) ≤ 1
Dα−1 E(n) <∞ as n →∞, and

n−1∑
s=N

LqsE
α+1(s + 1)Cα(σ(s + 1)) ≤ Eα+1(N)vN − Eα+1(n)vn +

(α + 1)
Dα−1

n−1∑
s=N

1
aτ(s)

.

Letting n →∞ in the last inequality, we obtain a contradiction to (3.14). This completes the proof.

Theorem 3.3. Assume that α ≥ 1, and there exists a sequence {τ(n)} of integers such that τ(n) ≥ n, ∆τ(n) >

0 and σ(n) ≤ τ(n) − k. If there exists a positive increasing real sequence {ρn} such that for every constant
M > 0, (3.1) holds, and

∞∑
n=N

1
an

n−1∑
s=N

qsE
α(s + 1)Cα(σ(s + 1)) = ∞, (3.16)

then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that Lemma 2.1 holds and Case(I) is eliminated by
the condition (3.1).
Case(II) Proceeding as in the proof of Theorem 3.1(Case(II)), we have

zτ(n) ≥ −an∆znE(n) ≥ −aN∆zNE(n) = dE(n)

where d = −aN∆zN . From equation (1.1), we have

∆(−an∆zn) ≥ Lqnxα
σ(n+1),

and
xσ(n+1)

zτ(n+1)
≥ C(σ(n + 1)).

Hence
∆(−an∆zn) ≥ dαLqnCα(σ(n + 1))Eα(n + 1).

Summing the last inequality from N to n− 1, we obtain

−an∆zn ≥ −aN∆zN + dαL
n−1∑
s=N

qsC
α(σ(s + 1))Eα(s + 1)

≥ Ldα
n−1∑
s=N

qsC
α(σ(s + 1))Eα(s + 1).

Again summing the last inequality from N to n− 1, we have

zN ≥ zN − zn ≥ Ldα
n−1∑
s=N

1
as

s−1∑
t=N

qtC
α(σ(t + 1))Eα(t + 1).

Letting n →∞ in the above inequality, we obtain

Ldα
∞∑

n=N

1
an

n−1∑
t=N

qtC
α(σ(t + 1))Eα(t + 1) ≤ zN

a contradiction to (3.16). This completes the proof.

Next, we obtain sufficient conditions for the oscillation of all solutions of equation (1.1) when 0 < α ≤ 1.
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Theorem 3.4. Assume that 0 < α ≤ 1, and there exist a real sequence {τ(n)} of integers such that τ(n) ≥
n, ∆τ(n) > 0 and σ(n) ≤ τ(n) − k. If there exists a positive nondecreasing sequence {ρn} such that for all
constants M1 > 0 and M2 > 0, one has

∞∑
n=N

[
LρnqnBα(σ(n + 1))−M1−α

1

∆ρnaα
σ(n)

Aα(n)

]
=∞ (3.17)

and
∞∑

n=N

[
LMα−1

2 qnE(n + 1)Cα(σ(n + 1))− 1
4aτ(n)E(n + 1)

]
=∞, (3.18)

then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that Lemma 2.1 holds for all n ≥ N ∈ N(n0).
Case(I). Define

wn = ρn
an∆zn

zα
σ(n)

, n ≥ N.

Then wn > 0 and from equation (1.1) and from (2.1), we have

∆wn ≤ −LρnqnBα(σ(n + 1)) + ∆ρn

aσ(n)∆zσ(n)

zα
σ(n+1)

, n ≥ N.

Using (2.6) in the last inequality, we obtain

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρnaα

σ(n)

Aα(n)
(aσ(n)∆zσ(n))1−α, n ≥ N.

From the monotonicity of {an∆zn} and 0 < α ≤ 1, we have from the last inequality

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρnaα

σ(n)

Aα(n)
M1−α

1 , n ≥ N, (3.19)

where M1 = aσ(N)∆zσ(N). Summing the inequality (3.19) from N to n− 1, we obtain

0 < wn ≤ wN −
n−1∑
s=N

(
LρsqsB

α(σ(s + 1))−
M1−α

1 aα
σ(s)∆ρs

Aα(s)

)
. (3.20)

Letting n →∞ in (3.20), we obtain a contradiction to (3.17).
Case(II). Define

vn =
an∆zn

zτ(n)
, n ≥ N. (3.21)

Then vn < 0 for n ≥ N . Further, we have

as∆zs ≤ an∆zn, s ≥ n.

Dividing the last inequality by as and then summing it from τ(n) to `, we obtain

z`+1 − zτ(n) ≤ an∆zn

∑̀
s=τ(n)

1
as

.

Letting `→∞, we obtain
0 ≤ zτ(n) + an∆znE(n)

or
−1 ≤ vnE(n), n ≥ N. (3.22)

From (3.21) and equation (1.1), we have

∆vn ≤ −
Lqnxα

σ(n+1)

zτ(n+1)
−

an∆zn∆zτ(n)

zτ(n)zτ(n+1)
.
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Since τ(n) ≥ n and an∆zn is negative and decreasing, we have

aτ(n)∆zτ(n) ≤ an∆zn.

Therefore

∆vn ≤ −Lqn

xα
σ(n+1)

zτ(n+1)
− (an∆zn)2

aτ(n)zτ(n)zτ(n+1)
, n ≥ N.

Since zn is positive and decreasing, we have zτ(n+1) ≤ zτ(n) for n ≥ N . Combining the last two inequalities,
we obtain

∆vn ≤ −Lqn

xα
σ(n+1)

zτ(n+1)
− v2

n

aτ(n)
, n ≥ N. (3.23)

Now using (3.11) in (3.23), we have

∆vn ≤ −Lqn
Cα(σ(n + 1))

M1−α
2

− v2
n

aτ(n)

for some constant M2 = zτ(N+1) > 0. That is,

∆vn + LMα−1
2 qnCα(σ(n + 1)) +

v2
n

aτ(n)
≤ 0, n ≥ N. (3.24)

Multiplying (3.23) by E(n + 1), and then summing it from N to n− 1, we have

n−1∑
s=N

E(s + 1)∆vs +
n−1∑
s=N

LMα−1
2 qsE(s + 1)Cα(σ(s + 1)) +

n−1∑
s=N

E(s + 1)v2
s

aτ(s)
≤ 0. (3.25)

Using the summation by parts formula in the first term of (3.25) and then rearranging, we obtain

E(n)vn − E(N)vN +
n−1∑
s=N

LMα−1
2 qsE(s + 1)Cα(σ(s + 1)) +

n−1∑
s=N

( vs

aτ(s)
+

v2
sE(s + 1)

aτ(s)

)
≤ 0.

Using completing the square in the last term of the above inequality, we obtain

E(n)vn − E(N)vN +
n−1∑
s=N

LMα−1
2 qsE(s + 1)Cα(σ(s + 1))

+
n−1∑
s=N

E(s + 1)
aτ(s)

(
vs +

1
2E(s + 1)

)2

−
n−1∑
s=N

1
4aτ(s)E(s + 1)

≤ 0

or

E(n)vn ≤ E(N)vN −
n−1∑
s=N

(
LMα−1

2 qsE(s + 1)Cα(σ(s + 1))− 1
4aτ(s)E(s + 1)

)
.

Letting n → ∞ in the last inequality and using (3.22), we obtain a contradiction to (3.18). The proof is now
complete.

4 Examples

In this section, we present some examples to illustrate the main results.
Example 4.1. Consider the neutral difference equation

∆
(
2n+1∆(xn + 2xn−2)

)
+ 9× 2n+2xn−1 = 0, n ∈ N(0). (4.1)

Here an = 2n+1, pn = 2, k = 2, σ(n + 1) = n − 1, α = 1, qn = 36(2n) and τ(n) = n + 2. Then
R(n) = 2n−1

2n , E(n) = 1
2n+2 , C(n) = 1

4 and B(n) = 1
16

(
4 (2n+2)−7

2n+2−1

)
. By taking ρn = 1, we see that

all conditions of Theorem 3.1 are satisfied and hence every solution of equation (4.1) is oscillatory. In fact
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{xn} = {(−1)n} is one such oscillatory solution of equation (4.1) since it satisfies the given equation.

Example 4.2. Consider the neutral difference equation

∆
(
2n+1∆(xn + 2xn−3)

)
+ 1905× 25(n−3)x3

n−2 = 0, n ∈ N(0). (4.2)

Here an = 2n+1, pn = 2, k = 3, σ(n + 1) = n − 2, α = 3, qn =
(

1905
32768

)
25n, L = 1 and τ(n) = n + 2.

Then R(n) = 2n−1
2n , E(n) = 1

2n+2 , C(n) = 1
4 and B(n) = 1

32

(
16 − 2n+6−1

2n+1−1

)
. By taking ρn = 1, we see that

all conditions of Theorem 3.2 are satisfied and hence every solution of equation (4.2) is oscillatory. In fact
{xn} = { (−1)n

4n } is one such oscillatory solution of equation (4.2) since it satisfies the given equation.

Example 4.3. Consider the neutral difference equation

∆
(
(n + 1)(n + 2)∆(xn + 3xn−1)

)
+ 8(n + 2)2x1/3

n−2 = 0, n ∈ N(1). (4.3)

Here an = (n + 1)(n + 2), pn = 3, k = 1, σ(n + 1) = n − 2, α = 1
3 , qn = 8(n + 2)2 and τ(n) = n.

Then R(n) = n−1
2(n+1) , E(n) = 1

(n+1) , C(n) = 2
9 and B(n) = 2

9

(
n2+3n−1
n(n+3)

)
. By taking ρn = 1, we see that

all conditions of Theorem 3.4 are satisfied and hence every solution of equation (4.3) is oscillatory. In fact
{xn} = {(−1)3n} is one such oscillatory solution of equation (4.3) since it satisfies the given equation.
We conclude this paper with the following remark.

