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Meromorphic parabolic starlike functions with a fixed point involving

Srivastava-Attiya operator

G. Murugusundaramoorthya,∗and T. Jananib

a,bSchool of Advanced Sciences, VIT University, Vellore - 632014, India.

Abstract

In the present investigation, we introduce a new class of meromorphic parabolic starlike functions with a
fixed point defined in the punctured unit disk ∆∗ := {z ∈ C : 0 < |z| < 1} by making use of the Srivastava-
Attiya Operator J s

b . We obtained Coefficient inequalities, growth and distortion inequalities, as well as closure
results for functions f ∈ Ms

b(λ, β, γ). We further established some results concerning convolution and the
partial sums.

Keywords: Meromorphic functions, starlike function, convolution, positive coefficients, coefficient inequalities,
integral operator.

2010 MSC: 30C50. c©2012 MJM. All rights reserved.

1 Introduction

Let ξ be a fixed point in the unit disc := {z ∈ C : |z| < 1}. Denote by H() the class of functions which are
regular and

A(ξ) = { f ∈ H() : f (ξ) = f ′(ξ)− 1 = 0}.

Also denote by
Sξ = { f ∈ A(ξ) : f is univalent in },

the subclass of A(ξ) consist of the functions of the form

f (z) = (z− ξ) +
∞

∑
n=2

an(z− ξ)n, (1.1)

that are analytic in the open unit disc . Note that S0 = S be a subclass ofA consisting of univalent functions in .
By S∗ξ (γ) and Kξ(γ), respectively, we mean the classes of analytic functions that satisfy the analytic conditions

<
(

(z− ξ) f ′(z)
f (z)

)
> γ,<

(
1 +

(z− ξ) f ′′(z)
f ′(z)

)
> γ

and z ∈ for 0 ≤ γ < 1, introduced and studied by Kanas and Ronning [11]. The class S∗ξ (0) is defined by
geometric property that the image of any circular arc centered at ξ is starlike with respect to f (ξ) and the
corresponding class Kξ(0) is defined by the property that the image of any circular arc centered at ξ is convex.
We observe that the definitions are somewhat similar to the ones introduced by Goodman in [8] and [9] for
uniformly starlike and convex functions, except that in this case the point ξ is fixed. In particular, K0 = K(0)
and S∗0 = S∗(0) respectively, are the well-known standard class of convex and starlike functions(see [21]).

∗Corresponding author.
E-mail addresses: gmsmoorthy@yahoo.com (G.Murugusundaramoorthy), janani.t@vit.ac.in (T.Janani).
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Let Σ denote the class of meromorphic functions f of the form

f (z) =
1
z

+
∞

∑
n=1

anzn, (1.2)

defined on the punctured unit disk ∆∗ := {z ∈ C : 0 < |z| < 1}.
Denote by Σξ be the subclass of A(ξ) consist of the functions of the form

f (z) =
1

z− ξ
+

∞

∑
n=1

an(z− ξ)n, an ≥ 0; z 6= ξ. (1.3)

A function f of the form (1.3) is in the class of meromorphic starlike of order γ (0 ≤ γ < 1) denoted by Σ∗ξ(γ),
if

−<
(

(z− ξ) f ′(z)
f (z)

)
> γ, z− ξ ∈ ∆ := ∆∗ ∪ {0} (1.4)

and is in the class of meromorphic convex of order γ (0 ≤ γ < 1) denoted by ΣK
ξ (γ), if

−<
(

1 +
(z− ξ) f ′′(z)

f ′(z)

)
> γ, z− ξ ∈ ∆ := ∆∗ ∪ {0}.

For functions f (z) given by (1.3) and g(z) = 1
(z−ξ) + ∑∞

n=1 bn(z − ξ)n, (bn ≥ 0) we define the Hadamard
product or convolution of f and g by

( f ∗ g)(z) :=
1

z− ξ
+

∞

∑
n=1

an bn(z− ξ)n.

The study of operators plays a vital role in the geometric function theory and its associated fields. Many
differential and integral operators can be written in terms of convolution of certain analytic functions. It is ob-
served that this formalism brings an ease in further mathematical investigation and also helps to understand
the geometric properties of such operators better.

We recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by (see [24])

Φ(z, s, a) :=
∞

∑
n=0

zn

(n + a)s (1.5)

(a ∈ C \ {Z−
0 }; s ∈ C, R(s) > 1 and |z| = 1)

where, as usual, Z−
0 := Z \ {N} (Z := {0,±1,±2,±3, ...}; N := {1, 2, 3, ...}). Several interesting properties

and characteristics of the Hurwitz-Lerch Zeta function Φ(z, s, a) can be found in the recent investigations by
Choi and Srivastava [5], Lin and Srivastava [12], Lin et al. [13], and see the references stated therein.

For the class of analytic functions denote by A consisting of functions of the form

f (z) = z +
∞

∑
n=2

anzn, (z ∈ )

Srivastava and Attiya [23] introduced and investigated the linear operator:

Js,b : A → A

defined in terms of the Hadamard product (or convolution) by

Js,b f (z) = Gb,s ∗ f (z) (1.6)

where, for convenience,
Gb,s(z) := (1 + b)s[Φ(z, s, b)− b−s] (1.7)

(z ∈ ; b ∈ C \ {Z−
0 }; s ∈ C; f ∈ A). For f ∈ A it is easy to observe from (1.6) and (1.7) that

Js,b f (z) = z +
∞

∑
n=2

(
1 + b
n + b

)s
anzn, (z ∈ .) (1.8)



G. Murugusundaramoorthy et al. / Meromorphic parabolic starlike functions... 93

It is well known that the Srivastava-Attiya operator Js,b contains, among its special cases, the integral opera-
tors introduced and investigated earlier by (for example) Alexander [1], Libera [14], Bernardi [4], and Jung et
al. [10].

Motivated essentially by the above mentioned Srivastava-Attiya operator, in this paper we define a new
linear operator

J s
b : Σξ → Σξ

in terms of Hadamard product given by

J s
b f (z) = Gs

b,p ∗ f (z) (1.9)

(z− ξ ∈ ∆ := ∆∗ ∪ {0}; b ∈ C \ {Z−
0 }; s ∈ C; f ∈ Σξ),

where, for convenience
Gs

b,p(z) := (1 + b)s[Φp(z, s, b)− b−s] (1.10)

and

Φp(z, s, b) =
1
bs +

(z− ξ)−1

(1 + b)s +
(z− ξ)
(2 + b)s + ... .

For f ∈ Σξ , it is easy to observe from the above equations (1.9) and (1.10) that

J s
b f (z) =

1
z− ξ

+
∞

∑
n=1

Cs
b(n)an(z− ξ)n, (z− ξ ∈ ∆ := ∆∗ ∪ {0}) (1.11)

where

Cs
b(n) =

∣∣∣∣( 1 + b
n + 1 + b

)s∣∣∣∣ (1.12)

and (throughout this paper unless otherwise mentioned) the parameters s, b are constrained as b ∈ C \
{Z−

0 }; s ∈ C.
Motivated by earlier works on meromorphic functions by function theorists(see [2, 3, 7, 15, 16, 17, 18, 19,

20, 25]), we define the following new subclass of functions in Σξ by making use of the generalized operator
J s

b .
For 0 ≤ γ < 1 and 0 ≤ λ < 1/2, we let Ms

b(λ, β, γ) denote a subclass of Σξ consisting functions of the
form (1.3) satisfying the condition that

− <

(
(z− ξ)(J s

b f (z))′ + λ(z− ξ)2(J s
b f (z))′′

(1− λ)J s
b f (z) + λ(z− ξ)(J s

b f (z))′

)
(1.13)

> β

∣∣∣∣∣ (z− ξ)(J s
b f (z))′ + λ(z− ξ)2(J s

b f (z))′′

(1− λ)J s
b f (z) + λ(z− ξ)(J s

b f (z))′
+ 1

∣∣∣∣∣+ γ

where J s
b f is given by (1.11).

Further shortly we can state this condition by

−<
(

(z− ξ)G′(z)
G(z)

)
> β

∣∣∣∣ (z− ξ)G′(z)
G(z)

+ 1
∣∣∣∣+ γ, (1.14)

where

G(z) = (1− λ)J s
b f (z) + λ(z− ξ)(J s

b f (z))′ =
1− 2λ

z− ξ
+

∞

∑
n=1

(nλ− λ + 1)Cs
b(n)an(z− ξ)n, an ≥ 0. (1.15)

It is of interest to note that, on specializing the parameters λ, β and s, b we can define various new sub-
classes of Σξ . We illustrate two important subclasses in the following examples.

Example 1.1. For λ = 0, we let Ms
b(0, β, γ) = Ms

b(β, γ) denote a subclass of Σξ consisting functions of the form
(1.3) satisfying the condition that

−<
(

(z− ξ)(J s
b f (z))′

J s
b f (z)

)
> β

∣∣∣∣ (z− ξ)(J s
b f (z))′

J s
b f (z)

+ 1
∣∣∣∣+ γ (1.16)

where J s
b f (z) is given by (1.11).
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Example 1.2. For λ = 0, β = 0 we let Ms
b(0, 0, γ) = Ms

b(γ) denote a subclass of Σξ consisting functions of the form
(1.3) satisfying the condition that

−<
(

(z− ξ)(J s
b f (z))′

J s
b f (z)

)
> γ (1.17)

where J s
b f (z) is given by (1.11).

In this paper, we obtain the coefficient inequalities, growth and distortion inequalities, as well as closure
results for the function classMs

b(λ, β, γ). Properties of certain integral operator and convolution properties of
the new class Ms

b(λ, β, γ) are also discussed.

2 Coefficients Inequalities

In order to obtain the necessary and sufficient condition for a function f ∈ Ms
b(λ, β, γ), we recall the

following lemmas.

Lemma 2.1. If γ is a real number and w is a complex number, then < (w) ≥ γ ⇔ |w + (1− γ)| − |w− (1 + γ)| ≥ 0.

Lemma 2.2. If w is a complex number and γ, k are real numbers, then

< (w) ≥ k|w− 1|+ γ ⇔ <{w(1 + keiθ)− keiθ} ≥ γ, −π ≤ θ ≤ π.

Analogous to the lemma proved by Dziok et.al [7], we state the following lemma without proof.

Lemma 2.3. Suppose that γ ∈ [0, 1), r ∈ (0, 1] and the function H ∈ Σξ(γ) is of the form H(z) = 1
z−ξ + ∑∞

n=1 bn(z−
ξ)n, 0 < |z− ξ| < r, with bn ≥ 0 then

∞

∑
n=1

(n + γ)bnrn+1 ≤ 1− γ. (2.1)

Theorem 2.1. Let f ∈ Σξ be given by (1.3). Then f ∈ Ms
b(λ, β, γ) if and only if

∞

∑
n=1

[n(1 + β) + (γ + β)](nλ− λ + 1) Cs
b(n)an ≤ (1− 2λ)(1− γ). (2.2)

Proof. If f ∈ Ms
b(λ, β, γ), then by (1.14) we have,

−<
(

(z− ξ)G′(z)
G(z)

)
> β

∣∣∣∣ (z− ξ)G′(z)
G(z)

+ 1
∣∣∣∣+ γ.

Making use of Lemma 2.2

−<

(
(z− ξ)(1 + βeiθ)G′(z) + βeiθG(z)

G(z)

)
> γ,

where G(z) is given by (1.15). Substituting for G(z), G′(z) and letting |z− ξ| < r → 1−, we have{
(1− 2λ)(1− γ)−∑∞

n=1[n(1 + β) + (γ + β)](nλ− λ + 1)Cs
b(n)an

(1− 2λ)−∑∞
n=1(nλ− λ + 1)Cs

b(n)an

}
> 0.

This shows that (2.2) holds.
Conversely, assume that (2.2) holds. Since−<(w) > γ, if and only if |w + 1| < |w− (1− 2γ)|, it is sufficient

to show that ∣∣∣∣ w + 1
w− (1− 2γ)

∣∣∣∣ < 1 and |w− (1− 2γ)| 6= 0 for |z− ξ| < r ≤ 1, (z− ξ) ∈ ∆.

Using (2.2) and taking w(z) = (z−ξ)(1+βeiθ)G′(z)+βeiθ G(z)
G(z) we get∣∣∣∣ w + 1

w− (1− 2γ)

∣∣∣∣ ≤ ∑∞
n=1(nλ− λ + 1)[(n + 1)(1 + β)]Cs

b(n)an

2(1− γ)(1− 2λ)−∑∞
n=1(nλ− λ + 1)[n(1 + β) + (β + 2γ− 1)]Cs

b(n)an
≤ 1.

Thus we have f ∈ Ms
b(λ, β, γ).
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For the sake of brevity throughout this paper we let

dn(λ, β, γ) := [n(1 + β) + (γ + β)](nλ− λ + 1) (2.3)

d1(λ, β, γ) = (1 + γ + 2β)

unless otherwise stated.
Our next result gives the coefficient estimates for functions in Ms

b(λ, β, γ).

Theorem 2.2. If f ∈ Ms
b(λ, β, γ), then

an ≤
(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
, n = 1, 2, 3, . . . .

The result is sharp for the functions fn(z) given by

fn(z) =
1

z− ξ
+

1− γ

dn(λ, β, γ)Cs
b(n)

(z− ξ)n, n = 1, 2, 3, . . . .

Proof. If f ∈ Ms
b(λ, β, γ), then we have, for each n,

dn(λ, β, γ)Cs
b(n)an ≤

∞

∑
n=1

dn(λ, β, γ)Cs
b(n)an ≤ (1− γ)(1− 2λ).

Therefore we have

an ≤
(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
.

Since

fn(z) =
1

z− ξ
+

(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
(z− ξ)n

satisfies the conditions of Theorem 2.1, fn(z) ∈ Ms
b(λ, β, γ) and the equality is attained for this function.

Theorem 2.3. Suppose that there exists a positive number ν

ν = inf
n∈N

{
dn(λ, β, γ)Cs

b(n)
}

. (2.4)

If f ∈ Ms
b(λ, β, γ), then∣∣∣∣1r − (1− γ)(1− 2λ)

ν
r
∣∣∣∣ ≤ | f (z)| ≤ 1

r
+

(1− γ)(1− 2λ)
ν

r, (|z− ξ| = r)

and ∣∣∣∣ 1
r2 −

(1− γ)(1− 2λ)
ν

∣∣∣∣ ≤ | f ′(z)| ≤ 1
r2 +

(1− γ)(1− 2λ)
ν

(|z− ξ| = r).

If ν = d1(λ, β, γ)Cs
b(1) = (1 + γ + 2β)Cs

b(1), then the result is sharp for

f (z) =
1

z− ξ
+

(1− γ)(1− 2λ)
(1 + γ + 2β)Cs

b(1)
(z− ξ). (2.5)

Proof. Let the function f given by (1.3) we have

| f (z)| ≤ 1
r

+
∞

∑
n=1

anrn ≤ 1
r

+ r
∞

∑
n=1

an.

Since,
∞

∑
n=1

an ≤
(1− γ)(1− 2λ)

ν
.

Using this, we have

| f (z)| ≤ 1
r

+
(1− γ)(1− 2λ)

ν
r.

Similarly

| f (z)| ≥
∣∣∣∣1r − (1− γ)(1− 2λ)

ν
r
∣∣∣∣ .

The result is sharp for function (2.5) with ν = d1(λ, β, γ)Cs
b(1) = (1 + γ + 2β)Cs

b(1).
Similarly we can prove the other inequality | f ′(z)|.
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3 Radius of starlikeness

In the following theorem we obtain the radius of starlikeness for the class Ms
b(λ, β, γ). We say that f given

by (1.3) is meromorphically starlike of order ρ, (0 ≤ ρ < 1), in |z− ξ| < r when it satisfies the condition (1.4)
in |z− ξ| < r.

Theorem 3.1. Let the function f given by (1.3) be in the class Ms
b(λ, β, γ). Then, if there exists

r1(λ, γ, ρ) = inf
n≥1

[
(1− ρ)dn(λ, β, γ)Cs

b(n)
(n + ρ)(1− γ)(1− 2λ)

] 1
n+1

(3.1)

and it is positive, then f is meromorphically starlike of order ρ in |z− ξ| < r ≤ r1(λ, γ, ρ).

Proof. Let the function f ∈ Ms
b(λ, β, γ) be of the form (1.3). If 0 < r ≤ r1(λ, γ, ρ), then by (3.1)

rn+1 ≤
(1− ρ)dn(λ, β, γ)Cs

b(n)
(n + ρ)(1− γ)(1− 2λ)

(3.2)

for all n ∈ N. From (3.2) we get
n + ρ

1− ρ
rn+1 ≤

dn(λ, β, γ)Cs
b(n)

(1− γ)(1− 2λ)

for all n ∈ N, thus
∞

∑
n=1

n + ρ

1− ρ
anrn+1 ≤

∞

∑
n=1

dn(λ, β, γ)Cs
b(n)

(1− γ)(1− 2λ)
an ≤ 1 (3.3)

because of (2.2). Hence, from (3.3) and (2.1), f is meromorphically starlike of order ρ in |z− ξ| < r ≤ r1(λ, γ, ρ).

Suppose that there exists a number r̃, r̃ > r1(λ, γ, ρ) such that each f ∈ Ms
b(λ, β, γ) is meromorphically

starlike of order ρ in |z− ξ| < r̃ ≤ 1. The function

f (z) =
1

z− ξ
+

(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
(z− ξ)n

is in the class Ms
b(λ, β, γ), thus it should satisfy (2.1) with r̃ :

∞

∑
n=1

(n + ρ)an r̃n+1 ≤ 1− ρ, (3.4)

while the left–hand side of (3.4) becomes

(n + ρ)
(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
r̃n+1 > (n + ρ)

(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
(1− ρ)dn(λ, β, γ)Cs

b(n)
(n + ρ)(1− γ)(1− 2λ)

= 1− ρ

which contradicts with (3.4). Therefore the number r1(λ, γ, ρ) in Theorem 3.1, cannot be replaced with a
greater number. This means that r1(λ, γ, ρ) is called radius of meromorphically starlikness of order ρ for the
class Ms

b(λ, β, γ).

4 Results Involving Modified Hadamard Products

For functions

f j(z) =
1

z− ξ
+

∞

∑
n=1

an,j(z− ξ)n, an,j ≥ 0 (4.5)

we define the Hadamard product or convolution of f1 and f2 by

( f1 ∗ f2)(z) :=
1

z− ξ
+

∞

∑
n=1

an,1an,2(z− ξ)n.

Let

Ψ(n, λ) =
(nλ− λ + 1)

(1− 2λ)
Cs

b(n). (4.6)
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Theorem 4.2. For functions f j(j = 1, 2) defined by (4.5), let f1 ∈ Ms
b(λ, β, γ) and f2 ∈ Ms

b(λ, β, δ). Then f1 ∗ f2 ∈
Ms

b(λ, β, η) where

η = 1− (1− γ)(1− δ)(3 + β)
(1 + γ + 2β)(1 + δ + 2β)Ψ(1, λ)− 2(1− γ)(1− δ)

(4.7)

and Ψ(1, λ) = Cs
b(1)

1−2λ . The results is the best possible for

f1(z) =
1

z− ξ
+

1− γ

(1 + γ + 2β)Ψ(1, λ)
(z− ξ),

f2(z) =
1

z− ξ
+

1− δ

(1 + δ + 2β)Ψ(1, λ)
(z− ξ)

where Ψ(1, λ) = Cs
b(1)

1−2λ .