Remark 4.1. The results obtained in this paper are new and complement to that of in [8, 11, 12].
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Abstract

The paper is devoted to prove maximum principles for the certain functionals defined on solution of the
fourth order semilinear elliptic equation. The maximum principle so obtained is used to prove the non-existence
of nontrivial solutions of the fourth order semilinear elliptic equation with some zero boundary conditions.
Hopf’s maximum principle is main ingredient.
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1 Introduction

The ’P- function’ technique for deducing maximum principle results for partial differential equations of
order ≥ 2 is well known. For instance, [5] Miranda shows that the P- function

P = |∇u(x)|2 − u∆u (1.1)

is subharmonic, where u is a classical solution to the biharmonic equation ∆2u = 0. Since, then many others
have employed this technique on various classes of fourth order partial differential equations. In [7], for example,
Schaefer utilizes auxiliary functions of type (1.1) to study semilinear equations of the form

∆2u + ρ(x, y)f(u) = 0,

in a plane domain. Still other types of functions have been employed in the pursuit of maximum principle
results for fourth order differential equations [1, 2, 4]. Recently [3] Dhaigude and Gosavi extend a maximum
principle for a class of fourth order semilinear elliptic equations due to Schaefer [7] to a more general fourth
order semilinear elliptic equation of the form

∆2u + a(x, y)∆u + b(x, y)f(u) = 0.

In this paper, we study the existence problem for fourth order semilinear elliptic equation of the form

∆2u + a(x, y)∆u + b(x, y)f(u) = 0.
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For simplicity, we use the summation convention and denote partial derivatives
∂u

∂xi
by u,i and

∂2u

∂x2
i

by u,ii.

This paper is organized as follows. In section 2 we develop a maximum principle for a class of fourth order
semilinear elliptic equations. The maximum principle will be used to deduce the non-existence of nontrivial
solutions of the boundary value problem under consideration in the last section of this paper.

2 Maximum principles

Suppose Ω is a plane domain bounded by a sufficiently smooth curve ∂Ω. The following Lemma [8] is useful
to prove our results.

Lemma 2.1. For a sufficiently smooth function v the inequality

Nv,ikv,ik ≥ (∆v)2

holds in N dimensions.

Now, we prove the following maximum principles for the function P denoted by P = |∇u(x)|2 − u∆u +∫ u

0
ϕ(s) ds, which will be the main result of this paper.

Theorem 2.1. Let u ∈ C4 be a sufficiently smooth solution of

∆2u + a(x, y)∆u + b(x, y)f(u) = 0 (2.1)

where a ≤ 0, b > 0 in Ω and

b(x, y)u(x, y)f(u) + a(x, y)|∇u|2 ≥ 0 in Ω. (2.2)

If ϕ satisfy

ϕ(s) ≥ 0, ϕ
′
(s) ≥ 0 for s ≥ 0,

∫ u

0

ϕ(s) ds ≤ 0 (2.3)

then the function

P = |∇u(x)|2 − u∆u +
∫ u

0

ϕ(s) ds (2.4)

assumes its maximum on ∂Ω.

Proof. We have, the function

P = |∇u(x)|2 − u∆u +
∫ u

0

ϕ(s) ds.

By straightforward computations

P,k = 2u,iu,ik − u,k∆u− u(∆u),k + ϕ(u) u,k (2.5)

P,kk = 2u,iku,ik − (∆u)2 − u∆2u + ϕ
′
(u)|∇u|2 + ϕ(u)∆u. (2.6)

Using (2.1) in (2.6), we get

∆P = 2u,iku,ik − (∆u)2 + au∆u + buf + ϕ
′
(u)|∇u|2 + ϕ(u)∆u. (2.7)

Using (2.4), we have

∆P + aP =2u,iku,ik − (∆u)2 + a|∇u|2 + buf + ϕ
′
(u)|∇u|2

+ ϕ(u)∆u + a

∫ u

0

ϕ(s) ds. (2.8)

By Lemma 2.1 and assumption (2.2) and (2.3), we see that the right hand side of (2.8) is non-negative.
Thus

∆P + aP ≥ 0 in Ω.
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By maximum principle, the result follows.

Theorem 2.2. Let u ∈ C4 be a sufficiently smooth solution of

∆2u + a(x, y)∆u + b(x, y)f(u) = 0 (2.9)

where a ≤ 0, b > 0 in Ω and

b(x, y)u(x, y)f(u) + a(x, y)|∇u|2 ≥ 0 in Ω. (2.10)

If ϕ satisfy

ϕ(s) ≥ 0, ϕ
′
(s) ≥ 0 for s ≥ 0,

∫ u

0

ϕ(s) ds ≤ 0 (2.11)

then the function

P =
1
b

[
|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds

]
(2.12)

assumes its maximum on ∂Ω unless P < 0 in Ω.

Proof. We have, the function

P =
1
b

[
|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds

]
By straightforward computations

P,k =
1
b

[
∇(|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds)
]
− b,k

b2

(
|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds

)
(2.13)

P,kk =
1
b

[
∆(|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds)
]
− b,k

b2

[
∇(|∇u(x)|2 − u∆u+∫ u

0

ϕ(s) ds)
]
− b,k

b2

[
∇(|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds)
]
− b,kk

b2

(
|∇u(x)|2−

u∆u +
∫ u

0

ϕ(s) ds

)
+

2b,kb,k

b3

(
|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds

)
. (2.14)

Using (2.12) and after some rearrangements, we have

∆P − 2b∇
(

1
b

)
∇P+

∆b

b
P =

1
b

[
∆(|∇u(x)|2 − u∆u +

∫ u

0

ϕ(s) ds)
]
. (2.15)

∆P − 2b∇
(

1
b

)
∇P +

[
∆b

b
+ a

]
P =

1
b

[
2u,iku,ik − (∆u)2 + a|∇u|2 + buf (2.16)

+ ϕ
′
(u)|∇u|2 + ϕ(u)∆u + a

∫ u

0

ϕ(s) ds

]
.

Then it follows from Lemma 2.1 and assumptions (2.10) and (2.11) that P satisfies

∆P − 2b∇
(

1
b

)
∇P +

[
∆b

b
+ a

]
P ≥ 0 in Ω.

By Hopf’s maximum principle [6], the result follows.

The next Lemma [7]is useful in proving the non-existence result in the last section of the paper.

Lemma 2.2. If (2.2) is satisfied and if u is a C4 solution of (2.1) which vanishes on ∂Ω, then∫
Ω

|∇u(x)|2dxdy ≤ 1
2
A|∇u(x)|2M

where A is the area of Ω.
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3 Applications

In this section as an application of our maximum principle we prove non-existence of nontrivial solutions
u ∈ C4 of the following boundary value problem

∆2u + a(x, y)∆u + b(x, y)f(u) = 0, in Ω (3.1)

u(x, y) = 0,
∂u

∂n
= 0 on ∂Ω. (3.2)

and

∆2u + a(x, y)∆u + b(x, y)f(u) = 0, in Ω (3.3)

u(x, y) = 0, ∆u = 0 on ∂Ω. (3.4)

Theorem 3.1. If (2.2) is satisfied then no non-trivial solution of (3.1)-(3.2) exists.

Proof. It is by contradiction. Assume on the contrary that a nontrivial solution u of the given BVP (3.1)-(3.2)
exists. We have P as defined in (2.4). Now, Theorem 2.1 and boundary condition (3.2) gives

u,iu,i − u∆u +
∫ u

0

ϕ(s) ds ≤ 0. (3.5)

Further integrating (3.5) over Ω, we have∫
Ω

[
u,iu,i − u∆u

]
dxdy +

∫
Ω

( ∫ u

0

ϕ(s) ds

)
≤ 0. (3.6)

Using Green’s first identity∫
Ω

[
v∆u +∇v · ∇u

]
dxdy =

∫
∂Ω

v
∂u

∂n
dσ, with v = u (3.7)

and (3.2) in (3.7), we get

2
∫

Ω

|∇u|2dxdy +
∫

Ω

( ∫ u

0

ϕ(s) ds

)
≤ 0. (3.8)

Consequently |∇u| = 0 in Ω and by continuity u ≡ 0 in Ω ∪ ∂Ω. This is a contradiction. Hence there is no
nontrivial solution of (3.1)-(3.2).

Theorem 3.2. If (2.2) is satisfied in a convex domain Ω then no nontrivial solution of (3.3)-(3.4) exists.

Proof. It is by contradiction. Assume on the contrary that a nontrivial solution u of the given BVP (3.3) -
(3.4) exists. We have P as defined in (2.4). Then by Theorem 2.1, P takes its maximum on the boundary ∂Ω
at a point, say Q. By Hopf’s second maximum principle, either ∂P

∂n (Q) > 0 or P is constant in Ω ∪ ∂Ω.

Case I. Suppose ∂P
∂n (Q) > 0 holds. Differentiate P partially in the normal direction and use boundary condition

(3.4) to get
∂P

∂n
(Q) = 2

∂u

∂n

∂2u

∂n2
. (3.9)

We know the following relation from differential geometry,

∂2u

∂n2
+ k

∂u

∂n
+

∂2u

∂s2
= u,ii = ∆u (see[8], p.46) (3.10)

where ∂
∂n and ∂

∂s are normal and tangential derivatives respectively. The tangential component ∂2u
∂s2 is zero.

Equation (3.10) becomes
∂2u

∂n2
= ∆u− k

∂u

∂n
. (3.11)

Using (3.11) and (3.4) in (3.9), we get
∂P

∂n
(Q) = −2k

(
∂u

∂n

)2

. (3.12)

Since Ω is convex, k > 0. So ∂P
∂n (Q) > 0 is impossible. Therefore, in this case no nontrivial solution exists.
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Case II. Suppose P is a constant say c in Ω ∪ ∂Ω. Then we have

|∇u|2 =
(

∂u

∂n

)2

= c on ∂Ω. (3.13)

Now as P = c in Ω ∪ ∂Ω, we have ∂P
∂n = 0 on ∂Ω. But from (3.12) we have

∂P

∂n
(Q) = −2kc.

For a bounded convex domain with a continuously turning tangent on the boundary, k 6= 0. Moreover c 6= 0,

for if c = 0 then |∇u|M = 0 and by Lemma 2.2 and reasoning as in Theorem 2.1 we are led to the conclusion
that u ≡ 0 in Ω. Thus P = c is impossible. As neither case is possible, we conclude that no nontrivial solution
exists.
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Abstract

In this paper we start with a triparametric self information function and triparametric entropy. Some famil-
iar entropies are derived as particular cases. A measure called information deviation and some generalization
of Kullback’s information are obtained under some boundary conditions.
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1 Introduction

Shannon[10] first introduced the idea of self-information function in the form

f(x) = − log2 x, 0 < x ≤ 1. (1.1)

In this paper we use the method of averaging self-informations introduced by Shannon. Like Shannon we
introduce a triparametric self-information function defined by

f3(x; α, β, γ) =
k(xα/γ − xβ/γ)

x
, 0 < x ≤ 1, α ≥ 0, β ≥ 0, γ > 0, α 6= β 6= γ (1.2)

Where k is a constant, depending upon the real valued parameters α, β, γ and k is ascertained by a suitable
pair (x, f3). We apply the following conditions on f3:

(i) f3 → 0 as x→ 0.
(ii) f3 = 0, when x = 1.