Proof. In the view of Theorem 2.1, it suffices to prove that

∞

∑
n=1

[n(1 + β) + (η + β)]
(1− η)

Ψ(n, λ)an,1an,2 ≤ 1

where η is defined by (4.7) under the hypothesis. It follows from (2.2) and the Cauchy’s-Schwarz inequality
that

∞

∑
n=1

[n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2√
(1− γ)(1− δ)

Ψ(n, λ)
√

an,1an,2 ≤ 1. (4.8)

Thus we need to find largest η such that

∞

∑
n=1

[n(1 + β) + (η + β)]
(1− η)

Ψ(n, λ)an,1an,2

≤
∞

∑
n=1

[n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2√
(1− γ)(1− δ)

Ψ(n, λ)
√

an,1an,2

≤ 1.

By virtue of (4.8) it is sufficient to find the largest η, such that√
(1− γ)(1− δ)

[n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2Ψ(n, λ)

≤ [n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2√
(1− γ)(1− δ)

1− η

[n(1 + β) + (η + β)]
,

which yields

η ≤ 1− (1− γ)(1− δ)(2n + 1 + β)
[n(1 + β) + (γ + β)][n(1 + β) + (δ + β)]Ψ(n, λ)− (1− γ)(1− δ)(n + 1)

for n ≥ 1 where Ψ(n, λ) is given by (4.6) and since Ψ(n, λ) is a decreasing function of n (n ≥ 1), we have

η = 1− (1− γ)(1− δ)(3 + β)
(1 + γ + 2β)(1 + δ + 2β)Ψ(1, λ)− 2(1− γ)(1− δ)

and Ψ(1, λ) = Cs
b(1)

1−2λ , which completes the proof.

Theorem 4.3. Let the functions f j, (j = 1, 2) defined by (4.5) be in the class Ms
b(λ, β, γ). Then ( f1 ∗ f2)(z) ∈

Ms
b(λ, β, η) where

η = 1− (1− γ)2(3 + β)
(1 + γ + 2β)2Ψ(1, λ)− 2(1− γ)2

with Ψ(1, λ) = Cs
b(1)

1−2λ .

Proof. By taking δ = γ in the above theorem, the results follows.
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For functions in the class Ms
b(λ, β, γ) we can prove the following inclusion property.

Theorem 4.4. Let the functions f j(j = 1, 2) defined by (4.5) be in the class Ms
b(λ, β, γ). Then the function h defined

by

h(z) =
1

z− ξ
+

∞

∑
n=1

(a2
n,1 + a2

n,2)(z− ξ)n

is in the class Ms
b(λ, β, δ) where

δ ≤ 1− 4(1− γ)2(1 + β)
[1 + γ + 2β]2Ψ(1, λ) + 2(1− γ)2 , (4.9)

and Ψ(1, λ) = Cs
b(1)

1−2λ .

Proof. In view of Theorem 2.1, it is sufficient to prove that

∞

∑
n=2

Ψ(n, λ)
[n(1 + β) + (δ + β)]

(1− δ)
(a2

n,1 + a2
n,2) ≤ 1 (4.10)

where f j ∈ Ms
b(λ, β, γ) (j = 1, 2), we find from (4.5) and Theorem 2.1, that

∞
∑

n=1

[
Ψ(n, λ) [n(1+β)+(γ+β)]

1−γ

]2
a2

n,j ≤
∞
∑

n=1

[
Ψ(n, λ) [n(1+β)+(γ+β)]

1−γ an,j

]2
≤ 1, (4.11)

which would yields

∞

∑
n=2

1
2

[
Ψ(n, λ)

[n(1 + β) + (γ + β)]
1− γ

]2
(a2

n,1 + a2
n,2) ≤ 1. (4.12)

On comparing (4.10) and (4.12) it can be seen that inequality (4.9) will be satisfied if

Ψ(n, λ)
[n(1 + β) + (δ + β)]

1− δ
(a2

n,1 + a2
n,2) ≤

1
2

[
Ψ(n, λ)

[n(1 + β) + (γ + β)]
1− γ

]2
(a2

n,1 + a2
n,2).

That is, if

δ ≤ 1− 2(1− γ)2[(n + 1)(1 + β)]
[n(1 + β) + (γ + β)]2Ψ(n, λ) + 2(1− γ)2 (4.13)

where Ψ(n, λ) is given by (4.6) and Ψ(n, λ) is a decreasing function of n (n ≥ 1), we get (4.9), which completes
the proof.

5 Closure Theorems

We state the following closure theorems for f ∈ Ms
b(λ, β, γ) without proof ( see [7, 16, 18]).

Theorem 5.5. Let the function fk(z) = 1
z−ξ + ∑∞

n=1 an,k(z− ξ)n be in the class Ms
b(λ, β, γ) for every k = 1, 2, ..., m.

Then the function f defined by

f (z) =
1

z− ξ
+

∞

∑
n=1

an,k(z− ξ)n, (an,k ≥ 0)

belongs to the class Ms
b(λ, β, γ), where an,k = 1

m ∑m
k=1 an,k, (n = 1, 2, ..).

Theorem 5.6. Let f0(z) = 1
z−ξ and fn(z) = 1

z−ξ + (1−γ)(1−2λ)
dn(λ,β,γ)Cs

b(n) (z− ξ)n for n = 1, 2, . . .. Then f ∈ Ms
b(λ, β, γ) if

and only if f can be expressed in the form f (z) = ∑∞
n=0 ηn fn(z) where ηn ≥ 0 and ∑∞

n=0 ηn = 1.

Theorem 5.7. The class Ms
b(λ, β, γ) is closed under convex linear combination.

Now, we prove that the class isMs
b(λ, β, γ) closed under integral transforms .
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Theorem 5.8. Let the function f (z) given by (1.3) be in Ms
b(λ, β, γ). Then the integral operator

F(z) = c
∫ 1

0
uc f (uz)du (0 < u ≤ 1, 0 < c < ∞)

is in Ms
b(λ, β, δ), where

δ ≤ n2(1 + β) + n[(γ + β) + (1 + β)(1 + cγ)] + (c + 1)(γ + β) + cβ(1− γ)
n2(1 + β) + n[(γ + β) + (1 + c)(1 + β)] + (1 + c)(γ + β) + c(1− γ)

.

The result is sharp for the function f (z) = 1
z−ξ + (1−γ)(1−2λ)

(1+γ+2β)Cs
b(1) (z− ξ).

Proof. Let f (z) ∈ Ms
b(λ, β, γ). Then

F(z) = c
∫ 1

0
uc f (uz)du =

1
z− w

+
∞

∑
n=1

c
c + n + 1

an(z− ξ)n.

It is sufficient to show that
∞

∑
n=1

c dn(λ, β, δ)Cs
b(n)

(c + n + 1)(1− δ)
an ≤ 1. (5.14)

Since f ∈ Ms
b(λ, β, γ), we have

∞

∑
n=1

dn(λ, β, γ)Cs
b(n)

(1− γ)(1− 2λ)
an ≤ 1.

Note that (5.14) is satisfied if
c dn(λ, β, δ)Cs

b(n)
(c + n + 1)(1− δ)

≤
dn(λ, β, γ)Cs

b(n)
(1− γ)(1− 2λ)

.

Solving for δ, we have

δ ≤ n2(1 + β) + n[(γ + β) + (1 + β)(1 + cγ)] + (c + 1)(γ + β) + cβ(1− γ)
n2(1 + β) + n[(γ + β) + (1 + c)(1 + β)] + (1 + c)(γ + β) + c(1− γ)

= Φ(n).

A simple computation will show that Φ(n) is increasing and Φ(n) ≥ Φ(1). Using this, the results follows.

6 Partial Sums

Silverman [22] determined sharp lower bounds on the real part of the quotients between the normalized
starlike or convex functions and their sequences of partial sums. As a natural extension, one is interested to
search results analogous to those of Silverman for meromorphic univalent functions. In this section, motivated
essentially by the work of Silverman [22] and Cho and Owa [6] we will investigate the ratio of a function of
the form (1.3) to its sequence of partial sums

fk(z) =
1

z− ξ
+

k

∑
n=1

an(z− ξ)n (6.15)

when the coefficients are sufficiently small to satisfy the condition analogous to

∞

∑
n=1

dn(λ, β, γ)Cs
b(n) an ≤ (1− γ)(1− 2λ).

More precisely we will determine sharp lower bounds for <
(

f (z)
fk(z

)
and <

(
fk(z)
f (z

)
. In this connection we make

use of the well known results that <
(

1+w(z)
1−w(z)

)
> 0, (z− ξ ∈ ∆) if and only if w(z) =

∞
∑

n=1
cn(z− ξ)n satisfies

the inequality |w(z)| ≤ |z− ξ|.
Unless otherwise stated, we will assume that f is of the form (1.3) and its sequence of partial sums is

denoted by (6.15).
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Theorem 6.9. Let f (z) ∈ Ms
b(λ, β, γ) be given by (1.3) satisfies condition, (2.2) and suppose that all of its partial

sums (6.15) don’t vanish in ∆. Moreover, suppose that

2− 2
k

∑
n=1

|an| −
dk+1(λ, β, γ)Cs

b(k + 1)
(1− γ)(1− 2λ)

∞

∑
n=k+1

|an| > 0, f or all k ∈ N. (6.16)

Then,

<
(

f (z)
fk(z)

)
≥ 1− (1− γ)(1− 2λ)

dk+1(λ, β, γ)Cs
b(k + 1)

(z− ξ ∈ ∆) (6.17)

where

dn(λ, β, γ) ≥
{

(1− γ)(1− 2λ), i f n = 1, 2, 3, . . . , k
dk+1(λ, β, γ)Cs

b(k + 1), i f n = k + 1, k + 2, . . . .
(6.18)

The result (6.17) is sharp with the function given by

f (z) =
1

z− ξ
+

(1− γ)(1− 2λ)
dk+1(λ, β, γ)Cs

b(k + 1)
(z− ξ)k+1. (6.19)

Proof. Define the function w(z) by

w(z) =
dk+1(λ, β, γ)Cs

b(k + 1)
(1− γ)(1− 2λ)

[
f (z)
fk(z)

−
(

1− (1− γ)(1− 2λ)
dk+1(λ, β, γ)Cs

b(k + 1)

)]

= 1 +

dk+1(λ,β,γ)Cs
b(k+1)

(1−γ)(1−2λ)

∞
∑

n=k+1
an(z− ξ)n+1

1 +
k
∑

n=1
an(z− ξ)n+1

. (6.20)

It suffices to show that <(w(z)) > 0, hence we find that

∣∣∣∣1 + w(z)
1− w(z)

∣∣∣∣ ≤
dk+1(λ,β,γ)Cs

b(k+1)
(1−γ)(1−2λ)

∞
∑

n=k+1
|an|

2− 2
k
∑

n=1
|an| −

dk+1(λ,β,γ)Cs
b(k+1)

(1−γ)(1−2λ)

∞
∑

n=k+1
|an|

≤ 1

From the condition (2.2),it readily yields the assertion (6.17) of Theorem 6.9.
To see that the function given by (6.19) gives the sharp result, we observe that for z = reiπ/(k+2)

f (z)
fk(z)

= 1 +
(1− γ)(1− 2λ)

dk+1(λ, β, γ)Cs
b(k + 1)

(z− ξ)n → 1− (1− γ)(1− 2λ)
dk+1(λ, β, γ)Cs

b(k + 1)

when r → 1− which shows the bound (6.17) is the best possible for each k ∈ N.

We next determine bounds for fk(z)/ f (z).

Theorem 6.10. Under the assumptions of Theorem 6.9, we have

<
(

fk(z)
f (z)

)
≥

dk+1(λ, β, γ)Cs
b(k + 1)

dk+1(λ, β, γ)Cs
b(k + 1) + (1− γ)(1− 2λ)

(z− w ∈ ∆), (6.21)

The result (6.21) is sharp with the function given by (6.19).

Proof. By setting

w(z) =
(

1 +
dk+1(λ, β, γ)Cs

b(k + 1)
(1− γ)(1− 2λ)

) fk(z)
f (z)

−
dk+1(λ,β,γ)Cs

b(k+1)
(1−γ)(1−2λ)

1 +
dk+1(λ,β,γ)Cs

b(k+1)
(1−γ)(1−2λ)


proceeding as in Theorem 6.9, we get the desired result and so we omit the details.

Remark 6.1. We observe that, if we specialize the parameters λ and β as mentioned in Examples 1 and 2 , we obtain the
analogous results for the classesMs

b(β, γ) andMs
b(γ). Further specializing the parameters s, b various other interesting

results (as in Theorems 2.1 to 6.10 ) can be derived easily for the function class based on interesting integral operators.
Further by taking |ξ| = d and |z− ξ| = r + d < 1, one can easily prove analogous results as in Theorems 2.1 to 6.10.
The details involved may be left as an exercise for the interested reader.



G. Murugusundaramoorthy et al. / Meromorphic parabolic starlike functions... 101

7 Acknowledgment

The authors thank the referee for their valuable suggestions.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math.
Ser.2, 17(1915), 12–22.

[2] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat.
Appl. 7(11)(2)(1991), 209-219.

[3] M.K.Aouf and G.Murugusundaramoorthy, A subclass of uniformly convex functions defined by the
Dziok-Srivastava operator, Aust.J. Math. Anal. Appln., 5(1)(2008), 1–17.

[4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429–446.

[5] J.Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function,
Appl. Math. Comput.,170(2005), 399-409.

[6] N.E.Cho and S.Owa, Partial sums of certain meromorphic functions , JIPAM, 5(2)(2004), ???-???.
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Invariant solutions of Barlett and Whitaker’s equations
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Abstract

Lie symmetry group method is applied to study the Barlett and Whitaker’s equations. The symmetry
group and its optimal system are given,and group invariant solutions associated to the symmetries are ob-
tained. Finally the structure of the Lie algebra symmetries is determined.

Keywords: Lie group analysis, Symmetry group, Optimal system, Invariant solution.
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1 Introduction

Enzymes electrodes are powerful tools for understanding the mechanism and kinetics of fast reactions.
Owing to their specicity and sensitivity, enzyme elec-trodes including various amplication, schemes have
been developed for many applications such as electrochemical immunoassays, [1, 2] water pollutant detection,
[3, 4, 5, 6, 7] and monitoring of biological metabolities [8, 9, 10, 11]. The sensitivity of enzyme electrodes is very
often increased by incorporation of a substrate-recycling scheme and several strategies including chemical,
enzymatic, or electrochemical recycling have been developed. In the view of numerous application of such
bio-sensor with amplied response,we are interested in investigating the concentration s and p in order to
improve the metrological characteristics further.

In addition, this theoretical approach is of practical interest since this kind of bio-sensor can be used for
the determination of phenolic compounds and catecholamine neurotransmitters in the field of environmental
control and clinical analysis [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Such a theoretical and kinetic analysis is
a powerful approach to rationalize functions of biosensors. Desprez and Labbe [23] obtained the analytical
expression concentration and current for the limiting cases only. The purpose of this communication is to
derive a simple accurate polynomial expressions of concentrations generated at a enzyme electrode using Lie
Symmetries.

2 Lie Symmetry of the System

We consider the BWEs (Barlett and Whitaker’s equations) [24], Desprez and Labbe [23], describing the
concentrations of s and p at steady state as follows (with one independent and two dependent):

BWEs :
d2s
dx2 −

γs
αs + 1

= 0,
d2 p
dx2 +

γs
αs + 1

= 0, (2.1)

where

γ =
1

Λ2 , α =
1

Ks
, Λ =

√
mKs

KcEt
, (2.2)

∗Corresponding author.
E-mail addresses: m nadjafikhah@iust.ac.ir (Mehdi Nadjafikhah), omid chgini@mathdep.iust.ac.ir (Omid Chekini).
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x is varible, s and p are functions, and γ, Λ, α, Ks, m, Kc, and Et are constants. Let

v = ξ(x, s, p)∂x + τ(x, s, p)∂s + ϕ(x, s, p)∂p, (2.3)

be a general vector field on the space of independent and dependent variables. we need the second prolonga-
tion:

Pr(2)v = v + τx∂sx + ϕx∂px + τxx∂sxx + ϕxx∂pxx , (2.4)

of v, with the coefficients

τx = τx + τp px + τssx − sxξx − sxξp px − ξss2
x,

ϕx = ϕx + ϕp px + ϕssx − pxξx − ξp p2
x − pxξssx,

τxx = 2τxp px + 2τxssx − sxξxx − 2ξxss2
x + τpp p2

x + pxxτp + τsss2
x − ξsss3

x + sxxτs

−2sxxξx − 2sxξxp px + 2pxτspsx − sxξpp p2
x − 2pxξsps2

x − pxxξpsx (2.5)

−3sxxξssx − 2sxxξp px + τxx,

ϕxx = 2ϕxp px + 2ϕxssx − pxξxx − 2ξxp p2
x + ϕpp p2

x − ξpp p3
x + pxx ϕp − 2pxxξx + ϕsss2

x

+sxx ϕs − 2pxξxssx + 2px ϕspsx − 2sxξsp p2
x − 3pxxξp px − 2pxxξssx

−pxξsss2
x − sxxξs px + ϕxx.

Applying Pr(2)v to equations (2.1), we find the infinitesimal criterion system. determining equations
yields:

ϕss = τp,p = ξss = ξp,p = ξsp = 0,

τsp − ξxp = τss − 2ξxs = 2ξxp − ϕp,p = ξxs − ϕsp = 0,

−2sKcEtξp + 2τxpmKs + 2τxpms = 2sKcEtξs + 2ϕxsmKs + 2ϕxsms = 0,

2τxsmKs + 2τxsms− 3sKcEtξs − ξxxmKs − ξxxms + KcEtsξp = 0,

3sKcEtξp − sKcEtξs + 2ϕxpmKs + 2ϕxpms− ξxxmKs − ξxxms = 0, (2.6)

−τKcEtKs − 2KcEtsξxKs − 2KcEts2ξx − KcEtsτpKs

−KcEts2τp + τxxmK2
s + 2τxxmKss + τxxms2 + KcEtsτsKs + KcEts2τs = 0,

τKcEtKs − KcEtsϕpKs − KcEts2 ϕp + 2KcEtsξxKs + 2KcEts2ξx

+KcEtsϕsKs + KcEts2 ϕs + ϕxxmK2
s + 2ϕxxmKss + ϕxxms2 = 0.