(iii) f3 = 1, x = 1
2 , then k =

(
2

γ−α
γ − 2

γ−β
γ

)−1

.

The function shows the following particular behaviors:

(I) If α, β are fixed, then for x < 1
2 , f3 →∞ as γ →∞ and for x > 1

2 , f3 → 0 as γ →∞.

(II) For any fixed γ, f3 → −(2x)
α−γ

γ log2 x as α→ β.
(III) If β = γ and α→ γ(α < γ), then f3 → − log2 x.

Self-information function is different from information function. Different authors, namely Darcozy [4], Aczel
[1], Arndt [2], Chaundy and Mcleod [3], Havrda and Charvat [5], Kannapan [6], Sharma and Taneja [11], Mittal
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[9] and some others have solved some typical functional equations and have used their solutions as entropy,
inaccuracy, directed divergence etc., In the capacity of finite measures only in complete probability distributions.
The method of averaging self-informations includes the case of generalized probability distributions. Moreover,
we have discussed in this paper, information measures in the capacity of even an infinite range, because
a parameter can have negative values also corresponding to phenomenal circumstances. Further since it is
uncertain and difficult to choose an arbitrary functional equation and to find its suitable solutions to be used
as information measures, it becomes easier if we choose any suitable parametric self-information function that
can satisfy a number of effective boundary conditions. We have given a most simple and general choice in (1.2).

Section 2 describes a triparametric entropy from which other familiar entropies have been deduced as par-
ticular cases. We have given a number of this entropy in section 3 as joint entropy, triparmetric information
functions, generalized information function, generalized inaccuracy, a new information called information de-
viation and lastly generalizations of Kullback’s information.

2 Triparametric entropy

Let P = (p1, p2, ..., pn) be a finite discrete probability distribution, where 0 < pi ≤ 1,
∑n

i=1 pi ≤ 1 .
Then, averaging the function f3(pi;α, β, γ) with respect to P , we define the triparametric entropy as

H(P ;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1
[

n∑
i=1

(pα/γ
i − p

β/γ
i )

]/
n∑

i=1

pi, (2.1)

where α, β, γ > 0, α 6= β 6= γ.
When P is complete, we have

H(P ;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1
[

n∑
i=1

(pα/γ
i − p

β/γ
i )

]
, (2.2)

where α ≥ 0, β ≥ 0, γ > 0, α 6= β 6= γ.

2.1 Some familiar entropies

From (2.2), we get the following entropies as particular cases:
(i) γ = 1 gives Sharma and Taneja’s entropy [11] of type (α,β) in the form

H(P ;α, β) =
(
21−α − 21−β

)−1

[
n∑

i=1

(pα
i − pβ

i )

]
, α 6= β (2.3)

and

Lt
α→β

H(P ;α, β) =

(
n∑

i=1

pβ
i log2

1
pi

)
2β−1.

(ii) Putting α = γ = 1, we get Darcozy’s entropy [4] of type β as

H(P ;β) =
(
21−β − 1

)−1

[
n∑

i=1

(pβ
i − 1)

]
, β > 0, β 6= 1 (2.4)

(iii) When β = γ and α→ γ, then (2.2) reduces to

H(P ) =
n∑

i=1

pi log2

1
pi

, (2.5)

which is Shannon entropy.
(iv) When n > 2, then H →∞ as γ →∞; when n = 1, then H = 0, p1 = 1 and when n = 2, then H = 1.

3 Application of the entropy (2.2)



Satish Kumar et al. / Triparametric self ... 51

3.1 Joint entropy

For joint probability distribution, a relation similar to (2.2) also holds in the form

H(PQ;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1

 n∑
k=1

m∑
j=1

(pα/γ
kj − p

β/γ
kj )

 , (3.1)

0 < pkj ≤ 1,
n∑

k=1

m∑
j=1

pkj = 1; α ≥ 0, β ≥ 0, γ > 0, α 6= β.

Theorem 3.1. If P = (p1, p2, ..., pn) be the distribution of input symbols of a source, Q = (q1, q2, ..., qm) be
that of output symbols and PQ = (pk1, pk2, ..., pkm; k = 1, 2, ..., n) be the joint distribution of input and output
symbols; also

Rk =
(

pk1

pk
,

pk2

pk
, ...,

pkm

pk

)
be the conditional distribution of output symbols and

Rj =
(

p1j

qj
,

p2j

qj
, ...,

pnj

qj

)
be the conditional distribution of input symbols, where

pkj

/
pk = pj|k, (j = 1, 2, ...,m); pkj

/
qj = pk|j , (k = 1, 2, ..., n);

m∑
j=1

pkj = pk and
n∑

k=1

pkj = qj ,

then

H(PQ;α, β, γ) =
n∑

k=1

p
β
γ

k H(Rk;α, β, γ) +
(
2

γ−α
γ − 2

β−γ
γ

)−1

 n∑
k=1

(
p

α
γ

k − p
β
γ

k

) m∑
j=1

p
α
γ

j|k

 . (3.2)

Putting α = γ = 1 and using
∑m

j=1 pj|k = 1 in (3.2), we have

H(PQ; β) =
n∑

k=1

pβ
kH1(Rk;β) + H1(P ;β). (3.3)

Theorem 3.2. If pkj = pkqj , then

H(PQ; α, β, γ) =
n∑

k=1

p
α
γ

k H(Rk;α, β, γ) +
m∑

j=1

q
β
γ

j H(Rj ;α, β, γ)

=
n∑

k=1

p
α
γ

k H(Q;α, β, γ) +
m∑

j=1

q
β
γ

j H(P ;α, β, γ). (3.4)

3.2 Triparametric information function

With the help of equation (2.2), we define a triparametric information function in the form

F3(x) = F3(x;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1

(xα/γ − xβ/γ) (3.5)

α ≥ 0, β ≥ 0, γ > 0, α 6= β 6= γ and 0 < x ≤ 1.

Where F3(0) = 0, but F3(1) = 0 and F3

(
1
2

)
= 1

2 always.
Thus

H(P ;α, β, γ) =
n∑

k=1

F (pk), 0 < pk ≤ 1,
n∑

ki=1

pk = 1. (3.6)

Putting a = α/γ, b = β/γ in (3.5), we have

F3(x) = F (x;α, β, γ) =
(
21−a − 21−b

)−1
(xa − xb), −∞ < a, b <∞, a 6= b. (3.7)

Now, from practical point of view, as far as an inaccuracy in a measure is concerned, a measure is associated
with at least two probability distributions, corresponding to which at least two variables u and v are needed.
This suggests the choice of at least four parameters a, b, c and d.
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3.3 Generalized information function

Concerning an association of two variables u, v and four parameters a, b, c, d, an information measure similar
to (3.7) is introduced by

F4(u, v) = F (u, v; a, b, c, d) = G[uavb − ucvd], (3.8)

0 < u, v ≤ 1, −∞ < a, b, c, d <∞, a 6= b 6= c 6= d

as the generalized information function, which possesses the characteristic of becoming both bounded and
unbounded.

3.3.1 Boundary conditions

(i) At u = 1, v = 1
2 , F4

(
1, 1

2

)
= 1

2 , so that G = (21−b − 21−d)−1, where b 6= d.

If a + b = c + d, where a 6= c, then F4

(
1
2 , 1

2

)
= 0. Similarly at u = 1

2 , v = 1, F4

(
1
2 , 1
)

= 1
2 so that

G = (21−a − 21−c)−1, where a 6= c.

(ii) At u = 1, v = 1
2 , F4

(
1, 1

2

)
= 1

2 so that G = (2−b − 2−d)−1, where b 6= d.

At u = 1
2 , v = 1, F4

(
1
2 , 1
)

= 1, so that G = (2−a − 2−c)−1, where a 6= c.

3.3.2 Generalize inaccuracy

Let P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) be two discrete probability distributions concerned with
(3.8), where 0 < pi ≤ 1, 0 < qi,

∑n
i=1 pi = 1,

∑n
i=1 qi = 1, (u, v) = (pi, qi) or (qi, pi); i = 1, 2, ..., n.

We may then define the generalized inaccuracies by

I4(P ‖Q) =
n∑

i=1

F4(pi, qi) = (21−b − 21−d)−1

[
n∑

i=1

pa
i qb

i −
n∑

i=1

pc
iq

d
i

]
, b 6= d, (3.9)

I4(Q ‖P ) =
n∑

i=1

F4(qi, pi) = (21−b − 21−d)−1

[
n∑

i=1

qa
i pb

i −
n∑

i=1

qc
i p

d
i

]
, b 6= d, (3.10)

which follows from (3.8) and boundary condition 3.3.1(i).
Given P and Q, we see that
(i) I4(P ‖Q) → +∞ or −∞, according as a → −∞ or c → −∞ for b < d; or as c → −∞ or a → −∞ for
b > d.

(ii) If d = 1, c = 0, then I4(P ‖Q) → (1− 21−b)−1 as a→∞.

(iii) If d = 1, c = 0, then I4(P ‖Q) → 1 as b→∞.

It is to be noted that when d = 1, c = 0, then

I4(Q ‖P ) = (21−b − 1)−1

[
n∑

i=1

pa
i qb

i − 1

]
. (3.11)

3.3.3 Information deviations

If d = 1, c = 0, a + b = 1, then we introduce the quantities

D(Q ‖P ‖Q) = Lt
b→1

I4(P ‖Q) = H(Q)−H(Q ‖P ) (3.12)

and
D(P ‖Q ‖P ) = Lt

b→1
I4(Q ‖P ) = H(P )−H(P ‖Q) (3.13)

as the information deviation of Q from P and of P from Q respectively, where

H(P ) =
n∑

k=1

pk log2

1
pk

, H(Q) =
n∑

k=1

qk log2

1
qk
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are Shannon’s [10] entropies and

H(Q‖P ) =
n∑

k=1

qk log2

1
pk

, H(P‖Q) =
n∑

k=1

pk log2

1
qk

are Kerridge’s [7] inaccuracies. Thus

D(Q‖P ‖Q ) =
n∑

k=1

qk log2

pk

qk
, D(P‖Q ‖P ) =

n∑
k=1

pk log2

qk

pk
(3.14)

3.3.4 Kullback’s information and its generalizations

If we take the boundary conditions 3.3.1(ii), then

I4(P ‖Q) =
1
2
I∗4 (P ‖Q), (3.15)

where

I∗4 (P ‖Q) = (2−b − 2−d)−1

[
n∑

i=1

pa
i qb

i −
n∑

i=1

pc
iq

d
i

]
, b 6= d. (3.16)

Now if d = 0, c = 1, a + b = 1, then

Lt
b→0

I4(P
∥∥Q) = 1

2 I(P ‖P ‖Q), Lt
b→0

I4(Q
∥∥P ) = 1

2 I(Q ‖Q ‖P ), (3.17)

where

D(P‖P ‖Q ) =
n∑

k=1

pk log2

pk

qk
= H(P ‖Q)−H(P ) (3.18)

and

D(Q‖Q ‖P ) =
n∑

k=1

qk log2

qk

pk
= H(Q ‖P )−H(Q) (3.19)

represents Kullback’s [8] informations.

Information deviations and Kullback’s informations are equal and opposite measures. The fact follows from

D(Q ‖P ‖Q) + I(Q ‖Q ‖P ) = 0, D(P ‖Q ‖P ) + I(P ‖P ‖Q) = 0 (3.20)

It may be noted that information deviations and Kullback’s informations become zero, if pk = qk for k =
1, 2, ..., n.

3.3.5 Generalized Boundary Conditions

We shall now show that so far as our generalized inaccuracies (3.9) and (3.10) are concerned, there exist certain
boundary conditions for which certain limiting functions of (3.9) and (3.10) may be taken as the generalized
forms of Kullback’s informations. For this, we generalized the boundary conditions in the following ways and
get the results:
(i) Let u = 1, v = 1

2 , F4

(
1, 1

2

)
= 1

2m ,

where m is real number ≥ 0. Then, we have for d = 0, c = 1, a + b = 1,

I(1)(P,Q,m) = Lt
b→0

I4(P
∥∥Q) = 2−m

n∑
k=1

pk log2

pk

qk
, m ≥ 0 (3.21)

to be called the first generalized Kullback’s information. For m = 0 in (3.21), we get Kullback’s information.
The information (3.21) decreases as m increases.

(ii) let u = 1, v = 1
2 , F4

(
1, 1

2

)
= 1

2m , where m is real number ≥ 0. Also let d = 0, c = 1 + m, a + b = 1 + m,

then we have

I(2)(P,Q,m) = Lt
b→0

I4(P
∥∥Q) = 2−m

n∑
k=1

pm+1
k log2

pk

qk
, m ≥ 0 (3.22)
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to be called the second generalized Kullback’s information. It is observed that I2(P,Q,m) ≤ I1(P,Q,m).

For m = 0 in (3.22), we get Kullback’s information.

(iii) let u = 1, v = 1
2 , F4

(
1, 1

2

)
= 2−1/m, where m is any positive real number. Then the values

d = 0, c = 1 + 1/m, a + b = 1 + 1/m, lead to the information

I(3)(P,Q,m) = Lt
b→0

I4(P ‖Q) = 2−1/m
n∑

k=1

p
1/m+1
k log2

pk

qk
, (3.23)

which may be called the third generalized Kullback’s information. In this case

Lt
m→0

I(3)(P,Q,m) = 0 and Lt
m→∞

I(3)(P,Q,m) = I(P ‖P ‖Q).
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Abstract

The total product cordial labeling is a variant of cordial labeling. We introduce an edge analogue product

cordial labeling as a variant of total product cordial labeling and name it as total edge product cordial labeling.

Unlike to total product cordial labeling the roles of vertices and edges are interchanged in total edge product

cordial labeling. We investigate several results on this newly defined concept.

Keywords: Cordial labeling, product cordial labeling, edge product cordial labeling, total edge product cordial

labeling.
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1 Introduction

We begin with simple, finite, connected and undirected graph G = (V(G), E(G)) with order p and size q.

The members of V (G) and E(G) are commonly termed as graph elements while |V (G)| and |E(G)| denotes

number of vertices and edges in graph G respectively. For all standard terminology and notations we follow

West [10]. We will give brief summary of definitions which are useful for the present investigations.

Definition 1.1. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain

condition(s). If the domain of mapping is the set of vertices(edges) then the labeling is called a vertex(an edge)

labeling.

Most of the graph labeling techniques trace their origin to β - labelings introduced by Rosa [5] in 1967.

This labeling was renamed as graceful labeling by Golomb [3] and it is now the popular term which is defined

as follows.

Definition 1.2. A graph G = (V (G), E(G)) of order p and size q is said to be graceful if there exists an

injection f : V (G) → {0, 1, 2, . . . , q} such that the induced function f∗ : E(G) → {1, 2, . . . , q} defined by

f∗(e = uv) = |f(u)− f(v)| for each edge e = uv is a bijection and f is said to be graceful labeling of G.

Vast amount of literature is available on different types of graph labeling. Labeling of graphs is a potential

area of research and more than 1500 research papers have been published so far in past five decades. For an

extensive survey on graph labeling and bibliographic references we refer to Gallian [2].

Graham and Sloane [4] have introduced harmonious labeling during their study on modular versions of

additive bases problems stemming from error correcting codes.

Definition 1.3. A graph G = (V (G), E(G)) is said to be harmonious if there exists an injection f : V (G)→ Zq

such that the induced function f∗ : E(G) → Zq defined by f∗(e = uv) = (f(u) + f(v)) (mod q) is a bijection

and f is said to be harmonious labeling of G.

∗Corresponding author.

E-mail addresses: samirkvaidya@yahoo.co.in (Samir K. Vaidya), chirag.barasara@gmail.com (Chirag M. Barasara)
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In 1987, Cahit [1] have introduced cordial labeling as a weaker version of graceful labeling and harmonious

labeling which is defined as follows.

Definition 1.4. For a graph G, a vertex labeling function f : V (G)→ {0, 1} induces an edge labeling function

f∗ : E(G) → {0, 1} defined as f∗(uv) = |f(u) − f(v)|. Let vf (i) be the number of vertices of G having label

i under f and ef (i) be the number of edges of G having label i under f∗ for i = 0, 1.The function f is called

cordial labeling of G if |ef (0)− ef (1)| ≤ 1 and |vf (0)− vf (1)| ≤ 1. A graph is called cordial if it admits cordial

labeling.

In the same paper Cahit [1] proved many results on cordial labeling.

After this some labelings schemes like prime cordial labeling, A - cordial labeling, H-cordial labeling, product

cordial labeling, etc. are also introduced as variants of cordial labeling.

The concept of E-cordial labeling was introduced by Yilmaz and Cahit [11] which is defined as follows.

Definition 1.5. For a graph G, an edge labeling function f∗ : E(G)→ {0, 1} induces a vertex labeling function

f : V (G) → {0, 1} defined as f(v) =
∑
{f∗(uv)/uv ∈ E(G)} (mod 2). The function f∗ is called E-cordial

labeling of G if |ef (0) − ef (1)| ≤ 1 and |vf (0) − vf (1)| ≤ 1. A graph is called E-cordial if it admits E-cordial

labeling.

Definition 1.6. For a graph G, an edge labeling function f∗ : E(G)→ {0, 1} induces a vertex labeling function

f : V (G) → {0, 1} defined as f(v) =
∏
{f∗(uv)/uv ∈ E(G)}. The function f∗ is called edge product cordial

labeling of G if |ef (0)− ef (1)| ≤ 1 and |vf (0)− vf (1)| ≤ 1. A graph is called edge product cordial if it admits

edge product cordial labeling.

The concept of edge product cordial labeling is introduced in recent past by Vaidya and Barasara [7] and

they have investigated several results on this newly defined concept in [7–9].

Definition 1.7. For a graph G, a vertex labeling function f : V (G)→ {0, 1} induces an edge labeling function

f∗ : E(G) → {0, 1} defined as f∗(uv) = f(u)f(v). The function f is called total product cordial labeling of

G if | (vf (0) + ef (0))− (vf (1) + ef (1)) | ≤ 1. A graph is called total product cordial if it admits total product

cordial labeling.

In 2006, Sundaram et al. [6] have introduced total product cordial labeling and also proved some general

results.

In this paper we introduce an edge analogue of total product cordial labeling which is defined as follows.

Definition 1.8. For a graph G, an edge labeling function f∗ : E(G)→ {0, 1} induces a vertex labeling function

f : V (G) → {0, 1} defined as f(v) =
∏
{f∗(uv)/uv ∈ E(G)}. The function f∗ is called a total edge product

cordial labeling of G if | (vf (0) + ef (0))− (vf (1) + ef (1)) | ≤ 1. A graph is called total edge product cordial if

it admits total edge product cordial labeling.

This work also rules out any possibility of forbidden subgraph characterizations for total edge product

cordial labeling as it is established that for n > 2, Kn is total edge product cordial graph.

Definition 1.9. Let C
(t)
n denote the one-point union of t cycles of length n.

Definition 1.10. The wheel Wn is defined to be the join Cn +K1. The vertex corresponding to K1 is known

as apex vertex, the vertices corresponding to cycle are known as rim vertices.

Definition 1.11. Let e = uv be an edge of graph G and w is not a vertex of G. The edge e is subdivided

when it is replaced by the edges e′ = uw and e′′ = wv.

Definition 1.12. The gear graph Gn is obtained from the wheel Wn by subdividing each of its rim edge.

Definition 1.13. The fan fn is the graph obtained by taking n − 2 concurrent chords in cycle Cn+1. The

vertex at which all the chords are concurrent is called the apex vertex. It is also given by fn = Pn +K1.

Definition 1.14. The double fan DFn is defined as Pn + 2K1.
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2 Main results

Theorem 2.1. Every edge product cordial graph of either even order or even size admit total edge product

cordial labeling.

Proof. Let G be an edge product cordial graph with order p and size q. To prove our claim we consider following

three cases.

Case 1: When p is even and q is even.

SinceG is edge product cordial graph, vf (0) = vf (1) =
p

2
and ef (0) = ef (1) =

q

2
. Therefore, | (vf (0) + ef (0))−

(vf (1) + ef (1)) | = 0.