The solution of the above system gives the following coefficients of the vector field v:

ϕ = C2 x + C4 (s + p) + C3, τ = 0, ξ = C1, (2.7)

where C1, · · · , C4 are arbitrary constants; Thus the Lie algebra G of the electoenzymatic processes involved in
a PPO-rotating-disk-bioelectrode equation is spanned by the four vector fields

v1 = ∂x, v2 = x∂p, v3 = ∂p, v4 = (s + p)∂p. (2.8)

The commutator table of G is

Table 1. Commutation relations satisfied by infinitesimal generators

[ , ] v1 v2 v3 v4

v1 0 v3 0 0
v2 −v3 0 0 v2
v3 0 0 0 v3
v4 0 −v2 −v3 0

Thus, G is a solvabel algebra with derived series G ≥ G(1) ≥ {0}, where G(1) = Span{v2, v3} ∼= R2, and
G/G(1) ∼= R2 are abelian, thus G is semidirect product of R2 by itself.
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The one-parameter groups Gi generated by the base of G are given in the following table.

G1 : (x, s, p) 7−→ (x + ε, s, p),

G2 : (x, s, p) 7−→ (x, s, xε + p),

G3 : (x, s, p) 7−→ (x, s, p + ε), (2.9)

G4 : (x, s, p) 7−→ (x, s,−s + eε(s + p)).

Since each group Gi is a symmetry group and if s = S(x), p = P(x) are solutions of the equations (2.1), so are
the functions

1) s = S(x − ε), p = P(x − ε),
2) s = S(x), p = P(x) + xε,
3) s = S(x), p = P(x) + ε,
4) s = S(x), p = eε(S(x) + P(x))− S(x),

(2.10)

where ε is a real number.

3 Optimal system of (2.1)

As is well known, the theoretical Lie group method plays an important role in finding exact solutions
and performing symmetry reductions of differential equations. Since any linear combination of infinitesimal
generators is also an infinitesimal generator, there are always infinitely many different symmetry subgroups
for the differential equation. So, a mean of determining which subgroups would give essentially different
types of solutions is necessary and significant for a complete understanding of the invariant solutions. As any
transformation in the full symmetry group maps a solution to another solution, it is sufficient to find invariant
solutions which are not related by transformations in the full symmetry group, this has led to the concept of
an optimal system. The problem of finding an optimal system of subgroups is equivalent to that of finding
an optimal system of subalgebras. For one-dimensional subalgebras, this classification problem is essentially
the same as the problem of classifying the orbits of the adjoint representation. This problem is attacked by
the naive approach of taking a general element in the Lie algebra and subjecting it to various adjoint trans-
formations so as to simplify it as much as possible. One of the applications of the adjoint representation is
classifying group-invariant solutions.

The adjoint action is given by the Lie series

Ad(exp(εvi)vj) = vj − ε[vi, vj] +
ε2

2
[vi, [vi, vj]]− · · · (3.1)

where [vi, vj] is a commutator for the Lie algebra, ε is a parameter, and i, j = 1, · · · , 4. The adjoint table

Table 2. Adjoint relations satisfied by infinitesimal generators

[ , ] v1 v2 v3 v4

v1 v1 v2 − εv3 v3 v4
v2 v1 + εv3 v2 v3 v4 − εv2
v3 v1 v2 v3 v4 − εv3
v4 v1 eεv2 eεv3 v4

with (i, j)-th entry indicating Ad(exp(εvi)vj) and ε is a real number. Here we can find the general group
of the symmetries by considering a general linear combination c1v1 + · · · + c4v4 of the given vector fields.
In particular if g is the action of the symmetry group near the identity, it can be represented in the form
g = exp(c1v1) ◦ · · · ◦ exp(c4v4).

Let Fε
i : G −→ G defined by v −→ Ad(exp(εvi)v) is a linear map, for i = 1, ..., 4. The matrices Mε

i of Fε
i ,

i = 1, · · · , 4, with respect to basis {v1, · · · , v4} are
1 0 0 0
0 1 −ε 0
0 0 1 0
0 0 0 1

 ,


1 0 ε 0
0 1 0 0
0 0 1 0
0 −ε 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −ε 1

 ,


1 0 0 0
0 eε 0 0
0 0 eε 0
0 0 0 1

 , (3.2)
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respectively, by acting these matrices on a vector field v alternatively we can show that a one-dimensional
optimal system of G is given by

1) v1, 2) v3, 3) v1 + v2, 4) v1 − v2, 5) v1 + av2, a ∈ R. (3.3)

4 Conclusion

In this article group classification of (2.1) and the algebraic structure of the symmetry group is considered.
Classification of one-dimensional subalgebra is determined by constructing one-dimensional optimal system.
The structure of Lie algebra symmetries is analyzed.
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Abstract

In this paper, we obtain the generalized Ulam - Hyers stability of a 2 - variable AC - mixed type functional
equation

f (2x + y, 2z + w)− f (2x− y, 2z− w) = 4[ f (x + y, z + w)− f (x− y, z− w)]− 6 f (y, w)

in Quasi - Beta normed space using direct and fixed point methods.

Keywords: Additive functional equations, cubic functional equations, Mixed type AC functional equations,
generalized Ulam - Hyers stability, fixed point.
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1 Introduction

One of the most interesting questions in the theory of functional analysis concerning the Ulam stability
problem of functional equations is as follows: when is it true that a mapping satisfying a functional equation
approximately must be close to an exact solution of the given functional equation?

The first stability problem was raised by S.M. Ulam [24] during his talk at the University of Wisconsin in
1940. In 1941, D.H. Hyers [8] gave an first affirmative answer to Ulam problem for Banach spaces. It was
further generalized and excellent results were obtained by a number of authors.

Over the last seven decades, the above problem was tackled by numerous authors and its solutions via
various forms of functional equations including mixed type additive and cubic functional equations were
discussed. We refer the interested readers for more information on such problems to the monographs [1, 4, 6,
7, 9, 10, 11, 16, 17, 19, 21, 23, 25].

Very recently, M. Arunkumar et.al., [3] first time introduced and investigated the solution and generalized
Ulam-Hyers stability of a 2 - variable AC - mixed type functional equation

f (2x + y, 2z + w)− f (2x− y, 2z− w) = 4[ f (x + y, z + w)− f (x− y, z− w)]− 6 f (y, w) (1.1)

having solutions

f (x, y) = ax + by (1.2)

∗Corresponding author.
E-mail addresses: jrassias@primedu.uoa.gr (John M. Rassias), annarun2002@yahoo.co.in (M. Arunkumar), ramsdmaths@yahoo.com
( S. Ramamoorthi), hemsjes@yahoo.co.in(S. Hemalatha).
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and

f (x, y) = ax3 + bx2y + cxy2 + dy3 (1.3)

in Banach space using direct and fixed point approach.
The solution of the AC functional equation (1.1) is given in the following lemmas.

Lemma 1.1. [3] If f : U2 → V be a mapping satisfying (1.1) and let g : U2 → V be a mapping given by

g(x, x) = f (2x, 2x)− 8 f (x, x) (1.4)

for all x ∈ U then
g(2x, 2x) = 2g(x, x) (1.5)

for all x ∈ U such that g is additive.

Lemma 1.2. [3] If f : U2 → V be a mapping satisfying (1.1) and let h : U2 → V be a mapping given by

h(x, x) = f (2x, 2x)− 2 f (x, x) (1.6)

for all x ∈ U then
h(2x, 2x) = 8h(x, x) (1.7)

for all x ∈ U such that h is cubic.

Remark 1.1. [3] If f : U2 → V be a mapping satisfying (1.1) and let g, h : U2 → V be a mapping defined in (1.4) and
(1.6) then

f (x, x) =
1
6
(h(x, x)− g(x, x)) (1.8)

for all x ∈ U.

In this paper, the authors established the generalized Ulam-Hyers stability of the 2-variable AC functional
equation (1.1) in Quasi-Beta Normed spaces using direct and fixed point methods are discussed in Section 3
and Section 4, respectively.

2 Preliminary results on quasi-beta normed spaces

In this section, we present some preliminary results concerning to quasi-β-normed spaces.
We fix a real number β with 0 < β ≤ 1 and let K denote either R or C.

Definition 2.1. Let X be a linear space over K . A quasi-β-norm ‖ · ‖ is a real-valued function on X satisfying the
following:

(i) ‖ x ‖≥ 0 for all x ∈ X and ‖ x ‖= 0 if and only if x = 0.

(ii) ‖ λx ‖ =| λ |β . ‖ x ‖ for all λ ∈ K and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖ x + y ‖≤ K (‖ x ‖ + ‖ y ‖)
for all x, y ∈ X.

The pair (X, ‖ · ‖) is called quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on X. The smallest possible K is called
the modulus of concavity of ‖ · ‖.

Definition 2.2. A quasi-β-Banach space is a complete quasi-β-normed space.

Definition 2.3. A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if

‖ x + y ‖p≤‖ x ‖p + ‖ y ‖p

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach space.

More details, one can refer [7, 25] for the concepts of quasi-normed spaces and p-Banach space.
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3 Stability results: Direct method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.1) using
direct method.

Through out this section, let us take U is a linear space over K and V is a (β, p) Banach space with p−norm
‖. ‖V . Let K be the modulus of concavity of ‖. ‖V . Define a mapping F : U2 → V by

F(x, y, z, w) = f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w)

+ 4 f (x− y, z− w) + 6 f (y, w)

for all x, y, z, w ∈ U.

Theorem 3.1. Let j = ±1. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0, ∞) with the
condition

lim
n→∞

1
2nj α(2njx, 2njy, 2njz, 2njw) = 0 (3.1)

such that the functional inequality
‖F(x, y, z, w)‖V ≤ α(x, y, z, w) (3.2)

for all x, y, z, w ∈ U. Then there exists a unique 2-variable additive mapping A : U2 → V satisfying the functional
equation (1.1) and

‖ f (2x, 2x)− 8 f (x, x)− A(x, x)‖p
V ≤ Knp

2βp

∞

∑
k= 1−j

2

δ(2kjx)p

2kjp (3.3)

where δ(2kjx) and A(x, x) are defined by

δ(2kjx) = 4β α(2kjx, 2kjx, 2kjx, 2kjx) + α(2kjx, 2(k+1)jx, 2kjx, 2(k+1)jx) (3.4)

A(x, x) = lim
n→∞

1
2nj ( f (2(n+1)jx, 2(n+1)jx)− 8 f (2njx, 2njx)) (3.5)

for all x ∈ U.

Proof. Assume j = 1. Letting (x, y, z, w) by (x, x, x, x) in (3.2), we obtain

‖ f (3x, 3x)− 4 f (2x, 2x) + 5 f (x, x)‖V ≤ α(x, x, x, x) (3.6)

for all x ∈ U. Replacing (x, y, z, w) by (x, 2x, x, 2x) in (3.2), we get

‖ f (4x, 4x)− 4 f (3x, 3x) + 6 f (2x, 2x)− 4 f (x, x)‖V ≤ α(x, 2x, x, 2x) (3.7)

for all x ∈ U. Now, from (3.6) and (3.7), we have

‖ f (4x, 4x)− 10 f (2x, 2x) + 16 f (x, x)‖V

≤ K
(

4β ‖ f (3x, 3x)− 4 f (2x, 2x) + 5 f (x, x)‖V + ‖ f (4x, 4x)− 4 f (3x, 3x) + 6 f (2x, 2x)− 4 f (x, x)‖V
)

≤ K(4βα(x, x, x, x) + α(x, 2x, x, 2x)) (3.8)

for all x ∈ U. From (3.8), we arrive

‖ f (4x, 4x)− 10 f (2x, 2x) + 16 f (x, x)‖V ≤ Kδ(x) (3.9)

where
δ(x) = 4βα(x, x, x, x) + α(x, 2x, x, 2x) (3.10)

for all x ∈ U. It is easy to see from (3.9) that

‖ f (4x, 4x)− 8 f (2x, 2x)− 2( f (2x, 2x)− 8 f (x, x))‖V ≤ Kδ(x) (3.11)

for all x ∈ U. Using (1.4) in (3.11), we obtain

‖g(2x, 2x)− 2g(x, x)‖V ≤ Kδ(x) (3.12)
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for all x ∈ U. From (3.12), we arrive ∥∥∥∥ g(2x, 2x)
2

− g(x, x)
∥∥∥∥

V
≤ K

δ(x)
2β

(3.13)

for all x ∈ U. Now replacing x by 2x and dividing by 2 in (3.13), we get∥∥∥∥ g(22x, 22x)
22 − g(2x, 2x)

2

∥∥∥∥
V
≤ K

δ(2x)
2β+1 (3.14)

for all x ∈ U. From (3.13) and (3.14), we obtain∥∥∥∥ g(22x, 22x)
22 − g(x, x)

∥∥∥∥
V
≤ K

(∥∥∥∥ g(2x, 2x)
2

− g(x, x)
∥∥∥∥

V
+
∥∥∥∥ g(22x, 22x)

22 − g(2x, 2x)
2

∥∥∥∥
V

)
≤ K2

2β

[
δ(x) +

δ(2x)
2

]
(3.15)

for all x ∈ U. Proceeding further and using induction on a positive integer n , we get∥∥∥∥ g(2nx, 2nx)
2n − g(x, x)

∥∥∥∥
V
≤ Kn

2β

n−1

∑
k=0

δ(2kx)
2k ≤ Kn

2β

∞

∑
k=0

δ(2kx)
2k (3.16)

for all x ∈ U. In order to prove the convergence of the sequence
{

g(2nx, 2nx)
2n

}
, replacing x by 2mx and

dividing by 2m in (3.16), for any m, n > 0 , we deduce∥∥∥∥ g(2n+mx, 2n+mx)
2(n+m) − g(2mx, 2mx)

2m

∥∥∥∥
V

=
1

2mβ

∥∥∥∥ g(2n · 2mx, 2n · 2mx)
2n − g(2mx, 2mx)

∥∥∥∥
V

≤ Kn

2β

∞

∑
k=0

δ(2k+mx)
2k+mβ

→ 0 as m → ∞

for all x ∈ U. This shows that the sequence
{

g(2nx, 2nx)
2n

}
is a Cauchy sequence. Since V is complete, there

exists a mapping A(x, x) : U2 → V such that

A(x, x) = lim
n→∞

g(2nx, 2nx)
2n , ∀ x ∈ U.

Letting n → ∞ in (3.16) and using (1.4), we see that (3.3) holds for all x ∈ U. To show that A satisfies (1.1),
replacing (x, y, z, w) by (2nx, 2ny, 2nz, 2nw) and dividing by 2n in (3.2), we obtain

1
2n

∥∥∥F(2nx, 2ny, 2nz, 2nw)
∥∥∥

V
≤ 1

2n α(2nx, 2ny, 2nz, 2nw)

for all x, y, z, w ∈ U. Letting n → ∞ in the above inequality and using the definition of A(x, x), we see that A
satisfies (1.1) for all x, y, z, w ∈ U. To prove A is a unique 2-variable additive function satisfying (1.1), we let
B(x, x) be another 2-variable additive mapping satisfying (1.1) and (3.3), then

‖A(x, x)− B(x, x)‖V ≤ K
2nβ

{∥∥∥A(2nx, 2nx)− f (2n+1x, 2n+1x) + 8 f (2nx, 2nx)
∥∥∥

V

+
∥∥∥ f (2n+1x, 2n+1x)− 8 f (2nx, 2nx)− B(2nx, 2nx)

∥∥∥
V

}
≤ 2Kn+1

2β

∞

∑
k=0

δ(2k+nx)
2(k+nβ) → 0 as n → ∞

for all x ∈ U. Hence A is unique.
For j = −1, we can prove a similar stability result. This completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the stability of (1.1).
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Corollary 3.1. Let F : U2 → V be a mapping and there exists real numbers λ and s such that

‖F(x, y, z, w))‖V

≤


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 1 or s > 1;
λ ||x||s||y||s||z||s||w||s, s < 1

4 or s > 1
4 ;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s}} , s < 1

4 or s > 1
4 ;

(3.17)

for all x, y, z, w ∈ U, then there exists a unique 2- variable additive function A : U2 → V such that

‖ f (2x, 2x)− 8 f (x, x)− A(x, x)‖p
V ≤



(
Kn2λ(4β + 1)

2β

)p

,(
Kn2λ(4β+1 + 2βs+1 + 2)λ||x||s

2β|2− 2βs|

)p

,(
Kn2λ(4β + 22βs)λ||x||4s

2β|2− 2β4s|

)p

(
Kn2λ(5 · 4β + 22βs + 24βs+1 + 2)λ||x||4s

2β|2− 2β4s|

)p

(3.18)

for all x ∈ U.

Now we will provide an example to illustrate that the functional equation (1.1) is not stable for s = 1 in
condition (ii) of Corollary 3.1.

Example 3.1. Let α : K → K be a function defined by

α(x) =
{

µx, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function f : K2 → K by

f (x, x) =
∞

∑
n=0

α(2nx)
2n f or all x ∈ K.

Then F satisfies the functional inequality

|F(x, y, z, w)|V ≤ 32 µ (|x|+ |y|+ |z|+ |w|) (3.19)

for all x, y, z, w ∈ K. Then there do not exist a additive mapping A : K2 → K and a constant ρ > 0 such that

| f (2x, 2x)− 8 f (x, x)− A(x, x)|V ≤ ρ|x| f or all x ∈ K. (3.20)

Proof. Now

| f (x, x)| ≤
∞

∑
n=0

|α(2nx)|
|2n|

=
∞

∑
n=0

µ

2n = 2 µ.

Therefore we see that f is bounded. We are going to prove that f satisfies (3.19).

If x = y = z = w = 0 then (3.19) is trivial. If |x|+ |y|+ |z|+ |w| ≥ 1
2

then the left hand side of (3.19) is less

than 32µ. Now suppose that 0 < |x|+ |y|+ |z|+ |w| < 1
2

. Then there exists a positive integer k such that

1
2k ≤ |x|+ |y|+ |z|+ |w| < 1

2k−1 , (3.21)

so that 2k−1x <
1
2

, 2k−1y <
1
2

, 2k−1z <
1
2

, 2k−1w <
1
2

and consequently

2k−1(y, w), 2k−1(x + y, z + w), 2k−1(x− y, z− w),

2k−1(2x + y, 2z + w), 2k−1(2x− y, 2z− w),∈ (−1, 1).
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Therefore for each n = 0, 1, . . . , k− 1, we have

2n(y, w), 2n(x + y, z + w), 2n(x− y, z− w),

2n(2x + y, 2z + w), 2n(2x− y, 2z− w),∈ (−1, 1)

and

α(2n(2x + y, 2z + w))− α(2n(2x− y, 2z− w))− 4α(2n(x + y, z + w))

+ 4α(2n(x− y, z− w)) + 6α(2n(y, w)) = 0

for n = 0, 1, . . . , k− 1. From the definition of f and (3.21), we obtain that∣∣∣ f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)
∣∣∣
V

≤
∞

∑
n=0

1
2n

∣∣∣α(2n(2x + y, 2z + w))− α(2n(2x− y, 2z− w))− 4α(2n(x + y, z + w))

+ 4α(2n(x− y, z− w)) + 6α(2n(y, w))
∣∣∣
V

≤
∞

∑
n=k

1
2n

∣∣∣α(2n(2x + y, 2z + w))− α(2n(2x− y, 2z− w))− 4α(2n(x + y, z + w))

+ 4α(2n(x− y, z− w)) + 6α(2n(y, w))
∣∣∣
V

≤
∞

∑
n=k

1
2n 16µ = 16 µ× 2

2k = 32 µ (|x|+ |y|+ |z|+ |w|) .