Case 2: When p is even and q is odd.

SinceG is edge product cordial graph, vf (0) = vf (1) =
p

2
and |ef (0)−ef (1)| = 1. Therefore, | (vf (0) + ef (0))−

(vf (1) + ef (1)) | = 1.

Case 3: When p is odd and q is even.

SinceG is edge product cordial graph, ef (0) = ef (1) =
q

2
and |vf (0)−vf (1)| = 1. Therefore, | (vf (0) + ef (0))−

(vf (1) + ef (1)) | = 1.

Thus in either case G satisfies the condition for total edge product cordial. i.e. G admits total edge product

cordial labeling.

Theorem 2.2. The graph with degree sequences (1, 1), (2, 2, 2, 2) or (3, 2, 2, 1) are not total edge product cordial

graphs.

Proof. For the graph with degree sequence (1, 1) has one edge and two vertices. If we label the edge with 1 or

0 then both the vertices will receive the same label. Consequently | (vf (0) + ef (0))− (vf (1) + ef (1)) | = 3.

For the graph with degree sequence (2, 2, 2, 2) or (3, 2, 2, 1) has four edges and four vertices. If we assign

label 0 to any edge then two end vertices will receive label 0 then vf (0) + ef (0) = 3. If we assign label 0 to two

incident edges then three vertices will receive label 0(including a common vertex and two remaining vertices)

then vf (0) + ef (0) = 5. If we assign label 0 to two non-incident edges then four end vertices will receive label

0 consequently vf (0) + ef (0) = 6. Hence in all situations | (vf (0) + ef (0))− (vf (1) + ef (1)) | > 2.

Hence, the graph with degree sequences (1, 1), (2, 2, 2, 2) or (3, 2, 2, 1) are not total edge product cordial

graphs.

Theorem 2.3. The cycle Cn is a total edge product cordial graph except for n 6= 4.

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn. We will consider following two cases.

Case 1: When n is odd.

f(vivi+1) = 0; 1 ≤ i ≤
⌊n

2

⌋
f(vivi+1) = 1;

⌈n
2

⌉
≤ i ≤ n− 1

f(v1vn) = 1.

Case 2: When n is even and n 6= 4.

f(vivi+1) = 0; 1 ≤ i ≤ n− 4

2

f(vivi+1) = 1; i =
n− 2

2
f(vivi+1) = 0; i =

n

2
f(vivi+1) = 1;

n

2
+ 1 ≤ i ≤ n− 1

f(v1vn) = 1.

In both the cases we have vf (0)+ef (0) = n and vf (1)+ef (1) = n. So, | (vf (0) + ef (0))−(vf (1) + ef (1)) | ≤
1.

Hence, the cycle Cn is a total edge product cordial graph except for n 6= 4.

Example 2.1. The cycle C5 and its total edge product cordial labeling is shown in figure 1.
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Theorem 2.4. The graph C
(t)
n is a total edge product cordial graph.

Proof. Let vk,1, vk,2, . . . , vk,n−1 be the vertices of kth copy of cycle Cn and v be an common vertex of C
(t)
n . The

vertices vk,1 and vk,n−1 of kth copy of cycle Cn are adjacent to v. |V (C
(t)
n )| = t(n− 1) + 1 and |E(C

(t)
n )| = tn.

We will consider following three cases.

Case 1: When t is even.

Here C
(t)
n is of even size and it is edge product cordial graph as proved by Vaidya and Barasara [9]. Then

by Theorem 2.1 result holds.

Case 2: When t and n both are odd.

f(vi,jvi,j+1) = 0; 1 ≤ i ≤ t− 1

2
and 1 ≤ j ≤ n− 2

f(vvi,1) = 0; 1 ≤ i ≤ t− 1

2

f(vvi,n−1) = 0; 1 ≤ i ≤ t− 1

2

f(vi,jvi,j+1) = 1;
t+ 1

2
≤ i ≤ t− 1 and 1 ≤ j ≤ n− 2

f(vvi,1) = 1;
t+ 1

2
≤ i ≤ t− 1

f(vvi,n−1) = 1;
t+ 1

2
≤ i ≤ t− 1

f(vt,ivt,i+1) = 0; 1 ≤ i ≤ n− 3

2
f(vvt,1) = 0;

f(vt,ivt,i+1) = 1;
n− 1

2
≤ i ≤ n− 2

f(vvt,n−1) = 1.

Case 3: When t is odd and n is even.

f(vi,jvi,j+1) = 0; 1 ≤ i ≤ t− 3

2
and 1 ≤ j ≤ n− 2

f(vvi,1) = 0; 1 ≤ i ≤ t− 3

2

f(vvi,n−1) = 0; 1 ≤ i ≤ t− 3

2

f(vi,jvi,j+1) = 0; i =
t− 1

2
and 1 ≤ j ≤ n− 2

f(vvi,1) = 0; i =
t− 1

2

f(vvi,n−1) = 1; i =
t− 1

2

f(vi,jvi,j+1) = 0; i =
t+ 1

2
and 1 ≤ j ≤ n− 2

2

f(vvi,1) = 0; i =
t+ 1

2

f(vi,jvi,j+1) = 1; i =
t+ 1

2
and

n

2
≤ j ≤ n− 2

f(vvi,n−1) = 1; i =
t+ 1

2

f(vvi,1) = 1;
t+ 3

2
≤ i ≤ t

f(vi,jvi,j+1) = 1;
t+ 3

2
≤ i ≤ t and 1 ≤ j ≤ n− 2

f(vvi,n−1) = 1;
t+ 3

2
≤ i ≤ t
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In case 2 and case 3 we have vf (0) + ef (0) =
2nt− t+ 1

2
and vf (1) + ef (1) =

2nt− t+ 1

2
. Therefore

| (vf (0) + ef (0))− (vf (1) + ef (1)) | ≤ 1. Hence, the graph C
(t)
n is a total edge product cordial graph.

Example 2.2. The graph C
(3)
4 and its total edge product cordial labeling is shown in figure 2.
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Theorem 2.5. The wheel Wn is a total edge product cordial graph.

Proof. Let v1, v2, . . . , vn be the rim vertices and v be an apex vertex of wheel Wn. To define f : E(Wn)→ {0, 1}
we will consider following two cases.

Case 1: When n is odd.

f(v2i−1v2i) = 0; 1 ≤ i ≤ n− 1

2
f(v1vn) = 0;

f(v2iv2i+1) = 1; 1 ≤ i ≤ n− 1

2
f(vvi) = 1; 1 ≤ i ≤ n.

In view of the above defined labeling pattern we have vf (0) + ef (0) =
3n+ 1

2
and vf (1) + ef (1) =

3n+ 1

2
.

Case 2: When n is even.

f(v2i−1v2i) = 0; 1 ≤ i ≤ n

2
f(v1vn) = 1;

f(v2iv2i+1) = 1; 1 ≤ i ≤ n− 2

2
f(vvi) = 1; 1 ≤ i ≤ n.

In view of the above defined labeling pattern we have vf (0) + ef (0) =
3n

2
and vf (1) + ef (1) =

3n

2
+ 1. Thus in

both the cases we have | (vf (0) + ef (0)) − (vf (1) + ef (1)) | ≤ 1. Hence, the wheel Wn is a total edge product

cordial graph.

Example 2.3. The wheel W5 and its total edge product cordial labeling is shown in figure 3.
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Theorem 2.6. The gear graph Gn is a total edge product cordial graph.

Proof. Let v1, v2, . . . , v2n be the rim vertices and v is apex vertex of gear graphGn. To define f : E(Gn)→ {0, 1}
we will consider following two cases.

Case 1: When n is odd.
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f(vivi+1) = 0; 1 ≤ i ≤ n− 1

f(vivi+1) = 1; n ≤ i ≤ 2n− 1

f(v1v2n) = 1;

f(vv2i−1) = 0; 1 ≤ i ≤
⌈n

2

⌉
f(vv2i−1) = 1;

⌈n
2

⌉
+ 1 ≤ i ≤ n.

In view of the above defined labeling patten we have vf (0) + ef (0) =
5n+ 1

2
and vf (1) + ef (1) =

5n+ 1

2
.

Case 2: When n is even.

Subcase 1: When n ≡ 0 (mod 4).

f(vv2i−1) = 0; 1 ≤ i ≤ n
f(v2i−1v2i) = 0; 1 ≤ i ≤ n

4
f(v1v2n) = 1;

f(v2iv2i+1) = 1; 1 ≤ i ≤ n

4
f(vivi+1) = 1;

n

4
+ 1 ≤ i ≤ 2n− 1.

Subcase 2: When n ≡ 2 (mod 4).

f(vv2i−1) = 0; 1 ≤ i ≤ n

f(v2i−1v2i) = 0; 1 ≤ i ≤ n− 2

4
f(v2v3) = 0;

f(v2iv2i+1) = 1; 2 ≤ i ≤ n− 2

4

f(vivi+1) = 1;
n+ 2

4
≤ i ≤ 2n− 1

f(v1v2n) = 1.

In subcase 1 and subcase 2 we have vf (0) + ef (0) =
5n

2
+ 1 and vf (1) + ef (1) =

5n

2
. Thus in both the cases

we have | (vf (0) + ef (0)) − (vf (1) + ef (1)) | ≤ 1. Hence, the gear graph Gn is a total edge product cordial

graph.

Example 2.4. The gear graph G5 and its total edge product cordial labeling is shown in figure 4.
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Theorem 2.7. The complete graph Kn admits total edge product cordial labeling for n > 2.

Proof. For complete graph Kn, |V (Kn)| = n and |E(Kn)| =
n(n− 1)

2
.Hence total number of elements in

Kn is
n(n+ 1)

2
. For m < n, Km is a subgraph of Kn. Now we search for the smallest integer m for which⌈

n(n+ 1)

4

⌉
≤ m(m+ 1)

2
. Denote

m(m+ 1)

2
−
⌈
n(n+ 1)

4

⌉
by l and assign label 0 to

m(m− 1)

2
− l edges

of subgraph Km and assign label 1 to all the remaining edges of supergraph Kn. Then vf (0) = m, ef (0) =
m(m− 1)

2
− l, vf (1) = n−m and ef (1) =

n(n− 1)

2
− m(m− 1)

2
+ l. Thus

|(vf (0) + ef (0))− (vf (1) + ef (1))|
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=

∣∣∣∣(m+
m(m− 1)

2
− l
)
−
(
n−m+

n(n− 1)

2
− m(m− 1)

2
+ l

)∣∣∣∣
=

∣∣∣∣(m(m+ 1)

2
− l
)
−
(
n(n+ 1)

2
− m(m+ 1)

2
+ l

)∣∣∣∣
=

∣∣∣∣⌈n(n+ 1)

4

⌉
−
(
n(n+ 1)

2
−
⌈
n(n+ 1)

4

⌉)∣∣∣∣
=

∣∣∣∣⌈n(n+ 1)

4

⌉
−
⌊
n(n+ 1)

4

⌋∣∣∣∣
≤ 1.