Thus f satisfies (3.19) for all x, y, z, w ∈ K with 0 < |x|+ |y|+ |z|+ |w| < 1
2

.

We claim that the additive functional equation (1.1) is not stable for s = 1 in condition (ii) Corollary 3.1.
Suppose on the contrary that there exist a additive mapping A : K2 → K and a constant ρ > 0 satisfying
(3.20). Since f is bounded and continuous for all x ∈ K, A is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem 3.1, A must have the form A(x, x) = cx for any x in
K. Thus we obtain that

| f (2x, 2x)− 8 f (x, x)|V ≤ (ρ + |c|) |x|. (3.22)

But we can choose a positive integer m with mµ > ρ + |c|.
If x ∈

(
0, 1

2m−1

)
, then 2nx ∈ (0, 1) for all n = 0, 1, . . . , m− 1 . For this x, we get

f (2x, 2x)− 8 f (x, x) =
∞

∑
n=0

α(2nx)
2n ≥

m−1

∑
n=0

µ(2nx)
2n = mµx > (ρ + |c|) x

which contradicts (3.22). Therefore the additive functional equation (1.1) is not stable in sense of Ulam, Hyers
and Rassias if s = 1, assumed in the inequality condition (ii) of (3.17).

A counter example to illustrate the non stability in condition (iii) of Corollary 3.1 is given in the
following example.

Example 3.2. Let s be such that 0 < s <
1
4

. Then there is a function F : K2 → K and a constant λ > 0 satisfying

|F(x, y, z, w)|V ≤ λ|x|
s
4 |y|

s
4 |z|

s
4 |w|

1−3s
4 (3.23)

for all x, y, z, w ∈ K and

sup
x 6=0

| f (2x, 2x)− 8 f (x, x)− A(x, x)|V
|x|

= +∞ (3.24)

for every additive mapping A(x, x) : K2 → K.
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Proof. If we take

f (x, x) =
{

(x, x) ln |x, x| i f x 6= 0,
0, i f x = 0.

Then from the relation (3.24), it follows that

sup
x 6=0

| f (2x, 2x)− 8 f (x, x)− A(x, x)|V
|x|

≥ sup
n∈N
n 6=0

| f (2n, 2n)− 8 f (n, n)− A(n, n)|V
|n|

= sup
n∈N
n 6=0

|n(2, 2) ln |2n, 2n| − 8n(1, 1) ln |n, n| − n A (1, 1)|V
|n|

= sup
n∈N
n 6=0

|(2, 2) ln |2n, 2n| − 8(1, 1) ln |n, n| − A (1, 1)|V = ∞.

We have to prove (3.23) is true.
Case (i): If x, y, z, w > 0 in (3.23) then,

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2x + y, 2z + w) ln |2x + y, 2z + w| − (2x− y, 2z− w) ln |2x− y, 2z− w|

−4(x + y, z + w) ln |x + y, z + w|+ 4(x− y, z− w) ln |x− y, z− w|+ 6(y, w) ln |y, w||V .

Set x = v1, y = v2, z = v3, w = v4 it follows that

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2v1 + v2, 2v3 + v4) ln |2v1 + v2, 2v3 + v4| − |2v1 − v2, 2v3 − v4| ln |2v1 − v2, 2v3 − v4|

−4(v1 + v2, v3 + v4) ln |v1 + v2, v3 + v4|+ 4|v1 − v2, v3 − v4| ln |v1 − v2, v3 − v4|
+6(v2, v4) ln |v2, v4||V .

= | f (2v1 + v2, 2v3 + v4)− f (2v1 − v2, 2v3 − v4)− 4 f (v1 + v2, v3 + v4)

+4 f (v1 − v2, v3 − v4) + 6 f (v2, v4)|V
≤ λ|v1|

s
4 |v2|

s
4 |v3|

s
4 |v4|

1−3s
4

= λ|x|
s
4 |y|

s
4 |z|

s
4 |w|

1−3s
4 .

Case (ii): If x, y, z, w < 0 in (3.23) then,

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2x + y, 2z + w) ln |2x + y, 2z + w| − (2x− y, 2z− w) ln |2x− y, 2z− w|

−4(x + y, z + w) ln |x + y, z + w|+ 4(x− y, z− w) ln |x− y, z− w|+ 6(y, w) ln |y, w||V .

Set −x = v1,−y = v2,−z = v3,−w = v4 it follows that

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(−2v1 − v2,−2v3 − v4) ln | − 2v1 − v2,−2v3 − v4|

−(−2v1 + v2,−2v3 + v4) ln | − 2v1 + v2,−2v3 + v4|
−4(−v1 − v2,−v3 − v4) ln | − v1 − v2,−v3 − v4|

+4(−v1 + v2,−v3 + v4) ln | − v1 + v2,−v3 + v4|
+6(−v2,−v4) ln | − v2,−v4||V .

= | f (−2v1 − v2,−2v3 − v4)− f (−2v1 + v2,−2v3 + v4)− 4 f (−v1 − v2,−v3 − v4)

+4 f (−v1 + v2,−v3 + v4) + 6 f (−v2,−v4)|V
≤ λ| − v1|

s
4 | − v2|

s
4 | − v3|

s
4 | − v4|

1−3s
4

= λ|x|
s
4 |y|

s
4 |z|

s
4 |w|

1−3s
4 .
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Case (iii): If x, z > 0, y, w < 0 then 2x + y, 2z + w, x + y, z + w > 0,
2x− y, 2z− w, x− y, z− w < 0 in (3.23) then,

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2x + y, 2z + w) ln |2x + y, 2z + w| − (2x− y, 2z− w) ln |2x− y, 2z− w|

−4(x + y, z + w) ln |x + y, z + w|+ 4(x− y, z− w) ln |x− y, z− w|+ 6(y, w) ln |y, w||V .

Set x = v1,−y = v2, z = v3,−w = v4 it follows that

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2v1 − v2, 2v3 − v4) ln(2v1 − v2, 2v3 − v4)

−(2v1 + v2, 2v3 + v4) ln | − (2v1 + v2, 2v3 + v4)|
−4(v1 − v2, v3 − v4) ln |v1 − v2, v3 − v4|

+4(v1 + v2, v3 + v4) ln | − (v1 + v2, v3 + v4)|
+6(−v2,−v4) ln(−v2,−v4)|V .

= | f (2v1 − v2, 2v3 − v4)− f (2v1 + v2, 2v3 + v4)− 4 f (v1 − v2, v3 − v4)

+4 f (v1 + v2, v3 + v4) + 6 f (−v2,−v4)|V
≤ λ|v1|

s
4 | − v2|

s
4 |v3|

s
4 | − v4|

1−3s
4

= λ|x|
s
4 |y|

s
4 |z|

s
4 |w|

1−3s
4 .

Case (iv): If x, z > 0, y, w < 0 then 2x + y, 2z + w, x + y, z + w < 0,
2x− y, 2z− w, x− y, z− w > 0 in (3.23) then,

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2x + y, 2z + w) ln |2x + y, 2z + w| − (2x− y, 2z− w) ln |2x− y, 2z− w|

−4(x + y, z + w) ln |x + y, z + w|+ 4(x− y, z− w) ln |x− y, z− w|+ 6(y, w) ln |y, w||V .

Set x = v1,−y = v2, z = v3,−w = v4 it follows that

| f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)|V
= |(2v1 − v2, 2v3 − v4) ln | − (2v1 − v2, 2v3 − v4)|

−(2v1 + v2, 2v3 + v4) ln |2v1 + v2, 2v3 + v4|
−4(v1 − v2, v3 − v4) ln | − (v1 − v2, v3 − v4)|

+4(v1 + v2, v3 + v4) ln |v1 + v2, v3 + v4|
+6(−v2,−v4) ln(−v2,−v4)|V .

= | f (2v1 − v2, 2v3 − v4)− f (2v1 + v2, 2v3 + v4)− 4 f (v1 − v2, v3 − v4)

+4 f (v1 + v2, v3 + v4) + 6 f (−v2,−v4)|V
≤ λ|v1|

s
4 | − v2|

s
4 |v3|

s
4 | − v4|

1−3s
4

= λ|x|
s
4 |y|

s
4 |z|

s
4 |w|

1−3s
4 .

Case (v): If x = y = z = w = 0 in (3.23) then it is trivial.

Now we will provide an example to illustrate that the functional equation (1.1) is not stable for s =
1
4

in

condition (iv) of Corollary 3.1.

Example 3.3. Let α : K → K be a function defined by

α(x) =

 µx, if |x| < 1
4µ

4
, otherwise
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where µ > 0 is a constant, and define a function f : K2 → K by

f (x, x) =
∞

∑
n=0

α(2nx)
2n f or all x ∈ K.

Then F satisfies the functional inequality

|F(x, y, z, w)|V ≤ 8 µ
(
|x|

1
4 |y|

1
4 |z|

1
4 |w|

1
4 + {|x|+ |y|+ |w|+ |z|}

)
(3.25)

for all x, y, z, w ∈ K. Then there do not exist a additive mapping A : K2 → K and a constant ρ > 0 such that

| f (2x, 2x)− 8 f (x, x)− A(x, x)|V ≤ ρ|x| f or all x ∈ K. (3.26)

Proof. Now

| f (x, x)| ≤
∞

∑
n=0

|α(2nx)|
|2n|

=
∞

∑
n=0

1
2n ×

µ

4
=

µ

2
.

Therefore we see that f is bounded. We are going to prove that f satisfies (3.25).
If x = y = z = w = 0 then (3.25) is trivial.

If |x|
1
4 |y|

1
4 |z|

1
4 |w|

1
4 + {|x|+ |y|+ |w|+ |z|} ≥ 1

2
then the left hand side of (3.25) is less than 8µ. Now suppose

that 0 < |x|
1
4 |y|

1
4 |z|

1
4 |w|

1
4 + {|x|+ |y|+ |w|+ |z|} <

1
2

. Then there exists a positive integer k such that

1
2k ≤ |x|

1
4 |y|

1
4 |z|

1
4 |w|

1
4 + {|x|+ |y|+ |w|+ |z|} <

1
2k−1 , (3.27)

so that 2k−1|x|
1
4 |y|

1
4 |z|

1
4 |w|

1
4 <

1
2

, 2k−1|x| < 1
2

, 2k−1|y| < 1
2

, 2k−1|z| < 1
2

,

2k−1|w| < 1
2

and consequently

2k−1(y, w), 2k−1(x + y, z + w), 2k−1(x− y, z− w),

2k−1(2x + y, 2z + w), 2k−1(2x− y, 2z− w),∈
(
−1

4
,

1
4

)
.

Therefore for each n = 0, 1, . . . , k− 1, we have

2n(y, w), 2n(x + y, z + w), 2n(x− y, z− w),

2n(2x + y, 2z + w), 2n(2x− y, 2z− w),∈
(
−1

4
,

1
4

)
and

α(2n(2x + y, 2z + w))− α(2n(2x− y, 2z− w))− 4α(2n(x + y, z + w))

+ 4α(2n(x− y, z− w)) + 6α(2n(y, w)) = 0

for n = 0, 1, . . . , k− 1. From the definition of f and (3.27), we obtain that∣∣∣ f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w) + 4 f (x− y, z− w) + 6 f (y, w)
∣∣∣
V

≤
∞

∑
n=0

1
2n

∣∣∣α(2n(2x + y, 2z + w))− α(2n(2x− y, 2z− w))− 4α(2n(x + y, z + w))

+ 4α(2n(x− y, z− w)) + 6α(2n(y, w))
∣∣∣
V

≤
∞

∑
n=k

1
2n

∣∣∣α(2n(2x + y, 2z + w))− α(2n(2x− y, 2z− w))− 4α(2n(x + y, z + w))

+ 4α(2n(x− y, z− w)) + 6α(2n(y, w))
∣∣∣
V
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≤
∞

∑
n=k

16µ

4
× 1

2n =
16µ

4
× 2

2k = 8 µ
(
|x|

1
4 |y|

1
4 |z|

1
4 |w|

1
4 + {|x|+ |y|+ |w|+ |z|}

)
.

Thus f satisfies (3.25) for all x, y, z, w ∈ K with

0 < |x|
1
4 |y|

1
4 |z|

1
4 |w|

1
4 + {|x|+ |y|+ |w|+ |z|} <

1
2

.

We claim that the additive functional equation (1.1) is not stable for s =
1
4

in condition (iv) Corollary 3.1.

Suppose on the contrary that there exist a additive mapping A : K2 → K and a constant ρ > 0 satisfying
(3.26). Since f is bounded and continuous for all x ∈ K, A is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem 3.1, A must have the form A(x, x) = cx for any x in
K. Thus we obtain that

| f (2x, 2x)− 8 f (x, x)|V ≤ (ρ + |c|) |x|. (3.28)

But we can choose a positive integer m with mµ > ρ + |c|.
If x ∈

(
0, 1

2m−1

)
, then 2nx ∈ (0, 1) for all n = 0, 1, . . . , m− 1 . For this x, we get

f (2x, 2x)− 8 f (x, x) =
∞

∑
n=0

α(2nx)
2n ≥

m−1

∑
n=0

µ(2nx)
2n = mµx > (ρ + |c|) x

which contradicts (3.28). Therefore the additive functional equation (1.1) is not stable in sense of Ulam, Hyers

and Rassias if s =
1
4

, assumed in the inequality condition (iv) of (3.17).

Theorem 3.2. Let j = ±1. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0, ∞) with the
condition

lim
n→∞

1
8nj α(2njx, 2njy, 2njz, 2njw) = 0 (3.29)

such that the functional inequality
‖F(x, y, z, w)‖V ≤ α(x, y, z, w) (3.30)

for all x, y, z, w ∈ U. Then there exists a unique 2-variable cubic mapping C : U2 → V satisfying the functional
equation (1.1) and

‖ f (2x, 2x)− 2 f (x, x)− C(x, x)‖p
V ≤ Knp

8βp

∞

∑
k= 1−j

2

δ(2kjx)p

8kjp (3.31)

where δ(2kjx) and C(x, x) are defined by

δ(2kjx) = 4βα(2kjx, 2kjx, 2kjx, 2kjx) + α(2kjx, 2(k+1)jx, 2kjx, 2(k+1)jx) (3.32)

C(x, x) = lim
n→∞

1
8nj ( f (2(n+1)jx, 2(n+1)jx)− 2 f (2njx, 2njx)) (3.33)

for all x ∈ U.

Proof. It is easy to see from (3.9) that

‖ f (4x, 4x)− 2 f (2x, 2x)− 8( f (2x, 2x)− 2 f (x, x))‖V ≤ Kδ(x) (3.34)

for all x ∈ U. Using (1.6) in (3.34), we obtain

‖h(2x, 2x)− 8h(x, x)‖V ≤ Kδ(x) (3.35)

for all x ∈ U. From (3.35), we arrive ∥∥∥∥h(2x, 2x)
8

− h(x, x)
∥∥∥∥

V
≤ K

δ(x)
8β

(3.36)

for all x ∈ U. The rest of the proof is similar to that of Theorem 3.1
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The following Corollary is an immediate consequence of Theorem 3.2 concerning the stability of (1.1).

Corollary 3.2. Let F : U2 → V be a mapping and there exists real numbers λ and s such that

‖F(x, y, z, w))‖V

≤


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 3 or s > 3;
λ ||x||s||y||s||z||s||w||s, s < 3

4 or s > 3
4 ;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s}} , s < 3

4 or s > 3
4 ;

(3.37)

for all x, y, z, w ∈ U, then there exists a unique 2- variable cubic function C : U2 → V such that

‖ f (2x, 2x)− 2 f (x, x)− C(x, x)‖p
V ≤



(
Kn8λ(4β + 1)

7 · 8β

)p

,(
Kn8λ(4β+1 + 2βs+1 + 2)λ||x||s

8β|8− 2βs|

)p

,(
Kn8λ(4β + 22βs)λ||x||4s

8β|8− 2β4s|

)p

(
Kn8λ(5 · 4β + 22βs + 24βs+1 + 2)λ||x||4s

8β|8− 2β4s|

)p

(3.38)

for all x ∈ U.

Now we will provide an example to illustrate that the functional equation (1.1) is not stable for s = 3 in
condition (ii) of Corollary 3.2.

Example 3.4. Let α : K → K be a function defined by

α(x) =
{

µx3, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function f : K2 → K by

f (x, x) =
∞

∑
n=0

α(2nx)
8n f or all x ∈ K.

Then F satisfies the functional inequality

|F(x, y, z, w)|V ≤ 16 µ× 83

7

(
|x|3 + |y|3 + |z|3 + |w|3

)
(3.39)

for all x, y, z, w ∈ K. Then there do not exist a cubic mapping C : K2 → K and a constant β > 0 such that

| f (2x, 2x)− 2 f (x, x)− C(x, x)|V ≤ β|x|3 f or all x ∈ K. (3.40)

Proof. Now

| f (x, x)| ≤
∞

∑
n=0

|α(2nx)|
|8n|

=
∞

∑
n=0

µ

8n =
8 µ

7
.

Therefore we see that f is bounded. We are going to prove that f satisfies (3.39).

If x = y = z = w = 0 then (3.39) is trivial. If |x|3 + |y|3 + |z|3 + |w|3 ≥ 1
8

then the left hand side of (3.39) is

less than
16× 8µ

7
. Now suppose that 0 < |x|3 + |y|3 + |z|3 + |w|3 <

1
8

. Then there exists a positive integer k
such that

1
8k+2 ≤ |x|3 + |y|3 + |z|3 + |w|3 <

1
8k+1 , (3.41)

the rest of the proof is similar to that of Example 3.1.
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A counter example to illustrate the non stability in condition (iii) of Corollary 3.2 is given in the fol-
lowing example.

Example 3.5. Let s be such that 0 < s <
3
4

. Then there is a function F : K2 → K and a constant λ > 0 satisfying

|F(x, y, z, w)|V ≤ λ|x|
s
4 |y|

s
4 |z|

s
4 |w|

3−3s
4 (3.42)

for all x, y, z, w ∈ K and

sup
x 6=0

| f (2x, 2x)− 2 f (x, x)− C(x, x)|V
|x|3

= +∞ (3.43)

for every cubic mapping C : K2 → K.

Proof. If we take

f (x, x) =
{

(x, x)3 ln |x, x| i f x 6= 0,
0, i f x = 0.

Then from the relation (3.43), it follows that

sup
x 6=0

| f (2x, 2x)− 2 f (x, x)− C(x, x)|V
|x|3

≥ sup
n∈N
n 6=0

| f (2n, 2n)− 2 f (n, n)− C(n, n)|V
|n|3

= sup
n∈N
n 6=0

∣∣n3(2, 2)3 ln |n, n| − 2n3(1, 1)3 ln |n, n| − n3 C (1, 1)
∣∣
V

|n|3

= sup
n∈N
n 6=0

∣∣∣(2, 2)3 ln |n, n| − 2(1, 1)3 ln |n, n| − C (1, 1)
∣∣∣
V

= ∞.

Rest of the proof is similar to that of Example 3.2.

Now we will provide an example to illustrate that the functional equation (1.1) is not stable for s = 3
4 in

condition (iv) of Corollary 3.2.