Hence, Kn admits total edge product cordial labeling for n > 2.

Example 2.5. The complete graph K5 and its total edge product cordial labeling is shown in figure 5. Here

m = 4 and l = 2.
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Remark 2.1. There is no possibility for any forbidden subgraph characterization for total edge product cordial

labeling as Kn admits total edge product cordial labeling.

Theorem 2.8. The complete bipartite graph Km,n is a total edge product cordial graph except K1,1 and K2,2.

Proof. For complete bipartite graph Km,n, |V (Km,n)| = m+ n and |E(Km,n)| = mn. Therefore total number

of elements in Km,n is m + n + mn. Without loss of generality assume that m ≤ n. Let v1, v2, . . . , vm be the

vertices of one partite set and u1, u2, . . . , un be the vertices of other partite set. We will consider following two

cases.

Case 1: When m = 1 and n > 1.

K1,n is a tree of either even order or even size. But Vaidya and Barasara [7] have proved that all trees of

order greater than 2 are edge product cordial graph. Hence the result holds from Theorem 2.1.

Case 2: When m > 2.

For l < n, Km,l is a subgraph of Km,n. Now we search for the largest integer l for which m + l + ml ≤⌊
m+ n+mn

2

⌋
. Let r =

⌊
m+ n+mn

2

⌋
− (m+ l +ml). We define f : E(Km,n)→ {0, 1} as follows.

f(viuj) = 0; 1 ≤ i ≤ m and 1 ≤ j ≤ l
f(viul+1) = 0; 1 ≤ i ≤ r − 1

f(viul+1) = 1; r ≤ i ≤ m
f(viuj) = 1; 1 ≤ i ≤ m and l + 2 ≤ j ≤ n.

In view of the above defined labeling pattern we have vf (0) + ef (0) =

⌊
m+ n+mn

2

⌋
and vf (1) + ef (1) =⌈

m+ n+mn

2

⌉
. Therefore, | (vf (0) + ef (0))− (vf (1) + ef (1)) | ≤ 1.

Hence, the complete bipartite graph Km,n is a total edge product cordial graph except K1,1 and K2,2.

Example 2.6. The complete bipartite graph K3,4 and its total edge product cordial labeling is shown in figure

6. Here m = 3, n = 4. Hence l = 1 and r = 2. For which vf (0) = 5, ef (0) = 4, vf (1) = 2 and ef (1) = 8.

Therefore, | (vf (0) + ef (0))− (vf (1) + ef (1)) | = 1
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Theorem 2.9. The fan fn is a total edge product cordial graph.

Proof. Let v be an apex vertex and v1, v2, . . . , vn be the other vertices of the fan fn. To define f : E(fn)→ {0, 1}
we will consider following two cases.

Case 1: When n is odd.

f(vivi+1) = 0; 1 ≤ i ≤ n− 1

2

f(vivi+1) = 1;
n+ 1

2
≤ i ≤ n− 1

f(vvi) = 0; 1 ≤ i ≤ n− 1

2

f(vvi) = 1;
n+ 1

2
≤ i ≤ n.

In view of the above defined labeling pattern we have vf (0) + ef (0) =
3n+ 1

2
and vf (1) + ef (1) =

3n− 1

2
.

Case 1: When n is even.

f(vivi+1) = 0; 1 ≤ i ≤ n− 2

2
f(vivi+1) = 1;

n

2
≤ i ≤ n− 1

f(vvi) = 0; 1 ≤ i ≤ n

2

f(vvi) = 1;
n+ 2

2
≤ i ≤ n.

In view of the above defined labeling pattern we have vf (0) + ef (0) =
3n

2
and vf (1) + ef (1) =

3n

2
.

Thus in both the cases we have | (vf (0) + ef (0))− (vf (1) + ef (1)) | ≤ 1.

Hence, the fan fn is a total edge product cordial graph.

Example 2.7. The fan f4 and its total edge product cordial labeling is shown in figure 7.
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Theorem 2.10. The double fan Dfn is a total edge product cordial graph.

Proof. Let v and u be vertices with degree n − 1 and v1, v2, . . . , vn be the other vertices of the double fan

Df(n). We define f : E(Dfn)→ {0, 1} as follows.

f(vvi) = 0; 1 ≤ i ≤ n
f(vivi+1) = 1; 1 ≤ i ≤ n− 1

f(uvi) = 1; 1 ≤ i ≤ n.
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In view of the above defined labeling pattern we have vf (0)+ef (0) = 2n+1 and vf (1)+ef (1) = 2n. Therefore,

| (vf (0) + ef (0))− (vf (1) + ef (1)) | ≤ 1.

Hence, the double fan Dfn is a total edge product cordial graph.

Example 2.8. The double fan Df4 and its total edge product cordial labeling is shown in figure 8.

1
1

1

1

1

1

1
0

0

1

0

0

0

0

0

0

0

figure 8

3 Concluding remarks

Labeling of discrete structure is a potential area of research. We have introduced the concept of total edge

product cordial labeling and derive several results on it. To investigate analogous results for various graphs as

well as in the context of different graph labeling problems is an open area of research.
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1 Introduction

In 1965, the theory of fuzzy sets was introduced by L. Zadeh [9]. In 1964, a satisfactory theory of 2-norm
on a linear space has been introduced and developed by Gahler [2]. In 2003, the concepts fuzzy norm and
α-norm were introduced by Bag and Samanta [1]. Jialu Zhang [3] has defined fuzzy linear space in a different
way. The notion of 2-fuzzy 2-normed linear space of the set of all fuzzy sets of a set was introduced by R.M.
Somasundaram and Thangaraj Beaula [6]. The concept of intuitionistic 2fuzzy 2-normed linear space of the
set of all fuzzy sets of a set was introduced by Thangaraj Beaula and Lilly Esthar Rani [7].

We have introduced the concepts of fuzzy boundedness, fuzzy continuity and intuitionistic fuzzy 2 contractive
mapping on intutionistic 2-fuzzy 2-normed linear space. Using these concepts some theorems are proved.

2 Preliminaries

For the sake of completeness, we reproduce the following definitions due to Gahler [2], Bag and Samanta
[1] and Jialu Zhang [3].

Definition 2.1. [2] Let X be a real linear space of dimension greater than one and let ‖·, ·‖ be a real valued
function on X × X satisfying the following conditions:

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent,

2. ‖x, y‖ = ‖y, x‖,

3. ‖αx, y‖ =|α| ‖x, y‖, where α is real,

4. ‖x, y+z‖ ≤ ‖x, y‖ + ‖x, z‖.
∗Corresponding author.

E-mail addresses: edwinbeaula@yahoo.co.in (Thangaraj Beaula)
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‖·, ·‖ is called a 2-norm on X and the pair (X, ‖·, ·‖) is called a 2-normed linear space.

Definition 2.2. [1] Let X be a linear space over K( the field of real or complex numbers). A fuzzy subset N of
X × R (R, the set of real numbers) is called a fuzzy norm on X if and only if for all x, u ∈ X and c ∈ K.

(N1) for all t ∈ R with t ≤ 0, N(x, t)=0.

(N2) for all t ∈ R with t > 0, N(x, t)=1 if and only if x = 0.

(N3) for all t ∈ R with t > 0, N(cx, t) = N(x, t
|c| ), if c 6= 0.

(N4) for all s, t ∈ R, x, u ∈ X, N(x+u , s+t) ≥ min { N(x, s), N(u, t)} .

(N5) N(x, ·) is a non decreasing function of R and limt→∞ N(x, t) = 1.

The pair (X, N) will be referred to as a fuzzy normed linear space.

Definition 2.3. [3] Let X be any non - empty set and F(X) be the set of all fuzzy sets on X. Then for U, V
∈ F(X) and k ∈ K the field of real numbers, define

U + V = { (x + y, λ ∧ µ)|(x, λ) ∈ U, (y, µ) ∈ V } ,

kU = { (kx, λ|(x, λ) ∈ U} .

Definition 2.4. [3] A fuzzy linear space X̃= X× (0,1] over the number field K, where the addition and scalar
multiplication operation on X̃are defined by

(x, λ)+(y, µ)=(x+y, λ∧µ), k(x, λ) = (kx, λ)
is a fuzzy normed space if to every (x, λ) ∈ X̃ there is associated a non-negative real number, ‖(x, λ)‖, called
the fuzzy norm of (x, λ) , in such a way that

1. ‖(x, λ)‖ = 0 if and only if x=0 the zero element of X, λ ∈ (0,1].

2. ‖k(x, λ)‖ = |k| ‖ (x, λ)‖ for all (x, λ) ∈ X̃ and all k ∈ K.

3. ‖(x, λ)+(y, µ)‖ ≤ ‖(x, λ ∧ µ‖ + ‖(y, λ ∧ µ)‖ for all (x, λ) and (y, µ) ∈ X̃.

4. ‖(x, ∨λt)‖ =∨‖(x, λt)‖ for λt ∈ (0,1].

Definition 2.5. [6] Let X be a non empty and F(X) be the set of all fuzzy sets in X. If f ∈ F(X) then f={ (x,
µ) | x ∈ X and µ ∈ (0,1]} . Clearly f is a bounded function for |f(x)| ≤ 1. Let K be the space of real numbers,
then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by

f + g = { (x, µ) + (y, η) = { (x + y, µ ∧ η)|(x, µ) ∈ f, and (y, η) ∈ g}
kg = { (kf, µ | (x, µ) ∈ f} where k ∈ K.