Example 3.6. Let α : K → K be a function defined by

α(x) =


µx3, if |x| < 3

4
3µ

4
, otherwise

where µ > 0 is a constant, and define a function f : K2 → K by

f (x, x) =
∞

∑
n=0

α(2nx)
8n f or all x ∈ K.

Then F satisfies the functional inequality

|F(x, y, z, w)|V ≤ 96µ× 82

7

(
|x|

3
4 |y|

3
4 |z|

3
4 |w|

3
4 +

{
|x|3 + |y|3 + |w|3 + |z|3

})
(3.44)

for all x, y, z, w ∈ K. Then there do not exist a cubic mapping C : K2 → K and a constant ρ > 0 such that

| f (2x, 2x)− 2 f (x, x)− C(x, x)|V ≤ ρ|x| f or all x ∈ K. (3.45)

Proof. Now

| f (x, x)| ≤
∞

∑
n=0

|α(2nx)|
|8n|

=
∞

∑
n=0

1
8n ×

3µ

4
=

6 µ

7
.

Therefore we see that f is bounded. We are going to prove that f satisfies (3.44).
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If x = y = z = w = 0 then (3.44) is trivial. If |x|
3
4 |y|

3
4 |z|

3
4 |w|

3
4

+
{
|x|3 + |y|3 + |w|3 + |z|3

}
≥ 1

8
then the left hand side of (3.44) is less than

96 µ

7
. Now suppose that 0 <

|x|
3
4 |y|

3
4 |z|

3
4 |w|

3
4 +

{
|x|3 + |y|3 + |w|3 + |z|3

}
<

1
8

. Then there exists a positive integer k such that

1
8k+2 ≤ |x|

3
4 |y|

3
4 |z|

3
4 |w|

3
4 +

{
|x|3 + |y|3 + |w|3 + |z|3

}
<

1
8k+1 , (3.46)

the rest of the proof is similar to that of Example 3.3.

Now, we are ready to prove our main stability results.

Theorem 3.3. Let j = ±1. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0, ∞) with the
conditions given in (3.1) and (3.29) respectively, such that the functional inequality

‖F(x, y, z, w)‖V ≤ α(x, y, z, w) (3.47)

for all x, y, z, w ∈ U. Then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic
mapping C : U2 → V satisfying the functional equation (1.1) and

‖ f (x, x)− A(x, x)− C(x, x)‖p
V ≤ Kp

6p

Knp

2βp

∞

∑
k= 1−j

2

δ(2kjx)p

2kjp +
Knp

8βp

∞

∑
k= 1−j

2

δ(2kjx)p

8kjp

 (3.48)

where δ(2kjx), A(x, x) and C(x, x) are respectively defined in (3.4), (3.5) and (3.33) for all x ∈ U.

Proof. By Theorems 3.1 and 3.2, there exists a unique 2-variable additive function A1 : U2 → V and a unique
2-variable cubic function C1 : U2 → V such that

‖ f (2x, 2x)− 8 f (x, x)− A1(x, x)‖p
V ≤ Knp

2βp

∞

∑
k= 1−j

2

δ(2kjx)p

2kjp (3.49)

‖ f (2x, 2x)− 2 f (x, x)− C1(x, x)‖p
V ≤ Knp

8βp

∞

∑
k= 1−j

2

δ(2kjx)p

8kjp (3.50)

for all x ∈ U. Now from (3.49) and (3.50), one can see that∥∥∥∥ f (x, x) +
1
6

A1(x, x)− 1
6

C1(x, x)
∥∥∥∥p

V

=
∥∥∥∥{− f (2x, 2x)

6
+

8 f (x, x)
6

+
A1(x, x)

6

}
+
{

f (2x, 2x)
6

− 2 f (x, x)
6

− C1(x, x)
6

}∥∥∥∥p

V

≤ Kp

6p

{
‖ f (2x, 2x)− 8 f (x, x)− A1(x, x)‖p

V + ‖ f (2x, 2x)− 2 f (x, x)− C1(x, x)‖p
V

}
≤ Kp

6p

Knp

2βp

∞

∑
k= 1−j

2

δ(2kjx)p

2kjp +
Knp

8βp

∞

∑
k= 1−j

2

δ(2kjx)p

8kjp


for all x ∈ U. Thus we obtain (3.50) by defining A(x, x) = −1

6 A1(x, x) and C(x, x) = 1
6 C1(x, x), δ(2kjx), A(x, x)

and C(x, x) are respectively defined in (3.4), (3.5) and (3.33) for all x ∈ U.

The following corollary is the immediate consequence of Theorem 3.3, using Corollaries 3.1 and 3.2 con-
cerning the stability of (1.1).

Corollary 3.3. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F(x, y, z, w))‖V

≤


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s} , s 6= 1, 3;
λ ||x||s||y||s||z||s||w||s, s 6= 1

4 , 3
4 ;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s}} , s 6= 1

4 , 3
4 ;

(3.51)
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for all x, y, z, w ∈ U, then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic
mapping C : U2 → V such that

‖ f (x, x)− A(x, x)− C(x, x)‖p
V

≤



(
Kn+1λ(4β + 1)

6

[
2
2β

+
8

7 · 8β

])p

,(
Kn+1λ(4β+1 + 2βs+1 + 2)||x||s

6

[
2

2β|2− 2βs|
+

8
8β|8− 2βs|

])p

,(
Kn+1λ(4β + 22βs)||x||4s

6

[
2

2β|2− 2β4s|
+

8
8β|8− 2β4s|

])p

,(
Kn+18λ(5 · 4β + 22βs + 24βs+1 + 2)λ||x||4s

6

[
2

2β|2− 2β4s|
+

8
8β|8− 2β4s|

])p

,

(3.52)

for all x ∈ U.

4 Stability results: Fixed point method

In this section, we apply a fixed point method for achieving stability of the 2-variable AC functional equa-
tion (1.1).

Now, we present the following theorem due to B. Margolis and J.B. Diaz [12] for fixed point Theory.

Theorem 4.1. [12] Suppose that for a complete generalized metric space (Ω, β) and a strictly contractive mapping
T : Ω → Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(i) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(ii) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T
(iii) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.

Using the above theorem, we now obtain the generalized Ulam - Hyers stability of (1.1).
Through out this section let U be a normed space and V is a (β, p) Banach space with p−norm ‖. ‖V . Define

a mapping F : U2 → V by

F(x, y, z, w) = f (2x + y, 2z + w)− f (2x− y, 2z− w)− 4 f (x + y, z + w)

+ 4 f (x− y, z− w) + 6 f (y, w)

for all x, y, z, w ∈ U.

Theorem 4.2. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0, ∞) with the condition

lim
n→∞

1
µn

i
α(µn

i x, µn
i y, µn

i z, µn
i w) = 0 (4.1)

where µi = 2 if i = 0 and µi = 1
2 if i = 1 such that the functional inequality

‖F(x, y, z, w)‖V ≤ α(x, y, z, w) (4.2)

for all x, y, z, w ∈ U. If there exists L = L(i) < 1 such that the function

x → γ(x) = Kδ
( x

2

)
,

has the property
γ(x) ≤ L µi γ (µix) . (4.3)
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for all x ∈ U. Then there exists a unique 2-variable additive mapping A : U2 → V satisfying the functional equation
(1.1) and

‖ f (2x, 2x)− 8 f (x, x)− A(x, x) ‖p
V≤

(
L1−i

1− L

)p

γ(x)p (4.4)

for all x ∈ U.

Proof. Consider the set
Ω = {q1/q1 : U2 → V, q1(0, 0) = 0}

and introduce the generalized metric on Ω,

d(q1, q2) = dγ(q1, q2) = inf{M ∈ (0, ∞) :‖ q1(x, x)− q2(x, x) ‖≤ Mγ(x), x ∈ U}.

It is easy to see that (Ω, d) is complete.
Define T : Ω2 → Ω by

Tq1(x, x) =
1
µi

q1(µix, µix),

for all x ∈ U. Now q1, q2 ∈ Ω,

d(q1, q2) ≤ M ⇒ ‖ q1(x, x)− q2(x, x) ‖≤ Mγ(x), x ∈ U.

⇒
∥∥∥∥ 1

µi
q1(µix, µix)− 1

µi
q2(µix, µix)

∥∥∥∥ ≤ 1
µi

Mγ(µix), x ∈ U,

⇒
∥∥∥∥ 1

µi
q1(µix, µix)− 1

µi
q2(µix, µix)

∥∥∥∥ ≤ LMγ(x), x ∈ U,

⇒ ‖ Tq1(x, x)− Tq2(x, x) ‖≤ LMγ(x), x ∈ U,

⇒dγ(q1, q2) ≤ LM.

This implies d(Tq1, Tq2) ≤ Ld(q1, q2), for all q1, q2 ∈ Ω . i.e., T is a strictly contractive mapping on Ω with
Lipschitz constant L.
From (3.12), we arrive ∥∥∥∥ g(2x, 2x)

2
− g(x, x)

∥∥∥∥
V
≤ K

δ(x)
2β

(4.5)

for all x ∈ U. Using (4.3) for the case i = 0 it reduces to∥∥∥∥ g(2x, 2x)
2

− g(x, x)
∥∥∥∥ ≤ Lγ(x)

for all x ∈ U,

i.e., d(g, Tg) ≤ L =
1
2β

⇒ d(g, Tg) ≤ L = L1 < ∞. (4.6)

Again replacing x = x
2 in (4.5), we get,∥∥∥g(x, x)− 2g

( x
2

,
x
2

)∥∥∥
V
≤ Kδ

( x
2

)
(4.7)

Using (4.3) for the case i = 1 it reduces to∥∥∥g(x, x)− 2g
( x

2
,

x
2

)∥∥∥
V
≤ γ(x)

for all x ∈ U,
i.e., d(g, Tg) ≤ 1 ⇒ d(g, Tg) ≤ 1 = L0 < ∞. (4.8)

From (4.6) and (4.8), we have
d(Tg, g) ≤ L1−i. (4.9)

Now from from the fixed point alternative in both cases, it follows that there exists a fixed point A of T in
Ω such that

A(x, x) = lim
n→∞

1
µn

i
( f (µ

(n+1)
i x, µ

(n+1)
i x)− 8 f (µn

i x, µn
i x)) (4.10)
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for all x ∈ U.
To prove A : U2 → V is additive. Replacing (x, y, z, w) by

(
µn

i x, µn
i y, µn

i z, µn
i w
)

in (4.2) and dividing by µn
i ,

it follows from (4.1) that

‖A(x, y, z, w)‖V = lim
n→∞

∥∥F(µn
i x, µn

i y, µn
i z, µn

i w)
∥∥

V
µn

i
≤ lim

n→∞

α(µn
i x, µn

i y, µn
i z, µn

i w)
µn

i
= 0

for all x, y, z, w ∈ U i.e., A satisfies the functional equation (1.1).
According to the fixed point alternative, since A is the unique fixed point of T in the set ∆ = {A ∈ Ω :

d( f , A) < ∞}, A is the unique function such that

‖ f (2x, 2x)− 8 f (x, x)− A(x, x)‖V ≤ Mγ(x)

for all x ∈ U and K > 0. Again using the fixed point alternative, we obtain

d( f , A) ≤ 1
1− L

d( f , T f )

this implies

d( f , A) ≤ L1−i

1− L

which yields

‖ f (2x, 2x)− 8 f (x, x)− A(x, x) ‖p
V≤

(
L1−i

1− L

)p

γ(x)p

this completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 4.2 concerning the stability of (1.1).

Corollary 4.4. Let F : U2 → V be a mapping and there exists real numbers λ and s such that

‖F(x, y, z, w))‖V

≤


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 1 or s > 1;
λ ||x||s||y||s||z||s||w||s, s < 1

4 or s > 1
4 ;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s}} , s < 1

4 or s > 1
4 ;

(4.11)

for all x, y, z, w ∈ U, then there exists a unique 2- variable additive function A : U2 → V such that

‖ f (2x, 2x)− 8 f (x, x)− A(x, x)‖p
V ≤



(Kλ(4β + 1))p,(
(2 + 2s+1 + 4β+1)Kλ||x||s

|2− 2βs|

)p

,(
(4β + 22s)Kλ||x||4s

|2− 2β4s|

)p

(
(5 · 4β + 22s + 24s+1 + 2)Kλ||x||4s

|2− 2β4s|

)p

(4.12)

for all x ∈ U.

Proof. Setting

α(x, y, z, w) =


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s},
λ ||x||s ||y||s ||z||s ||w||s

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s

}}
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for all x, y, z, w ∈ U. Now

α(µn
i x, µn

i y, µn
i z, µn

i w)
µn

i

=



λ

µn
i

,

λ

µn
i
{||µn

i x||s + ||µn
i y||s + ||µn

i z||s + ||µn
i w||s},

λ

µn
i
||µn

i x||s ||µn
i y||s ||µn

i z||s ||µn
i w||s

λ

µn
i

{
||µn

i x||s ||µn
i y||s ||µn

i z||s ||µn
i w||s{

||µn
i x||4s + ||µn

i y||4s + ||µn
i z||4s + ||µn

i w||4s
}}

=


→ 0 as n → ∞,
→ 0 as n → ∞,
→ 0 as n → ∞,
→ 0 as n → ∞.

Thus, (4.1) is holds.
But we have γ(x) = Kδ

( x
2
)

has the property γ(x) ≤ L · µi γ (µix) for all x ∈ U. Hence

γ(x) = Kδ
( x

2

)
= K

(
4α
( x

2
,

x
2

,
x
2

,
x
2

)
+ α

( x
2

, x,
x
2

, x
))

=



Kλ
(

4β + 1
)

,
Kλ

2s

(
2 + 2s+1 + 4δ+1

)
||x||s,

Kλ

24s

(
22s + 4β

)
||x||4s,

Kλ

24s

(
22s + 2s+1 + 24s+1 + 5 · 4β

)
||x||4s.

Now,

1
µi

γ(µix) =



µ−1
i Kλ

(
4β + 1

)
,

µs−1
i K

λ

2s

(
2 + 2s+1 + 4δ+1

)
||x||s,

µ4s−1
i K

λ

24s

(
22s + 4β

)
||x||4s,

µ4s−1
i K

λ

24s

(
22s + 2s+1 + 24s+1 + 5 · 4β

)
||x||4s

=


µ−1

i γ(x),
µs−1

i γ(x),
µ4s−1

i γ(x),
µ4s−1

i γ(x).

Hence the inequality (4.3) holds either, L = 2s−1 for s < 2 if i = 0 and L = 1
2s−1 for s > 2 if i = 1.

Now from (4.4), we prove the following cases for condition (ii).
Case:1 L = 2s−1 for s < 1 if i = 0

‖ f (2x, 2x)− 8 f (x, x)− A(x, x)‖ ≤

(
2(s−1)

)1−0

1− 2(s−1)
Kλ

2s

(
2 + 2s+1 + 4δ+1

)
||x||s

=
Kλ
(
2 + 2s+1 + 4δ+1) ||x||s

2− 2s

Case:2 L = 1
2s−1 for s > 1 if i = 1

‖ f (2x, 2x)− 8 f (x, x)− A(x, x)‖ ≤

(
1

2(s−1)

)1−1

1− 1
2(s−1)

Kλ

2s

(
2 + 2s+1 + 4δ+1

)
||x||s

=
Kλ
(
2 + 2s+1 + 4δ+1) ||x||s

2s − 2

Similarly, the inequality (4.3) holds either, L = 2−1 for s = 0 if i = 0 and L = 1
2−1 for s = 0 if i = 1 for

condition (i), the inequality (4.3) holds either, L = 24s−1 for s < 2 if i = 0 and L = 1
24s−1 for s > 2 if i = 1 for

condition (iii) and the inequality (4.3) holds either, L = 24s−1 for s < 2 if i = 0 and L = 1
24s−1 for s > 2 if i = 1

for condition (iv).
Hence the proof is complete
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The proof of the following Theorem and Corollary is similar to that of Theorem 4.2 and Corollary 4.4.
Hence the details of the proof is omitted.

Theorem 4.3. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0, ∞) with the condition

lim
n→∞

1
µ3n

i
α(µn

i x, µn
i y, µn

i z, µn
i w) = 0 (4.13)

where µi = 2 if i = 0 and µi = 1
2 if i = 1 such that the functional inequality

‖F(x, y, z, w)‖V ≤ α(x, y, z, w) (4.14)

for all x, y, z, w ∈ U. If there exists L = L(i) < 1 such that the function

x → γ(x) = Kδ
( x

2

)
,

has the property
γ(x) ≤ L µ3

i γ (µix) . (4.15)

Then there exists a unique 2-variable cubic mapping C : U2 → V satisfying the functional equation (1.1) and

‖ f (2x, 2x)− 2 f (x, x)− C(x, x) ‖p
V≤

(
L1−i

1− L

)p

γ(x)p (4.16)

for all x ∈ U.

Corollary 4.5. Let F : U2 → V be a mapping and there exists real numbers λ and s such that

‖F(x, y, z, w))‖V

≤


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 1 or s > 1;
λ ||x||s||y||s||z||s||w||s, s < 1

4 or s > 1
4 ;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s}} , s < 3

4 or s > 3
4 ;

(4.17)

for all x, y, z, w ∈ U, then there exists a unique 2- variable cubic function C : U2 → V such that

‖ f (2x, 2x)− 2 f (x, x)− C(x, x)‖p
V ≤



(
Kλ(4β + 1)

7

)p

,(
(2 + 2s+1 + 4β+1)Kλ||x||s

|8− 2βs|

)p

,(
(4β + 22s)Kλ||x||4s

|8− 2β4s|

)p

(
(5 · 4β + 22s + 24s+1 + 2)Kλ||x||4s

|8− 2β4s|

)p

(4.18)

for all x ∈ U.

Now, we are ready to prove the main fixed point stability results.

Theorem 4.4. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0, ∞) with the conditions (4.1)
and (4.13) where µi = 2 if i = 0 and µi = 1

2 if i = 1 such that the functional inequality

‖F(x, y, z, w)‖V ≤ α(x, y, z, w) (4.19)

for all x, y, z, w ∈ U. If there exists L = L(i) < 1 such that the function

x → γ(x) = Kδ
( x

2

)
,
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has the properties (4.3) and (4.15) Then there exists a unique 2-variable additive mapping A : U2 → V and a unique
2-variable cubic mapping C : U2 → V satisfying the functional equation (1.1) and

‖ f (x, x)− A(x, x)− C(x, x) ‖p
V≤

2 Kp

6β p

(
L1−i

1− L

)p

γ(x)p (4.20)

for all x ∈ U.