The linear space F(X) is said to be normed space if to every f∈F(X), there is associated a non-negative real
number ‖f‖ called the norm of f in such a way that

1. ‖f‖ = 0 if and only if f = 0
For, ‖f‖ = 0 ⇔ { ‖ (x, µ) ‖ | (x,µ) ∈ f } = 0

⇔ x = 0 , µ ∈ (0,1]
⇔ f = 0.

2. ‖kf‖ = |k| ‖f‖ , k ∈ K
For, ‖kf‖ = { ‖ k(x, µ) ‖ | (x, µ) ∈ f, k ∈ K}

= { |k| ‖ x, µ ‖ | (x, µ) ∈ f}
= |k| ‖f‖.

3. ‖ f+g ‖ ≤ ‖ f ‖+ ‖ g ‖for every f , g ∈ F(X)
For, ‖ f+g ‖ = { ‖ (x, µ) + (y, η) ‖ | x,y ∈ X, µ, η ∈ (0,1]}

= { ‖ (x+y), (µ ∧ η) ‖ | x,y ∈ X, µ, η ∈ (0,1]}
≤ { ‖ x, µ ∧ η ‖ + ‖ y, µ ∧ η ‖ | (x, µ) ∈ f and (y, η) ∈ g}
= ‖ f ‖+ ‖ g ‖.

And so (F(X), ‖·‖) is a normed linear space.
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Definition 2.6. [6] A 2-fuzzy set on X is a fuzzy set on F(X).

Definition 2.7. [6] Let F(X) be a linear space over the real field K. A fuzzy subset N of F(X)× R,(R, the set
of real numbers) is called a 2-fuzzy 2-norm on X(or fuzzy 2-norm on F(X)) if and only if,

(N1) for all t ∈ R with t≤0, N(f1, f2, t)=0.

(N2) for all t ∈ R with t>0, N (f1, f2, t) =1 if and only if f1 and f2 are linearly dependent.

(N3) N (f1, f2, t) is invariant under any permutation of f1, f2.

(N4) for all t ∈ N with t ≥ 0,
N (f1, cf2, t) = N (f1, f2, t

|c|) if c 6= 0, c ∈ K (field).

(N5) for all s, t ∈ R, N (f1, f2 + f3, s +t) ≥ min { N(f1, f2, s), N (f1, f3, t)} .

(N6) N (f1, f2, ·) : (0, ∞) → [0, 1] is continuous.

(N7) limt→∞ N(f1, f2, t ) = 1.

Then the pair (F(X), N) is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed linear space.

Definition 2.8. A binary operation * : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the
following conditions:

1. * is commutative and associative.

2. * is continuous.

3. a * 1 = a, for all a ∈ [0, 1].

4. a * b ≤ c * d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.9. A binary operation ♦ : [0, 1] × [0, 1] → [0, 1] is a continuous t - conorm if it satisfies the
following conditions:

1. ♦ is commutative and associative.

2. ♦ is continuous.

3. a ♦ 0 = a, for all a ∈ [0, 1].

4. a ♦ b ≤ c ♦ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Remark 2.1. (1) For any r1, r2 ∈ (0, 1) with r1 > r2 there exist r3, r4 ∈ (0, 1)
such that r1 * r3 ≥ r2 and r1 ≥ r4 ♦ r2.

(2) For any r5 ∈ (0,1), there exist r6, r7 ∈ (0,1)
such that r6 * r6 ≥ r5 and r7 ♦ r7 ≥ r5.

Definition 2.10. An intuitionistic fuzzy 2- normed linear space (I-F-2-NLS) is of the form A = { F(X), N(f1,
f2, t), M(f1, f2, t) | (f1, f2) ∈ F[(X)]2} where F(X) is a linear space over a field K, * is a continuous t-norm, ♦ is
a continuous t-conorm, N and M are fuzzy sets on [F(X)]2×(0,∞) such that N denotes the degree of membership
and M denotes the degree of non-membership of (f1, f2, t) ∈ [F(X)]2× (0,∞) satisfying the following conditions:

(1) N (f1, f2, t) + M (f1, f2, t) ≤ 1.

(2) N(f1, f2, t) > 0.

(3) N(f1, f2, t) = 1 if and only if f1, f2 are linearly dependent.



Thangaraj Beaula et al. / Fuzzy boundedness ... 67

(4) N(f1, f2, t) is invariant under any permutation of f1, f2.

(5) N(f1, f2, t) : (0, ∞) → [0,1] is continuous in t.

(6) N(f1, cf2, t) = N (f1, f2, t
|c| ), if c 6= 0, c ∈ K.

(7) N (f1, f2, s) * N(f1, f3, t) ≤ N(f1, f2 + f3, s + t).

(8) M (f1, f2, t)> 0.

(9) M(f1, f2, t) = 0 if and only if f1, f2 are linearly dependent.

(10) M (f1, f2, t) is invariant under any permutation of f1, f2.

(11) M (f1, cf2, t) = M (f1, f2, t
|c| ) if c 6= 0, c ∈ k.

(12) M (f1, f2, s) ♦ M (f1, f3, t) ≥ M (f1, f2 + f3, s + t).

(13) M (f1, f2, t) : (0, ∞) → [0,1] is continuous in t.

3 Fuzzy boundedness and fuzzy continuity on intuitionistic fuzzy 2- normed

linear space

Definition 3.1. A sequence { fn} in an (IF 2-NLS) is said to converge to f if for given r > 0, t > 0, 0 < r
< 1, there exists an integer n0 ∈ N such that

N(fn - f, g1, t) > 1 - r, N(fn - f, g2, t) > 1 - r
M (fn - f, g1, t) < r, M (fn - f, g2, t) < r

where g1, g2 are linearly independent (or) N (fn-f, gi, t) → 1 as n → ∞ for i = 1, 2 and M (fn - f, gi, t) → 0
as n →∞ for i = 1, 2.

Definition 3.2. A sequence { fn} is a cauchy sequence if for given ∈> 0,
N (fn - fm, gi, t) > 1 - ∈, M(fn - fm, gi, t) < ∈, 0 < ∈ < 1, t > 0 , gi’s are linearly independent, for i = 1, 2.

Definition 3.3. Let A ={ (F(X), N(f1, f2, t), M(f1, f2, t) | (f1, f2) ∈ [F(X)]2) } be an intuitionistic fuzzy
2-normed linear space then

N ((f1, f2), (f′1, f′2), t) = N((f1 - f′1), (f2 - f′2), t)

M((f1, f2), (f′1, f′2), t) = M((f1 - f′1), (f2 - f′2), t)

are intuitionistic 2-fuzzy metrics defined on A and (A, N, M, *) is an intuitionistic 2-fuzzy metric space (
i-2-f-m-s).

Definition 3.4. Let (A, N, M, *) be an intuitionistic 2-fuzzy normed linear space. For t > 0, define the
openball B((f1, f2), r, t) with center (f1, f2) ∈ A and radius 0< r<1 as

B((f1, f2), r, t)={ (g1, g2) ∈ A : N((f1, g1), (f2, g2), t)> 1 - r

M (f1 - g1), (f2 - g2)< r} .

Definition 3.5. A subset G ⊂ A is said to be open if for each (f1, f2) ∈ G, there exists t > 0 and 0 < r < 1
such that B((f1, f2), r, t), r, t) ⊂ G.

Definition 3.6. Let = be the set of all open subsets of A, then it is called the intuitionistic 2-fuzzy topology
induced by the intuitionistic 2-fuzzy norm.



68 Thangaraj Beaula et al. / Fuzzy boundedness ...

Definition 3.7. Let (A, N, M, *) be an i-2-f-m-s then a subset D of A is said to be intuitionistic 2- fuzzy
bounded if there exists t > 0 and 0< r <1 such that

M ((f1, f2), (g1, g2), t) > 1 - r , N ((f1, f2), (g1, g2), t)<r
for each

((f1, f2), (g1, g2)) ∈ [F(X)]2.

Definition 3.8. Let (A, N1, M1, *) (B, N2, M2, *) be an intuitionistic 2-fuzzy normed linear space , a mapping
T : A → B is said to be an intuitionistic fuzzy 2 - bounded if there exist constants m1, m2 ∈ R+ such that for
every f ∈ A and for each t > 0,

N2(Tf, Tg, t) > N1(f, g, t
m1

)

M2(Tf, Tg, t) > M1(f, g, t
m2

) .

Definition 3.9. Let T : A → B be a linear operator from IF 2-Banach Space A to IF 2- Banach space B.
Then T is said to be an intuitionistic 2 -fuzzy continuous if for each ∈ with 0 < ∈ < 1, there exists δ , 0 < δ

< 1, such that

N1 (f, g, t)≥ 1 -δ and M1 (f, g, t)≤ δ, implies

N2 (Tf, Tg, t)≥ 1-∈ and M2 (Tf, Tg, t) ≤∈.

Theorem 3.1. A linear operator T : (A, N1, M1, *) → (B, N2, M2, *) is an intuitionistic 2- fuzzy bounded
if and only if it is an intuitionistic 2- fuzzy continuous.

Proof. Assume T : A → B is an intuitionistic 2-fuzzy bounded. Then there exist constants m1, m2 ∈ R+ such
that for every f ∈ A and for each t > 0,

N2(Tf, Tg, t) ≥ N1(f, g,
t

m1
)

M2(Tf, Tg, t) ≤ M1(f, g,
t

m2
). (3.1)

Suppose for ∈, with 0 < ∈ < 1, choose δ, with 0 < δ <1

such that N1(f, g, t) ≥ 1 - δ and M1 (f, g, t) ≤ for any t > 0
and N1 (f, g, t

m1
) ≤ 1 - ∈

M1(f, g,
t

m2
) <∈ (because m1,m2 > 0). (3.2)

Using (3.2) in (3.1) we get

N2 (Tf, Tg, t) ≥ 1 - ∈ and M2 (Tf, Tg, t) ≤ ∈

Hence T is an intuitionistic 2- fuzzy continuous.
Conversely,

Suppose T is an intuitionistic 2- fuzzy continuous.

For ∈ with 0 < ∈ < 1, there exists δ with 0 < δ < 1

such that N1 (f, g, t) < 1 - δ , M1 (f, g, t)< δ implies that

N2(Tf, Tg, t) > 1− ∈,M2(Tf, Tg, t) <∈ . (3.3)

Choose m1, m2 ∈ R+ such that
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N1 (f, g, t
m1

) ≤ 1 - ∈ for given N1(f, g, t)>1-δ and

M1(f, g,
t

m2
) ≥∈ for given M1(f, g, t) < δ. (3.4)

Then applying (3.4) on (3.3) we get

N2(Tf, Tg, t) > 1 - ∈ ≥ N1(f, g, t
m1

)

M2 (Tf, Tg, t) < δ ≤ M1 (f, g, t
m2

)

Therefore T is intuitionistic 2- fuzzy bounded.