Proof. By Theorems 4.2 and 4.3, there exists a unique 2-variable additive function A1 : U2 → V and a unique
2-variable cubic function C1 : U2 → V such that

‖ f (2x, 2x)− 8 f (x, x)− A1(x, x)‖p
V ≤

(
L1−i

1− L

)p

γ(x)p (4.21)

and

‖ f (2x, 2x)− 2 f (x, x)− C1(x, x)‖p
V ≤

(
L1−i

1− L

)p

γ(x)p (4.22)

for all x ∈ U . Now from (4.21) and (4.22), one can see that∥∥∥∥ f (x, x) +
1
6

A1(x, x)− 1
6

C1(x, x)
∥∥∥∥p

V

=
∥∥∥∥{− f (2x, 2x)

6
+

8 f (x, x)
6

+
A1(x, x)

6

}
+
{

f (2x, 2x)
6

− 2 f (x, x)
6

− C1(x, x)
6

}∥∥∥∥p

V

≤ Kp

6βp

{
‖ f (2x, 2x)− 8 f (x, x)− A1(x, x)‖p

V + ‖ f (2x, 2x)− 2 f (x, x)− C1(x, x)‖p
V

}
≤ Kp

6βp

{(
L1−i

1− L

)p

γ(x)p +

(
L1−i

1− L

)p

γ(x)p

}

for all x ∈ U. Thus we obtain (4.20) by defining A(x, x) = −1
6 A1(x, x) and C(x, x) = 1

6 C1(x, x), for all
x ∈ U.

The following Corollary is an immediate consequence of Theorem 4.4, using Corollaries 4.4 and 4.5 con-
cerning the stability of (1.1).

Corollary 4.6. Let F : U2 → V be a mapping and there exists real numbers λ and s such that

‖F(x, y, z, w))‖V

≤


λ,
λ {||x||s + ||y||s + ||z||s + ||w||s} , s 6= 1, 3;
λ ||x||s||y||s||z||s||w||s, s 6= 1

4 , 3
4 ;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s}} , s 6= 1

4 , 3
4 ;

(4.23)

for all x, y, z, w ∈ U, then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic
mapping C : U2 → V such that

‖ f (x, x)− A(x, x)− C(x, x)‖V

≤



(
K2λ(4β + 1)

6

[
1 +

1
7

])p

,(
(2 + 2s+1 + 4β+1)K2λ||x||s

6

[
1

|2− 2βs|
+

1
|8− 2βs|

])p

,(
(4β + 22s)K2λ||x||4s

6

[
1

|2− 2β4s|
+

1
|8− 2β4s|

])p

(
(5 · 4β + 22s + 24s+1 + 2)K2λ||x||4s

6

[
1

|2− 2β4s|
+

1
|8− 2β4s|

])p

(4.24)

for all x ∈ U.
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Abstract

The purpose of this paper is to derive 3- dissection for (q2; q2)−1
∞ (q4; q4)−1

∞ , (q3; q3)−1
∞ (q6; q6)−1

∞ and
(q

1
3 ; q

1
3 )−1

∞ (q
2
3 ; q

2
3 )−1

∞ .

Keywords: Partition functions, Generating functions.
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1 Introduction

x ∼ y
In 2010, Chan [1] has studied on Ramanujan’s cubic continued fraction and defined a function a(n), as

∞

∑
n=0

a(n)qn =
1

(q; q)∞ (q2; q2)∞
(1.1)

In 2011, Zhao and Zhong [2] have studied and investigated the arithmetic properties of a function b(n), as

∞

∑
n=0

b(n)qn =
1

(q; q)2
∞ (q2; q2)2

∞
(1.2)

Through this paper, we assume

(a; q)∞ =
Π

∏
n=1

(1− aq(n−1)) ; |q| < 1 (1.3)

Many properties of a(n) and b(n) are similar with the standard partition function p(n), the function p(n) is
defined to be the number of ways of writing n as a sum of positive integers in non-increasing order. Mathe-
matically it is defined as ∑n≥0 p(n)qn = ∏n=1(1− q)−1. It is convention that, one sets p(0) = 0 and p(n) = 0
for n < 0. Chan[1] obtained the generating function of a(3n + 2), as

∞

∑
n=0

a(3n + 2)qn = 3
(q3; q3)3

∞ (q6; q6)3
∞

(q; q)4
∞ (q2; q2)4

∞
(1.4)

This identity was prove by Cao[3] by using the 3-dissection for (q; q)∞ (q2; q2)∞. The outline of this paper is
as follows. In sections 2, we have recorded some well known results, those are useful to the rest of the paper.
In section 3, we state and prove three new theorems, which are not available in the literature.

∗Corresponding author.
E-mail addresses: mpchaudhary 2000@yahoo.com (M. P. Chaudhary), salahuddin12@mailcity.com (Salahuddin).
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2 Preliminaries

Let us recall the definition of cubic theta function A(q),B(q) and C(q)due to Borwein et al.[4], as

A(q) =
∞

∑
m,n=−∞

qm2+mn+n2
(2.1)

B(q) =
∞

∑
m,n=−∞

ωm−nqm2+mn+n2
; ω = exp

(
2Πι

3

)
(2.2)

C(q) =
∞

∑
m,n=−∞

qm2+mn+n2+m+n (2.3)

Borwein et al.[4] established the following relations

A(q) = A(q3) + 2qC(q3) (2.4)

B(q) = A(q3)− qC(q3) (2.5)

C(q) =
3(q3; q3)3

∞
(q; q)∞

(2.6)

A(q)A(q2) = B(q)B(q2) + qC(q)C(q2) (2.7)

3 Main results

Now we derive following results by applying 3-dissection

Theorem-I:

1
(q2; q2)∞(q4; q4)∞

=
A(q12)C(q6)

3(q6; q6)3
∞(q12; q12)3

∞
+

q2 A(q6)C(q12)
3(q6; q6)3

∞(q12; q12)3
∞

+
q4C(q6)C(q12)

3(q6; q6)3
∞(q12; q12)3

∞
(3.1)

Theorem-II:

1
(q3; q3)∞(q6; q6)∞

=
q3 A(q9)C(q18)

3(q9; q9)3
∞(q18; q18)3

∞
+

A(q18)C(q9)
3(q9; q9)3

∞(q18; q18)3
∞

+
q6C(q9)C(q18)

3(q9; q9)3
∞(q18; q18)3

∞
(3.2)

Theorem-III:

1

(q
1
3 ; q

1
3 )∞(q

2
3 ; q

2
3 )∞

=
qA(q2)C(q)

3(q; q)3
∞(q2; q2)3

∞
+

q
1
3 A(q)C(q2)

3(q; q)3
∞(q2; q2)3

∞
+

q
2
3 C(q)C(q2)

3(q; q)3
∞(q2; q2)3

∞
(3.3)

Proof of Theorem-I: In equation (2.6), by substituting q = q2 and q = q4,we get the values of C(q2) and C(q4)

respectively. Now by multiplying C(q2) and C(q4), and after making suitable arrangement, we get

1
(q2; q2)∞(q4; q4)∞

=
C(q2)C(q4)

9(q6; q6)3
∞(q12; q12)3

∞
(3.4)

In equation (2.4), by substituting q = q2 and q = q4,we get the values of A(q2) and A(q4) respectively. Now
by multiplying A(q2) and A(q4),we get

A(q2)A(q4) = A(q6)A(q12) + 2q2 A(q12)C(q6) + 2q4 A(q6)C(q12) + 4q6C(q6)C(q12) (3.5)

In equation (2.5), by substituting q = q2 and q = q4,we get the values of B(q2) and B(q4) respectively. Now by
multiplying B(q2) and B(q4),we get

B(q2)B(q4) = A(q6)A(q12)− q2 A(q12)C(q6)− q4 A(q6)C(q12) + q8C(q6)C(q12) (3.6)
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In equation (2.7), by substituting q = q2,we get the values of C(q2)C(q4), as

q2C(q2)C(q4) = A(q2)A(q4)− B(q2)B(q4) (3.7)

By the equations (3.5),(3.6)and(3.7), we get

C(q2)C(q4) = 3A(q12)C(q6) + 3q2 A(q6)C(q12) + 3q4C(q6)C(q12) (3.8)

By substituting the value of C(q2)C(q4) in equation (3.4), from equation (3.8), after simplification, we get the
required result as per equation (3.1), and we complete the proof of Theorem-I.

Proof of Theorem-II: In equation (2.6), by substituting q = q3 and q = q6,we get the values of C(q3) and C(q6)

respectively. Now by multiplying C(q3) and C(q6), and after making suitable arrangement, we get

1
(q3; q3)∞(q6; q6)∞

=
C(q3)C(q6)

9(q9; q9)3
∞(q18; q18)3

∞
(3.9)

In equation (2.4), by substituting q = q3 and q = q6,we get the values of A(q3) and A(q6) respectively. Now
by multiplying A(q3) and A(q6),we get

A(q3)A(q6) = A(q9)A(q18) + 2q6 A(q9)C(q18) + 2q3 A(q18)C(q9) + 4q9C(q9)C(q18) (3.10)

In equation (2.5), by substituting q = q3 and q = q6,we get the values of B(q3) and B(q6) respectively. Now by
multiplying B(q3) and B(q6),we get

B(q3)B(q6) = A(q9)A(q18)− q6 A(q9)C(q18)− q3 A(q18)C(q9) + q9C(q9)C(q18) (3.11)

In equation (2.7), by substituting q = q3,we get the values of C(q3)C(q6), as

q3C(q3)C(q6) = A(q3)A(q6)− B(q3)B(q6) (3.12)

By the equations (3.10),(3.11)and(3.12), we get

C(q3)C(q6) = 3q3 A(q9)C(q18) + 3A(q18)C(q9) + 3q6C(q9)C(q18) (3.13)

By substituting the value of C(q3)C(q6) in equation (3.9), from equation (3.13), after simplification, we get the
required result as per equation (3.2), and we complete the proof of Theorem-II.

Proof of Theorem-III: In equation (2.6), by substituting q = q
1
3 and q = q

2
3 ,we get the values of C(q

1
3 ) and C(q

2
3 )

respectively. Now by multiplying C(q
1
3 ) and C(q

2
3 ), and after making suitable arrangement, we get

1

(q
1
3 ; q

1
3 )∞(q

2
3 ; q

2
3 )∞

=
C(q

1
3 )C(q

2
3 )

9(q; q)3
∞(q2; q2)3

∞
(3.14)

In equation (2.4), by substituting q = q
1
3 and q = q

2
3 ,we get the values of A(q

1
3 ) and A(q

2
3 ) respectively. Now

by multiplying A(q
1
3 ) and A(q

2
3 ),we get

A(q
1
3 )A(q

2
3 ) = A(q)A(q2) + 2q

1
3 A(q2)C(q) + 2q

2
3 A(q)C(q2) + 4qC(q)C(q2) (3.15)

In equation (2.5), by substituting q = q
1
3 and q = q

2
3 ,we get the values of B(q

1
3 ) and B(q

2
3 ) respectively. Now

by multiplying B(q
1
3 ) and B(q

2
3 ),we get

B(q
1
3 )B(q

2
3 ) = A(q)A(q2)− q

1
3 A(q2)C(q)− q

2
3 A(q)C(q2) + qC(q)C(q2) (3.16)

In equation (2.7), by substituting q = q
1
3 ,we get the values of C(q

1
3 )C(q

2
3 ), as

q
1
3 C(q

1
3 )C(q

2
3 ) = A(q

1
3 )A(q

2
3 )− B(q

1
3 )B(q

2
3 ) (3.17)

By the equations (3.15),(3.16)and(3.17), we get

C(q
1
3 )C(q

2
3 ) = 3A(q2)C(q) + 3(q

1
3 )A(q)C(q2) + 3q

2
3 C(q)C(q2) (3.18)

By substituting the value of C(q
1
3 )C(q

2
3 ) in equation (3.14), from equation (3.18), after simplification, we get

the required result as per equation (3.3), and we complete the proof of Theorem-III.
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Abstract

We propose a method to obtain Tanh-solution based on leading order analysis of Painlevè test. The crucial
aspect is that this point of view gives “exactly truncation of the series expansion applicable to Tanh-method”.
This approach gives all possible leading orders of solutions. Each branches can be treated separately and
obtained closed form solutions.
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1 Introduction

For many years, nonlinearity is playing an important role in various fields of mathematics, physics and
biology. Finding the exact solutions of the nonlinear ordinary differential equations and partial differential
equations are quite difficult. So far, many methods have been proposed by many authors for finding exact
solutions of nonlinear differential equations. We mentioned some of them here: tanh−expansion method
[1]− [7], the simplest equation method [11], the Jacobi elliptic−function method [12], the modified simplest
equation method [13], the exp−function method [14]− [16], the G′/G-expansion method [18] and application
of the Hirota method for non integrable nonlinear differential equation [17]. Recently, Willy Malfliet et al.
and Abdul−Majid WazWaz [7] have successfully refined the tanh method for solving a lot of systems of
autonomous partial differential equations and obtained solutions of them successfully. For the first time, best
of our knowledge, we employ this method directly to ordinary differential equations. Here, we implement
the leading order analysis or ARS method to determine all leading orders in the expansion of all solutions
of differential equations. We remind the readers that we are not going to test the Painlevé property here.
Thus, the approach is equally applicable for both integrable and non-integrable differential equations. We
truncate the expression looking at the leading term. That is, if the leading term starts with τ−p, p > 0 then the
expression terminates at τp. To find the full expression of this expansion, we determine the each coefficients
of the expansion by comparing the various powers of ξ and obtain an over-determined system of algebraic
equation for the unknowns. Solving them consistently, we can obtain the values of the coefficients uniquely.
Thus, tanh solution is determined uniquely for a given equation. If there are more than one leading orders
then each order will give the appropriate series solutions separately. Interestingly the present approach gives a
concrete way of finding all leading terms. That is if a given equation admits more than one branch of solutions
then it could be determined uniquely.

In this paper, we explain the extended tanh-method with all possible leading orders and apply to certain
physically important problems.

∗Corresponding author.
E-mail addresses: krishapril09@gmail.com (K. Krishnakumar).
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2 Review of leading order analysis of Painlevé test [9]

Let us consider the system of ordinary differential equations

f1(x, y, z, ẋ, ẏ, ż, ....) = 0, (2.1)

f2(x, y, z, ẋ, ẏ, ż, ....) = 0, (2.2)

f3(x, y, z, ẋ, ẏ, ż, ....) = 0, (2.3)

where ‘ ˙ ‘ denotes derivative with respect to t. Assume that the leading order of the solutions are in the form

x ∼ τp, (2.4)

y ∼ τq, (2.5)

z ∼ τr, (2.6)

where p, q and r are the integers to be determined and τ = t − t0. Substituting Eqs.(2.4)-(2.6) into Eqs.(2.1)-
(2.3) then equating the all dominant terms then we can get the all possible choices of p, q and r. Some times
we may get two or more choices of p, q and r. We demonstrate these concepts with the following example

Example

Consider the third-order ordinary differential equation [9]

...
x + xẍ − 2x3 + λx2 + αx + β = 0. (2.7)

Substituting Eq.(2.4) in Eq.(2.7) then we get

p(p − 1)(p − 2)τp−3 + p(p − 1)τ2p−2 − 3τ3p ≈ 0. (2.8)

Equating the various powers of τ and find p as follows

1. p − 3 = 2p − 2 this implies p = −1

2. 2p − 2 = 3p this implies p = −2.

Hence, there are two set of dominant terms (
...
x , xẍ) and (xẍ, x3) which are balancing each other in Eq.(2.7) [9].

3 Review of extended Tanh-method [1]− [7]

Now we use the extended tanh-method [1] − [7] for finding the exact solutions of system of nonlinear
autonomous ordinary differential equations. we introduce a new independent variable

ξ = tanh(µt), (3.9)

then (3.10)
d
dt

= µ(1 − ξ2)
d

dξ
, (3.11)

d2

dt2 = −2µ2ξ(1 − ξ2)
d

dξ
+ µ2(1 − ξ2)2 d2

dξ2 , (3.12)

d3

dt3 = 2µ3(1 − ξ2)(3ξ2 − 1)
d

dξ
− 6µ3ξ(1 − ξ2)2 d2

dξ2 + µ3(1 − ξ2)3 d3

dξ3 , (3.13)

d4

dt4 = −8µ4ξ(1 − ξ2)(3ξ2 − 2)
d

dξ
+ 4µ4(1 − ξ2)2(9ξ2 − 2)

d2

dξ2

−12µ4ξ(1 − ξ2)3 d3

dξ3 + µ4(1 − ξ2)4 d4

dξ4 . (3.14)
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holds. Now consider the series expansion

x[t] = X[ξ] =
p

∑
i=−p

aiξ
i

y[t] = Y[ξ] =
q

∑
i=−q

biξ
i

z[t] = Z[ξ] =
r

∑
i=−r

ciξ
i

where p, q and r which were identified from leading order analysis.

4 Applications

4.1 Example

Consider the system of ODE [9]
...
x + xẍ − 2x3 + λx2 + αx + β = 0. (4.15)

First, one has to change the given Eq.(4.15) in terms of new independent variable ξ by using Eqs.(3.11), (3.12)
and (3.13). Thus, we obtain

µ3
(

1 − ξ2
)3

x′′′ − 6µ3ξ
(

1 − ξ2
)2

x′′ + x
(
−2µ2ξ

(
1 − ξ2

)
x′ + µ2

(
1 − ξ2

)2
x′′
)

+2µ3
(

1 − ξ2
) (

−1 + 3ξ2
)

x′ − 2x3 + λx2 + αx + β = 0, (4.16)

where ‘′‘ denote the derivatives with respect to new independent variable ξ.

Since, we have obtained two possible leading orders p = −1 and p = −2, it is evident that there are two
branches of solutions exist for Eq.(4.15). we treat each case separately.

Case (a) p=-1:
We assume that the solution of the form

x[t] = X[ξ] = a−1ξ−1 + a0 + a1ξ. (4.17)

On substitution Eq.(4.17) into Eq.(4.16) and collecting the coefficients of various powers of ξ than we obtain a
system of over-determined equations for ai, where i = −1, 0 and 1.

− 6µ3a−1 + 2µ2a2
−1 = 0,

−2a3
−1 + 2µ2a−1a0 = 0,

8µ3a−1 + λa2
−1 − 2µ2a2

−1 − 6a2
−1a0 + 2µ2a−1a1 = 0,

αa−1 + 2λa−1a0 − 2µ2a−1a0 − 6a−1a2
0 − 6a2

−1a1 = 0,

β − 2µ3a−1 + αa0 + λa2
0 − 2a3

0 − 2µ3a1 + 2λa−1a1

−4µ2a−1a1 − 12a−1a0a1 = 0, (4.18)

αa1 + 2λa0a1 − 2µ2a0a1 − 6a2
0a1 − 6a−1a2

1 = 0,

8µ3a1 + 2µ2a−1a1 + λa2
1 − 2µ2a2

1 − 6a0a2
1 = 0,

2µ2a0a1 − 2a3
1 = 0,

−6µ3a1 + 2µ2a2
1 = 0.