4 Intuitionistic 2-fuzzy contraction on intuitionistic 2-fuzzy metric space

Definition 4.1. Let (A, N, M, *) be an intuitionistic 2-fuzzy metric space then
T : A → A is said to be intuitionistic 2- fuzzy contraction if there exists C ∈ (0, 1) such that CN2 (Tf, Tg, t)
≥ N1 (f, g, t) and 1

C M2 (Tf, Tg, t) ≤ M1 (f, g, t).

Theorem 4.1. Let (A, N, M, *) be a intuitionistic 2-fuzzy metric space. If T : A → A is an intuitionistic 2-
fuzzy contractive mapping then T is an intuitionistic 2- fuzzy uniformly continuous.

Proof. Assume T : A → A is an intuitionistic 2- fuzzy contractive mapping. Then there exists C ∈ (0, 1) such
that CN2(Tf, Tg, t) ≥ N1(f, g, t) and

1
C M2 (Tf, Tg, t) ≤ M1 (f, g, t) for every t < 0

Assume for a given ∈ with 0 < ∈ < 1 there exists 0 < δ < 1 such that
N1 (f, g, t) ≥ 1-δ and M1 (f, g, t) < δ

Then CN2 (Tf, Tg, t) ≥ 1 -δ implies N2 (Tf, Tg, t) ≥ 1−δ
C and M2 (Tf, Tg, t)≤ δ implies M2 (Tf, Tg, t) ≤ δC

Choose C and δ in such a way that δ = 1
1+C .

Then we can define ∈ so that it satisfies the relationship 1−δ
C ≥ 1− ∈ and δC ≤∈.

Thus N2 (Tf, Tg, t)≥ 1-∈ and M2 (Tf, Tg, t)≤∈. Therefore, T is an intuitionistic 2- fuzzy uniformly continuous.

Definition 4.2. Let (F(X), N, M) be an intuitionistic 2-fuzzy normed linear space. S is said to be is intuition-
istic 2- fuzzy closed if and only if any sequence { fn} in S converges to f ∈ S.

(ie) limn→∞ N (fn - f, gi, t) = 1 and limn→∞ M (fn-f, gi, t) = 0 for i = 1, 2 implies f ∈ S.

Definition 4.3. Let (F(X), N, M) be an intuitionistic 2 -fuzzy normed linear space. B̄ (f, ∈, t) = { g ∈ F(X)
| N (f, g, t) > 1 -∈ , M (f, g, t) < ∈} is said to be a closed ball centered at f of radius ∈ w.r.to t if and only
if any sequence { fn} in B̄(f, ∈, t) converges to g then g ∈ B̄ (f, ∈, t).

Theorem 4.2. Suppose A = (F(X), N, M) is an intuitionistic 2-fuzzy Banach space. Let T : A → A be an
intuitionistic 2- fuzzy contractive mapping on B̄(f, ∈, t) with contraction constant C and C N (f, Tf, t) > 1 -
∈ and 1

C M(f, Tf, t) < ∈ Then there exists a sequence { fn} in F(X) such that N(f, fn, t) >1-∈ and M (f, fn,
t) < ∈.

Proof. Assume f1 = T(f), f2 = T(f1) = T (T(f1)) = T2 (f1)
therefore fn = T(fn−1) = Tn (f) for all n ∈ N.
Then C N (f, Tf, t) > 1-∈ implies N (f, Tf, t)> 1−∈

C > 1 -∈

Therefore N (f, f1, t) > 1 -∈
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Also 1
C M (f, Tf, t) < ∈ implies M(f, Tf, t) < C ∈ <∈

Thus M(f, Tf, t) < ∈ and so f∈ B̄ (f,∈, t)

Now assume f1, f2, ., fn−1 ∈ B̄ (f, ∈, t)

Let us show that fn ∈ B̄ (f, ∈, t)

C N (f1, f2, t) = C N (Tf, Tf1, t)

≥ N (f, f1, t)

> 1− ∈

So, N (f1, f2 t) > 1−∈
C > 1 -∈

C N (f2, f3, t) = C N (T(f1), T(f2), t)

≥ N (f1, f2, t)

> 1− ∈

therefore N (f2, f3, t) > 1−∈
C > 1 -∈

Again 1
C M (f1, f2, t) = 1

C M (T(f), T(f1), t) ≤ M (f, f1, t)

Thus M(f1, f2, t) ≤ C M (f, f1, t) < C ∈ <∈

Again 1
C M (f2, f3, t) = 1

C M(T(f1), T(f2), t) ≤ M(f1, f2, t)

So,
M(f2, f3, t) ≤ C M (f1, f2, t)< C ∈ < ∈

Thus we obtain
N(f3, f4, t) > 1 -∈, M (f3, f4, t) < ∈,..., N(fn−1, fn, t) > 1 -∈ M (fn−1, fn, t) <∈

Thus we obtain N(f, fn, t) ≥ N(f, f1, t
n ) * N(f1, f2, t

n ) * ,..., N(fn−1, fn, t
n )

> (1− ∈) ∗ (1− ∈) ∗ .... ∗ (1− ∈)

= 1− ∈

Therefore , N(f, fn, t) > 1 -∈

M(f, fn, t) ≤ M (f,f1, t
n ) � ... � M(fn−1, fn, t

n )

= r � r � ... � r = r
Thus N (f, fn, t) > 1- ∈ and M (f, fn, t) <∈.

Lemma 4.1. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space. Let T : F(X) → F(X) be
an intuitionistic 2- fuzzy continuous. If fn → f then
T(fn) → T(f) as n→∞.
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Proof. Given fn → f in (F(X), N, M, *). Then for given ∈> 0, t > 0, 0 < t < 1 there exists an integer n0 ∈ N
such that N(fn-f, gi, t) > 1 -∈ and M (fn-f, gi, t) < ∈

where gi’s are linearly independent for all n ≥ n0, i = 1, 2.

Since T is is intuitionistic 2- fuzzy continuous,

N(T(fn - f ), Tgi, t) > 1 - ∈ and M (T(fn - f ), Tgi, t) < ∈ implies

N(Tfn - Tf, g′i, t) > 1 - ∈ and M (Tfn - Tf, g′i, t) < ∈

Thus Tfn → Tf as n →∞.

Lemma 4.2. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space then N and M are jointly
continuous.

Proof. If fn → f and gn → g in (F(X), N, M, *)
we have to prove that N(fn-f,gn- g, t) > 1 -∈ and M (fn-f, gn - g, t) < ∈ as n →∞.

We know that

limn→∞N(fn-f, f′i, t) = 1 or > 1-∈, limn→∞ N(gn-g, f′i, t) = 1 > 1 -∈ and

limn→∞M (fn - f, f′i, t) = 0 <∈, limn→∞ M(gn-g, f′i, t) = 0 < ∈

N(fn-f, gn-g, t) ≥ N(fn-f, f′i,
t
2 ) * N(gn-g, f′i,

t
2 )

> (1− ∈) ∗ (1− ∈)

= 1− ∈

And, (fn-f, gn-g, t) ≤ M(fn-f, f′i,
t
2 )� M(gn-g, f′i,

t
2 )

< ∈ � ∈ = ∈.

Definition 4.4. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space. A subset A of F (X)
is said to be an intuitionistic 2- fuzzy bounded if N(f, g, t) ≥ 1 - M and M(f, g,t) ≤ M where M is a positive
constant.

References

[1] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear space, J. Fuzzy Math., 11(3)(2003),
687-705.

[2] S. Gahler, Lineare 2 - normierte Raume, Math. Nachr., 28(1964), 1-43.

[3] Jialu Zhang, The continuity and Boundedness of Fuzzy linear operators in Fuzzy normed space, J.
Fuzzy Math., 13(2005), 519-536.

[4] A.R. Meenakshi and R. Cokilavany, On fuzzy 2- normed linear spaces, J. Fuzzy Math., 9(2)(2001),
345- 351.

[5] R. Saadati and S.M. Vaezpour, Some results on Fuzzy Banach spaces, J. Appl. Math and Comput.,
17(12)(2005), 475-484.

[6] R.M. Somasundaram and Thangaraj Beaula, Some Aspects of 2-Fuzzy 2-Normed Linear Spaces,
Bulletin of Malaysian Mathematical Society, 32(2)(2009), 211-222.



72 Thangaraj Beaula et al. / Fuzzy boundedness ...

[7] Thangaraj Beaula and Lilly Esthar Rani Some Aspects of Intuitionistic 2-Fuzzy 2-Normed Linear
Spaces, J. Fuzzy Math., 20(2)(2012), 371-378.

[8] A. White , 2-Banach spaces, Math. Nachr., 42(1969), 43-60.

[9] A. Zadeh, Fuzzy sets, Inform and control, 8(1965), 338-353.

Received: October 02, 2012; Accepted: May 21, 2013

UNIVERSITY PRESS


	Introduction
	Notations and Preliminaries
	Main Results
	Introduction
	S-Transforms and Properties
	Solutions of fractional difference equations using S-transforms
	Introduction
	Piecewise constant arguments

	Main problems
	Fixed points and stability

	Bifurcation and Chaos
	Conclusion
	Introduction
	Basic Definitions
	Main results
	Introduction
	Preliminaries and Hypotheses
	Existence and Uniqueness
	Continuous Dependence on Initial Data
	Applications
	Introduction
	Some preliminary lemmas
	Oscillation results
	Examples
	Acknowledgment
	Introduction
	Maximum principles
	Applications
	Acknowledgment
	Introduction
	Triparametric entropy
	Some familiar entropies

	Application of the entropy (2.2)
	Joint entropy
	Triparametric information function
	Generalized information function
	Boundary conditions
	Generalize inaccuracy
	Information deviations
	Kullback's information and its generalizations
	Generalized Boundary Conditions


	Introduction
	Main results
	Concluding remarks
	Introduction
	Preliminaries
	Fuzzy boundedness and fuzzy continuity on intuitionistic fuzzy 2- normed linear space
	Intuitionistic 2-fuzzy contraction on intuitionistic 2-fuzzy metric space