Solving them consistently, we arrive at solutions of ai where i = −1, 0 and 1. We tabulate the results in
table(1).
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Table 1: Case (a): p=-1

Cases Values Conditions Solutions

i a−1 = 0, a0 = 9,

a1 = ±
√

3(α + 486)
10

,

β =

(
−69984 − 108α + α2)

150
,

λ =
1944 − α

45
,

µ = ±
√

α + 486
30

x[t] = 9 +

√
3(α + 486)

10
tan

[√
α + 486

30
t

]
,

ii a−1 = ±1
2

√
3(α + 486)

10
,

a0 = 9,

a1 = ±1
2

√
3(α + 486)

10

β =

(
−69984 − 108α + α2)

150
,

λ =
1944 − α

45
,

µ = ±1
2

√
α + 486

30

x[t] = 9+
1
2

√
3(α + 486)

10
cot

[
1
2

√
α + 486

30
t

]

+
1
2

√
3(α + 486)

10
tan

[
1
2

√
α + 486

30
t

]
,

iii a−1 = ±
√

3(α + 486)
10

,

a0 = 9,

a1 = 0

β =

(
−69984 − 108α + α2)

150
,

λ =
1944 − α

45
,

µ = ±
√

α + 486
30

x[t] = 9 +

√
3(α + 486)

10
cot

[√
α + 486

30
t

]
,
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Case (b): p=-2
Assume the solution in the form

X[ξ] = a−2ξ−2 + a−1ξ−1 + a0 + a1ξ + a2ξ2, (4.19)

On substitution Eq.(4.19) into Eq.(4.16) and collecting the coefficients of various powers of ξ than we obtain
a system of over-determined equations for ai where i = −2,−1, 0, 1 and 2. The solutions are given in the
table(2).

Table 2: Case (b): p=-2

Cases Values Conditions Solutions

i a0 =
88
25

, a−1 = a−2 = 0,

a2 =
12
25

, a1 = ±24
25

β =
75392

625
, α = −58848

625
,

λ = 24, µ = ∓2
5

x[t] =
88
25

− 24
25

tan
[

2t
5

]
+

12
25

tan2
[

2t
5

]

ii a0 =
88
25

, a−2 =
12
25

,

, a1 = a2 = 0, a−1 = ±24
25

β =
75392

625
, α = −58848

625
,

λ = 24, µ = ∓2
5

x[t] =
88
25

− 24
25

cot
[

2t
5

]
+

12
25

cot2
[

2t
5

]

iii a0 =
94
25

, a−2 = a2 =
3
25

,

a−1 = a1 = ±12
25

β =
75392

625
, α = −58848

625
,

λ = 24, µ = ∓1
5

x[t] =
94
25

− 12
25

(
cot
[

t
5

]
+ tan

[
t
5

])

+
3
25

(
cot2

[
t
5

]
+ tan2

[
t
5

])

iv a0 =
468
25

, a−2 = a2 =
−162

25
,

a−1 = a1 = ±36i
√

6
25

β =
2239488

625
, α = −82944

125

λ =
1656

25
, µ = ∓3i

√
6

5

x[t] = −36
25

√
6

(
coth

[
3
√

6t
5

]
+ tanh

[
3
√

6t
5

])

+
468
25

+
162
25

(
coth2

[
3
√

6t
5

]
+ tanh2

[
3
√

6t
5

])

v a0 =
792
25

, a−2 = a−1 = 0,

a2 = −648
25

, a1 = ±72i
√

6
25

β =
2239488

625
, α = −82944

125

λ =
1656

25
, µ = ∓6i

√
6

5

x[t] =
792
25

+
72
25

√
6 tanh

[
6
√

6t
5

]

+
648
25

tanh2

[
6
√

6t
5

]

vi a0 =
792
25

, a−1 =
±72i

√
6

25

a−2 = −648
25

, a1 = a2 = 0

β =
2239488

625
, α = −82944

125

λ =
1656

25
, µ = ∓6i

√
6

5

x[t] =
792
25

− 72
25

√
6 coth

[
6
√

6t
5

]

+
648
25

coth2

[
6
√

6t
5

]
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4.2 Fourth order equation

Consider the fourth order ODE [19]

x(4) + x(ẍ + β)− 3
4

ẋ2 − 3(α + 1) = 0, . (4.20)

In [19] expensive studies have been made from geometrical and numerical point of view. However, no exact
analytical solutions been presented for Eq.(4.20). In this paper, we present a class of new exact closed form
solutions for Eq.(4.20). Due to the importance of this equation from geometric point of view, we believe that
the solutions presented here are significant in many ways. Painlené leading order analysis gives p = −2 for
Eq.(4.20). On substitution this value into X[ξ] and follow the tanh procedure then we tabulate the results
below

Cases
Values Conditions Solutions

i a0 = 5

√
β

21
, a−1 = a1 = 0,

a−2 = a2 = −5
2

√
3β

7

α =

(
−63 − 10

√
21β3/2

)
63

,

µ = ±1
4

(
3
7

)1/4
β1/4

x[t] = −5
2

√
3
7

√
β coth2

[
1
4

(
3
7

)1/4
β1/4t

]

+
5
√

β√
21

− 5
2

√
3
7

√
β tanh2

[
1
4

(
3
7

)1/4
β1/4t

]

ii a−1 = a1 = 0, a0 = 20

√
β

21
,

a2 = −10

√
3β

7
, a−2 = 0

α =

(
−63 − 10

√
21β3/2

)
63

,

µ = ±1
2

(
3
7

)1/4
β1/4

x[t] =
20
√

β√
21

−10

√
3
7

√
β tanh2

[
1
2

(
3
7

)1/4
β1/4t

]
.

iii a−1 = a1 = 0, a0 = 20

√
β

21
,

a−2 = −10

√
3β

7
, a2 = 0

α =

(
−63 − 10

√
21β3/2

)
63

,

µ = ±1
2

(
3
7

)1/4
β1/4

x[t] =
20
√

β√
21

−10

√
3
7

√
β coth2

[
1
2

(
3
7

)1/4
β1/4t

]
.

iv a0 = −20

√
β

21
, a−1 = 0,

a2 = 10

√
3β

7
, a−2 = a1 = 0,

α =

(
−63 + 10

√
21β3/2

)
63

,

µ = ±1
2

i
(

3
7

)1/4
β1/4

x[t] = −
20
√

β√
21

−10

√
3
7

√
β tan2

[
1
2

(
3
7

)1/4
β1/4t

]
.

v a0 = −20

√
β

21
, a1 = a2 = 0

a−2 = 10

√
3β

7
, a−1 = 0,

α =

(
−63 + 10

√
21β3/2

)
63

,

µ = ±1
2

i
(

3
7

)1/4
β1/4

x[t] = −
20
√

β√
21

−10

√
3
7

√
β cot2

[
1
2

(
3
7

)1/4
β1/4t

]
.

vi a0 = −5

√
β

21
, a−1 = a1 = 0,

a−2 = a2 =
5
2

√
3β

7

α =

(
−63 − 10

√
21β3/2

)
63

,

µ = ±1
4

i
(

3
7

)1/4
β1/4

x[t] = −5
2

√
3
7

√
β cot2

[
1
4

(
3
7

)1/4
β1/4t

]

+
5
√

β√
21

− 5
2

√
3
7

√
β tan2

[
1
4

(
3
7

)1/4
β1/4t

]
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5 Conclusions

In this paper, we have successfully employed extended tanh-method by using leading order analysis of
Painlevé test. Thus we could able to find all possible branches of solutions for the given differential equations.
Also the choice of the leading term and truncation is indeed not arbitrary uniquely determined by the leading
order analysis. Our method is successful to find large class of solutions of certain well-known systems. Finally,
we remark that this approach can equally applied to nonintegrable systems as well including systems from
Biology [20].
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Abstract

This paper deals with the peristaltic pumping of a Jeffrey fluid in an asymmetric channel with permeable
walls under long wave length and low Reynolds number assumptions. The channel asymmetry is produced
by choosing the peristaltic wave trains with phase difference on the walls of the channel. The flow is investi-
gated in a wave frame of reference with the velocity of the wave. The effect of various parameters on the flow
characteristics are discussed through graphs.

Keywords: Peristalsis, Jeffrey fluid, Asymmetric channel, Permeable walls.
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1 Introduction

Peristaltic transport is a form of material transport induced by a progressive wave of area contraction or
expansion along the length of a distensible tube. Peristaltic pumping has been the object of scientific and
engineering research during the past few decades. The pumping of fluids through muscular tubes by means
of peristaltic waves is an important biological mechanism. Study of the mechanism of peristalsis from both the
mechanical and physiological viewpoints has been the object of scientific research. The waves can be short,
local reflexes or long, continuous contractions along the length of the organ. In the esophagus, peristaltic
waves push food into the stomach. In the stomach, they help mix stomach contents and propel food to the
small intestine, where they expose food to the intestinal wall for absorption and move it forward. Peristalsis
in the large intestine pushes waste towards the anal canal and is important in removing gas and dislodging
potential bacterial colonies.

Peristalsis plays an indispensable role in transporting many physiological fluids in the body such as urine
transport from kidney to bladder, the movement of chyme in the gastrointestinal tract, the transport of sper-
matozoa in the ductus efferentes of the male reproductive tract, the movement of ovum in the fallopian tubes,
the swallowing of food through oesophagus and the vasomotion of small blood vessels. Many modern me-
chanical devices have been designed on the principle of peristaltic pumping for transporting fluids without
internal moving parts. The problem of mechanism of peristaltic transport has attracted the attention of many
researchers since the experimental investigation of Latham [4]. Subsequently a number of analytical, nu-
merical and experimental studies of peristaltic flow of different fluids have been reported under different
conditions with reference to physiological and mechanical situations.

∗Corresponding author.
E-mail addresses: yvk.ravikumar@pilani.bits-pilani.ac.in (Y. V. Ravi Kumar), srj592010@gmail.com (S. Rajender), profs-
reenadh@gmail.com (S. Sreenadh), krishnagannamaraju@gmail.com (S. V. H. N. P. Krishna Kumari).
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The importance of the study of peristaltic transport in an asymmetric channel has been brought out by
Eytan and Elad [1] with an application to uterine fluid flow in a non - pregnant uterus. Mishra and Rao [6]
studied the peristaltic transport of a Newtonian fluid in an asymmetric channel. Srinivas [10] investigated the
nonlinear peristaltic transport in an inclined asymmetric channel. Peristaltic motion of a power-law fluid in
an asymmetric channel was investigated by Sreenadh et al. [11]. Ravi Kumar et al. [9] studied the unsteady
peristaltic pumping in a finite length tube with permeable wall.

Kothandapani and Srinivas [3] have analyzed the MHD peristaltic flow of a viscous fluid in an asymmet-
rical channel with heat transfer. Wang et al. [14] have studied the MHD peristaltic motion of a Sisko fluid in
an asymmetric channel. Peristaltic motion of a Carreau fluid in an asymmetric channel is studied by Ali and
Hayat [7]. They used perturbation method to find the solution.

The study of peristaltic transport through and past porous media has become the important area of re-
search because of its vast applications in the study of biofluids. Misra and Ghosh [5] proposed a mathematical
model to study the blood flow taking the channel bounded by permeable walls. Gopalan [2] modeled the
tissue region in the blood vessels as porous medium. Ravi Kumar et al. [8] studied the peristaltic transport of
a power - law fluid in an asymmetric channel bounded by permeable walls. Ravi Kumar et al. [14] studied the
unsteady peristaltic pumping in a finite length tube with permeable wall. Many of the physiological fluids are
known to be non - Newtonian. Peristaltic transport of blood in small vessels is investigated by considering
various non - Newtonian fluids such as power - law, Casson, Herschel - Bulkley, Micropolar. Krishna Kumari
et al. [12, 13] considered Jeffrey fluid in their study. Jeffrey model is a relatively simpler linear model using
time derivatives instead of convected derivatives.

The present paper deals with peristaltic pumping of Jeffrey fluid, in an asymmetric channel with perme-
able walls. The channel asymmetry is produced by choosing the peristaltic wave trains with phase difference
on the walls. The governing equations are solved subject to relevant boundary conditions. The results are
numerically evaluated and discussed through graphs.

2 Mathematical Formulation of the Problem

We consider the motion of an incompressible viscous fluid in a two dimensional channel induced by si-
nusoidal wave trains propagating with constant speed c along the channel walls. The wall deformations are
given by

h1(X, t) = d1 + a1 cos
2π

λ
(X − ct) (Upper wall)

h2(X, t) = d2 + a2 cos
2π

λ
[(X − ct) + θ] (Lower wall) (2.1)

where a1, a2 are the amplitudes of waves, λ is the wave length, d1 + d2 is the width of the channel. The phase
difference θ varies in the range 0 ≤ θ ≤ π, θ = 0 corresponds to symmetric channel with waves out of phase
and for φ = π the waves are in phase and further a1, a2, d1, d2 and θ satisfy the condition

a2
1 + a2

2 + 2a1a2 cos θ ≤ (d1 + d2)2. (2.2)

Equations of motion
The constitutive equations for an incompressible Jeffrey fluid are

T = −pI + S

S =
µ

1 + λ1

(
∂γ

∂t
+ λ2

∂2γ

∂t2

)
(2.3)

where T and S are Cauchy stress tensor and extra stress tensor, P is the pressure, I is the identity tensor, λ1 is
the ratio of the relaxation to retardation times, λ2 is the retardation time and γ is the shear rate.

In laboratory frame, the equations governing two dimensional motion of an incompressible Jeffrey fluid
are

ρ

[
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

]
U = − ∂p

∂X
+

∂

∂X
(SXX) +

∂

∂Y
(SXY) (2.4)
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ρ

[
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

]
V = − ∂p

∂Y
+

∂

∂X
(SXY) +

∂

∂Y
(SYY) (2.5)

and the equation of continuity is
∂U
∂X

+
∂V
∂Y

= 0 (2.6)

where Sxx, Syy and Sxy are the stress components in laboratory frame.
We introduce a wave frame of reference (x, y) moving with velocity c in which the motion becomes inde-

pendent of time when the channel length is an integral multiple of wavelength and the pressure difference
at the ends of the channel is a constant. The transformation from the fixed frame of reference (X, Y) to wave
frame of reference (x, y) is given by

x = X − ct, y = Y, u = U − c, v = V, p(x) = P(X, t) (2.7)

where u, v are the velocity components in the wave frame (x, y), p, P are pressures in wave and fixed frame of
references respectively.
Non - dimensionalisation of the flow quantities

Now introducing the non-dimensional quantities,

x =
2πX

λ
, y =

Y
d

, u =
U
c

, v =
V
cδ

, δ =
2πd

λ
, p =

2πd2 p
µcλ

,

h1 =
h1

d
, h2 =

h2

d
, S =

Sd
µc

, φ1 =
a1

d1
, φ2 =

a2

d2
. (2.8)

Using conditions (2.3) in (2.4) and (2.5), the equations of motion reduces to

ρ

[
u

∂

∂x
+ v

∂

∂y

]
u = −∂p

∂x
+

∂

∂x
(Sxx) +

∂

∂y
(Sxy) (2.9)

ρ

[
u

∂

∂x
+ v

∂

∂y

]
v = −∂p

∂y
+

∂

∂x
(Sxy) +

∂

∂y
(Syy) (2.10)

and the equation of continuity
∂u
∂x

+
∂v
∂y

= 0. (2.11)

Eliminating pressure from equations (2.9) and (2.10), we get

δRe
[(

∂ψ

∂y
∂

∂x
+

∂ψ

∂x
∂

∂y

)
∇2ψ

]
=

[(
∂2

∂y2 − δ2 ∂2

∂x2

)
Sxy

]
+ δ

[
∂2

∂x∂y
(Sxx − Sxy)

]
(2.12)

in which

Sxx =
2δ

1 + λ1

[
1 +

δλ2c
d

(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)]
∂2ψ

∂x∂y
(2.13)

Sxy =
1

1 + λ1

[
1 +

δλ2c
d

(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)] (
∂2ψ

∂y2 − δ2 ∂2ψ

∂x2

)
(2.14)

Syy =
2δ

1 + λ1

[
1 +

δλ2c
d

(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)]
∂2ψ

∂x∂y
(2.15)

∇2 = δ2 ∂2ψ

∂x2 +
∂2ψ

∂y2 , δ =
2πd

λ
, Re =

ρcd
µ

. (2.16)

Using the long wave length approximation and neglecting the wave number δ, we get

∂2

∂y2 Sxy = 0 (2.17)

∂

∂y

(
1

1 + λ1

∂2ψ

∂y2

)
=

dp
dx

(2.18)
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or
∂

∂y

(
1

1 + λ1

∂u
∂y

)
=

dp
dx

. (2.19)

The corresponding boundary conditions are (Saffman slip conditions)

∂u
∂y

=
−α√

k
u at y = h1 (upper wall) (2.20)

∂u
∂y

=
α√
k

u at y = h2 (lower wall) (2.21)

After non dimensionalisation the governing equations and the boundary conditions become

∂

∂y

(
1

1 + λ1

∂u
∂y

)
=

dp
dx

. (2.22)

The corresponding boundary conditions are

∂u
∂y

= −ασ · u at y = h1 (Upper wall) (2.23)

∂u
∂y

= ασ · u at y = h2 (Lpper wall) (2.24)

3 Solution of the Problem

Solving the equation (2.22) together with the boundary conditions (2.23) and (2.24), we get the velocity as

u =
P(1 + λ1)

2
y2 + c1y + c2, P =

dp
dx

(3.1)

where

c1 =
−P(1 + λ1((h1 + h2)

2
c2 =

P((1 + λ1)(h2 − h1) + αPσ((1 + λ1)h1h2

2ασ
.

The volume flow rate ‘q’ in the wave frame of reference is given by

q =
∫ h1

h2

udy = P(1 + λ1)(h2 − h1)

[
h2

1 + h1h2 + h2
2

6
+

(h1 + h2)2

4
+

(h2 − h1) + ασ · h2h1

2ασ

]
. (3.2)

From (3.2), we get
dp
dx

=
q

(1 + λ1)(h2 − h1)D
(3.3)

where

D =

[
h2

1 + h1h2 + h2
2

6
+

(h1 + h2)2

4
+

(h2 − h1) + ασ · h2h1

2ασ

]
.

The instantaneous flux at any axial station is

Q(x, t) =
∫ h1

h2

(u + 1)dy = q + h1 − h2. (3.4)

The average volume flow rate over one period
(

T = λ
c

)
of the peristaltic wave is defined as

Q =
1
T

∫ T

0
Qdt =

1
T

∫ T

0
(q + h1 − h2)dt = q + 1 + d. (3.5)

The dimensionless frictional forces at y = h1 and y = h2 are given by

F1 =
∫ 1

0
h2

1

(
−dp
dx

)
dx

F2 =
∫ 1

0
h2

2

(
−dp
dx

)
dx (3.6)
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4 Discussion of the Results

From the Eq. (3.6), we have calculated the pressure difference P as a function of time average flow rate Q
to study the effects of various parameters on pumping characteristics.
Figs. (2) - (4) are drawn to study the effect of Jeffrey parameter on pumping characteristics for the values of
θ = 0, π/4, π/6. It is observed that the pumping rate decreases with the increase in the Jeffrey parameter λ1
for pumping (∆P > 0) and as well as for free pumping (∆P = 0). Further, observed that the pumping is more
for a Jeffrey fluid when compared with a Newtonian fluid. Fig. 2 corresponds to symmetric channel. From
Figs. (2) - (4) it is also observed that the pumping rate decreases as the symmetry of the channel increases.

The variation of pressure rise with time averaged flow rate (Q) is calculated from equation (30) for different
values of α (slip parameter) and is shown in Figs. (5),(6) and (7). We observe that the lesser the slip parameter,
the greater the pressure rise against which the pump works. For a given ∆P, the flux Q decreases with
increasing α. For a given flux Q, the pressure difference ∆P increases with increasing α.

The variation of Q with ∆P for different values of phase difference θ is shown in Fig. 8. It is observed that
the pumping decreases as the phase difference θ increases. For a fixed ∆P, Q decreases as θ increases, this is
due to the asymmetry of the channel. Fig. 9 is drawn for the variation of the axial velocity u with y for varying
Jeffrey parameter λ1. It is observed that maximum velocity decreases as λ1 decreases. It is observed that the
velocity increases as slip parameter decreases from Fig. 10.

5 Conclusions

In this paper, peristaltic pumping of a Jeffrey fluid in an asymmetric channel with permeable walls has
been studied. The effect of various parameters on the pumping characteristics is discussed. The following
conclusions have been found and summarized as follows.

(1) Pumping rate decreases with the increasing Jeffrey parameter.

(2) The pressure rise decreases as the slip parameter increases.

(3) The axial velocity decreases as Jeffrey parameter increases.

(4) The axial velocity increases as slip parameter decreases.

Fig. 1 : Physical Model
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Fig. 2 : The variation of ∆p with Q for different values of λ1 with θ = 0.

Fig. 3 : The variation of ∆p with Q for different values of λ1 with θ = π/4.
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Fig. 4 : The variation of ∆p with Q for different values of λ1 with θ = π/3.

Fig. 5 : The variation of ∆p with Q for different values of α with θ = 0.
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Fig. 6 : The variation of ∆p with Q for different values of α with θ = π/4.

Fig. 7 : The variation of ∆p with Q for different values of α with θ = π/3.
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Fig. 8 : The variation of ∆p with Q for different values of τ.

Fig. 9 : The variation of the velocity u with y for different values of λ1 with θ = π/4.

Fig. 10 : The variation of the velocity u with y for different values of al with θ = π/4.
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Abstract

We present an existence and uniqueness theorem for H- integral equations of fractional order involving
fuzzy set valued mappings of a real variable whose values are normal, convex, upper semi continuous and
compactly supported fuzzy sets in Rn. The method of successive approximation is the main tool in our
analysis.
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1 Introduction

Dubois and Prade [10] introduced the concept of integration of fuzzy functions. Alternative approaches
were later suggested by Goetschel and Voxman [13], Kaleva [15], Nanda [21] and others. While Goetschel and
Voxman preferred a Riemann integral type approach, Kaleva chose to define the integral of fuzzy function,
using the Lebesgue-type concept of integration. For more information about integration of fuzzy functions
and fuzzy integral equations, for instance, see [2, 8, 10, 13, 15, 21, 22, 24, 25] and references therein. On the
other hand, the first serious attempt to give a logical definition of a fractional derivative is due to Liouville, see
[14] and references therein. Now, the fractional calculus topic is enjoying growing interest among scientists
and engineers, see [1, 8, 14, 16, 18, 23, 26].

By means of the fuzzy integral due to Kaleva [15], we investigate the fractional fuzzy integral equation,
for the fuzzy set-valued mappings of a real variable whose values are normal, convex, upper semi-continuous
and compactly supported fuzzy sets in Rn. We consider the fuzzy integral equation of Riemann-Liouville
fractional order generalized H-differentiability this equation takes the form

y(t) = f (t) +
1

Γ(1− q)

∫ t

0

g(s, y(s))
(t− s)q ds, (1.1)

where f : [0, T] → En and g : [0, T]× En → En, and q ∈ (0, 1). The definition of En is given in Section 2.
The paper is organized as follows: in Section 2 auxiliary facts and results are given which will be used later.
In Section 3, the Riemann-Liouville H-differentiability is proposed for fuzzy-valued function and the some
of important results of it are provided. In Section 4 the main theorem on the existence and uniqueness of
solutions of equation (1.1) is given.

∗Corresponding author.
E-mail addresses: benchohra@univ-sba.dz (Mouffak Benchohra), ab koul@yahoo.fr (Abderrahmane Boukenkoul)
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2 Auxiliary facts and results

This section is devoted to collect some definitions and results which will be needed further on.

Definition 2.1. Let X be a nonempty set. A fuzzy set A in X is characterized by its membership function
A : X → [0, 1] and A(x), called the membership function of fuzzy set A, is interpreted as the degree of
membership of element x in fuzzy set A for each x ∈ X.

The value zero is used to represent complete non-membership, the value one is used to represent complete
membership and values between them are used to represent intermediate degrees of membership. Let Pk(Rn)
denote the collection of all nonempty compact convex subsets of Rn and define the addition and scalar multi-
plication in Pk(Rn) as usual. Let A and B be two nonempty bounded subsets of Rn. The distance between A
and B is defined by the Hausdorff metric

Hd(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

where d(b, A) = inf{d(b, a) : a ∈ A}. It is clear that (Pk(Rn), d) is a complete metric space [17].
A fuzzy set u ∈ En is a function u : Rn → [0, 1] for which

(i) u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1,

(ii) u is fuzzy convex, i.e., for x, y ∈ Rn and β ∈ [0, 1],

u(βx + (1− β)y) ≥ min(u(x), u(y))

(iii) u is upper semi-continuous, and

(iv) the closure of {x ∈ Rn : u(x) > 0}, denoted by [u]0, is compact.

For 0 < γ ≤ 1, the α−level set [u]γ is define by [u]γ = {x ∈ Rn : u(x) ≥ γ}. Then from (i) − (iv), it
follows that [u]γ ∈ Pk(Rn) for all 0 ≤ γ ≤ 1.

We define the supremum metric D on En by

D(u, u) = sup
0<γ≤1

Hd([u]γ, [u]γ)

for all u, u ∈ En. (En, D) is a complete metric space.

3 Riemann-Liouville Fractional H-differentiability

Now, we define fuzzy Riemann-Liouville fractional derivatives of order 0 ≤ r ≤ 1 for fuzzy-valued func-
tion f which is a direct extension of strongly generalized H-differentiability in the fractional literature [9].

Definition 3.2. Let x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is called the H-difference of x and y, it is
denoted by z = x 	 y.
The sign 	 always stands for H-difference, also not that x	 y 6= x + (−1)y.

Also,we define some notations which are used throughout the paper.

• LF
p(a, b), 1 ≤ p < ∞ is the set of all fuzzy-valued measurable and p-integrable functions f on [a, b] where

‖ f ‖p =

(∫ 1

0
(d( f (t), 0))pdt

) 1
p

.

• CF[a, b] is a space of fuzzy-valued functions which are continuous on [a, b].

• ACF[a, b] denotes the set of all fuzzy-valued functions which are absolutely continuous.
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Definition 3.3. Let f : [a, b] → E, x0 ∈ (a, b) and Φ(x) = 1
Γ(1−q)

∫ x
a

f (t)
(x−t)q dt. We say that f (x) is fuzzy Riemann-

Liouville fractional H-differentiable about order 0 ≤ q ≤ 1 at x0, if there exists an element (RLDq
a+ f )(x0) ∈ CF, 0 ≤

q ≤ 1 such that for all 0 ≤ r ≤ 1, h > 0

(i)

(RLDq
a+ f )(x0) = lim

h→0+

Φ(x0 + h)	 Φ(x0)
h

= lim
h→0+

Φ(x0)	 Φ(x0 − h)
h

or

(ii)

(RLDq
a+ f )(x0) = lim

h→0+

Φ(x0)	 Φ(x0 + h)
−h

= lim
h→0+

Φ(x0 − h)	 Φ(x0)
−h

.

For sake of simplicity, we say that a fuzzy-valued function f is RL(1, q)-differentiable if it is differentiable
as in the definition 3.3 case (i), and is RL(2, q)-differentiable if it is differentiable as in Definition 3.3 case (ii).

Definition 3.4. Let f ∈ L1(a, b), 0 ≤ a < b < ∞, and let 0 < q < 1 be a real number. The fractional integral of
order q of Riemann-Liouville type is defined by (see; [16, 23]).

Iq f (t) =
1

Γ(q)

∫ t

0

f (s)
(t− s)1−q ds.

Let us consider the r−cut representation of fuzzy valued function f as f (x; r) = [ f (x; r), f (x; r)] for 0 ≤
r ≤ 1, then we can indicate the Riemann-Liouville integral of fuzzy-valued function f based on its lower and
upper functions as follows:

Theorem 3.1. Let f : [a, b] → E be a fuzzy-valued function. The fuzzy Riemann-Liouville integral of f can be expressed
as follows:

(Iq f )(x; r) = [(Iq f )(x; r), (Iq f )(x; r)], 0 ≤ r ≤ 1

where

(Iq f )(x; r) =
1

Γ(q)

∫ x

a

f (t; r)

(x − t)1−q dt

(Iq f )(x; r) =
1

Γ(q)

∫ x

a

f (t; r)
(x − t)1−q dt.

Now, we define fuzzy Riemann-Liouville fractional derivatives of order 0 ≤ r ≤ 1 for fuzzy-valued func-
tion f which is a direct extension of strongly generalized H-differentiability [9] in the fractional literature.
Also, we denote by CF the space of all fuzzy-valued functions which are continuous on [a, b] and we as-
sume that all fuzzy-valued functions in this work are placed in CF. We define the fuzzy Riemann-Liouville
H-integrals of fuzzy-valued function as follows:

Theorem 3.2. Let f : [0, T] → En, x0 ∈ [0, T] and 0 ≤ q ≤ 1 such that for all 0 ≤ r ≤ 1.

(1) if f (x) be a RL(1, q) differentiable fuzzy-valued function, then

(RLDq
0 f )(x0; r) = [RLDq

0 f (x0; r),RL Dq
0 f (x0; r)],

(2) if f (x) be a RL(2, q) differentiable fuzzy-valued function, then

(RLDq
0 f )(x0; r) = [RLDq

0 f (x0; r),RL Dq
0 f (x0; r)].

Where
(RLDq

0 f )(x0) =
1

Γ(1− q)
d

dx

∫ x

0

f (t)
(x − t)q dt |x=x0 ,

and
(RLDq

0 f )(x0) = 	 1
Γ(1− q)

d
dx

∫ x

0

f (t)
(x − t)q dt |x=x0 .
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Rewrite Eq.(1.1) in the form
y(t) = f (t) +RL Iq

0 g(t, y(t)), t ≥ 0, (3.2)

where RL Iq
0 is the standard Riemann-Liouville fractional H-integral operator. Notice that, since f is assumed

to be integrable and (x− t)q−1 is a crisp function, we deduce that f (t)
(x−t)1−q is integrable and then, the existence

of integral (1.1) is proved.

Theorem 3.3. Let f : [a, b] → E, x0 ∈ (a, b) and 0 ≤ q ≤ 1 for all 0 ≤ r ≤ 1, we have

(1) if f is RL(1, q) H-integrable then

RL Iq
0 ( f )(x0; r) = [RL Iq

0 f (x0; r),RL Iq
0 f (x0; r)]

(2) if f is RL(2, q) H-integrable then

RL Iq
0 f (x0; r) = [RL Iq

0 f (x0; r),RL Iq
0 f (x0; r)]

In this paper, we prove an existence and uniqueness theorem of a solution to the fuzzy integral equation
(1.1). The method of successive approximation is the main tool in our analysis.

4 Main Theorem

In this section, we will study Eq(1.1) assuming that the following assumptions are satisfied, Let L and T be
positive numbers:

(a1) f : [0, T] → En is continuous and bounded.

(a2) g : [0, T]× En → En is continuous and satisfies the Lipschitz condition, i.e.,

D (g(t, y2(t)), g(t, y1(t))) ≤ L D (y2(t), y1(t)) , t ∈ [0, T],

where yi : [0, T] → En, i = 1, 2.

(a3) g(t, 0̂) is bounded on [0, T].

Now, we are in a position to state and prove our main result in paper

Theorem 4.4. Let the assumptions (a1)− (a3) be satisfied. If

T <

(
Γ(2− q)

L

) 1
1−q

,

then Eq(1.1) has a unique solution y on [0, T] defined as the following:

(1) In the case RL(1; q) differentiability, the successive iterations

y0(t) = f (t)

yn+1(t) = f (t) + RL I0
q
g(t, yn(t)), n = 0, 1, 2, . . . (4.3)

(2) In the case RL(2; q) differentiability, the successive iterations

ŷ0(t) = f (t)

ŷn+1(t) = f (t)	 RL I0
q
g(t, ŷn(t)), n = 0, 1, 2, . . . (4.4)

are uniformly convergent to y on [0, T].
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Proof. (1) Case (1): If f is RL(1; q) differentiable
First we prove that yn are bounded on [0, T]. We have y0 = f (t) is bounded, thanks (a1). Assume that
yn−1 is bounded. From (4.3) we have

D(yn(t), 0̂) = D
(

f (t) +RL Iq
0 g(t, yn−1(t)), 0̂

)
≤ D

(
f (t), 0̂

)
+ D

(
RL Iq

0 g(t, yn−1(t)), 0̂
)

≤ D
(

f (t), 0̂
)

+
1

Γ(1− q)

∫ t

0
D
(

g(s, yn−1(s))
(t− s)q , 0̂

)
ds

≤ D
(

f (t), 0̂
)

+
1

Γ(1− q)
sup

0≤t≤T
D(g(t, yn−1(t)), 0̂)

∫ t

0

ds
(t− s)q .

But

D(g(t, yn−1(t)), 0̂) ≤ D(g(t, yn−1(t)), g(t, 0̂)) + D(g(t, 0̂), 0̂)

≤ L D(yn−1(t), 0̂) + D(g(t, 0̂), 0̂).

So

D(yn(t), 0̂) ≤ D
(

f (t), 0̂
)

+
T1−q

Γ(2− q)
sup

0≤t≤T
[L D(yn−1(t), 0̂) + D(g(t, 0̂), 0̂)]

≤ D
(

f (t), 0̂
)

+ sup
0≤t≤T

D(yn−1(t), 0̂) +
T1−q

Γ(2− q)
sup

0≤t≤T
D(g(t, 0̂), 0̂).

This proves that yn is bounded. Therefore, {yn} is a sequence of bounded functions on [0, T]. Second we
prove that yn are continuous on [0, T]. For 0 ≤ t ≤ τ ≤ T, we have

D(yn(t), yn(τ)) ≤ D( f (t), f (τ)) +
1

Γ(1− q)
D
(∫ t

0

g(s, yn−1(s))
(t− s)q ds,

∫ τ

0

g(s, yn−1(s))
(τ − s)q ds

)
≤ D ( f (t), f (τ)) +

1
Γ(1− q)

D
(∫ t

0

g(s, yn−1(s))
(t− s)q ds,

∫ t

0

g(s, yn−1(s))
(τ − s)q ds

)
+

1
Γ(1− q)

D
(∫ τ

t

g(s, yn−1(s))
(τ − s)q ds, 0̂

)
≤ D ( f (t), f (τ)) +

1
Γ(1− q)

∫ t

0
D
(

g(s, yn−1(s))
(t− s)q ,

g(s, yn−1(s))
(τ − s)q

)
ds

+
1

Γ(1− q)

∫ τ

t
D
(

g(s, yn−1(s))
(τ − s)q , 0̂

)
ds

≤ D ( f (t), f (τ)) +
1

Γ(1− q)
sup

0≤t≤T
D(g(t, yn−1(t)), 0̂)∫ t

0
|(t− s)−q − (τ − s)−q| ds

+
1

Γ(1− q)
sup

0≤t≤T
D(g(t, yn−1(t)), 0̂)

∫ τ

t

ds
(τ − s)q ds

≤ D ( f (t), f (τ)) +
1

Γ(1− q)
[|t− τ|(1−q) − |t(1−q) − τ(1−q)|]

sup
0≤t≤T

D(g(t, yn−1(t)), 0̂)

+
1

Γ(2− q)
|t− τ|α sup

0≤t≤T
D(g(t, yn−1(t)), 0̂)
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≤ D ( f (t), f (τ)) +
1

Γ(2− q)
[2 |t− τ|(1−q) − |t(1−q) − τ(1−q)|]

sup
0≤t≤T

D(g(t, yn−1(t)), 0̂)

≤ D ( f (t), f (τ)) +
1

Γ(2− q)
[2 |t− τ|(1−q) − |t(1−q) − τ(1−q)|]

sup
0≤t≤T

[L D(g(yn−1(t)), 0̂) + D(g(t, 0̂), 0̂)].

The last inequality, by symmetry, is valid for all t, τ ∈ [0, T] regardless whether or not t ≤ τ. Thus,
D(yn(t), yn(τ)) → 0 as t → τ. Therefore, the sequence {yn} is continuous on [0, T]. For n ≥ 1, we have

D(yn+1(t), yn(t)) =
1

Γ(1− q)
D
(∫ t

0

g(s, yn(s))
(t− s)q ds,

∫ t

0

g(s, yn−1(s))
(t− s)q ds

)
≤ 1

Γ(1− q)

∫ t

0
D
(

g(s, yn(s))
(t− s)q ,

∫ t

0

g(s, yn−1(s))
(t− s)q

)
ds

≤ 1
Γ(1− q)

∫ t

0
D (g(s, yn(s)), g(s, yn−1(s)))

ds
(t− s)q

≤ 1
Γ(1− q)

sup
0≤t≤T

D(g(t, yn(t)), g(t, yn−1(t)))
∫ t

0

ds
(t− s)q

≤ L T(1−q)

Γ(2− q)
sup

0≤t≤T
D(yn(t), yn−1(t))

≤

(
L T(1−q)

Γ(2− q)

)2

sup
0≤t≤T

D(yn−1(t), yn−2(t))

...

≤

(
L T(1−q)

Γ(2− q)

)n

sup
0≤t≤T

D(y1(t), y0(t)). (4.5)

But

D(y1(t), y0(t)) =
1

Γ((1− q))
D
(∫ t

0

g(s, f (s))
(t− s)q ds, 0̂

)
≤ 1

Γ((1− q))

∫ t

0
D
(

g(s, f (s))
(t− s)q , 0̂

)
ds

≤ 1
Γ((1− q))

sup
0≤t≤T

D(g(t, f (t)), 0̂)
∫ t

0

ds
(t− s)q .

Thus

sup
0≤t≤T

D(y1(t), y0(t)) ≤ T(1−q)

Γ(2− q)
[LM + N] := R,

where

M = sup
0≤t≤T

D( f (t), 0̂) and N = sup
0≤t≤T

D(g(t, 0̂), 0̂).

Therefore (4.5) takes the form

D(yn+1(t), yn(t)) ≤ R

(
L T(1−q)

Γ(2− q)

)n

. (4.6)

Next, we show that for each t ∈ [0, T] the sequence {yn(t)} is a Cauchy sequence in En. Let m1, m2 be
such that m2 > m1 and t ∈ [0, T]. Then, by using (4.6), we have
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D(ym1 (t), ym2 (t)) ≤ D(ym2 (t), ym2−1(t)) + D(ym2−1(t), ym2−2(t))

+ . . . + D(ym1+1(t), ym1 (t))

≤ R

(
L T1−q

Γ(2− q)

)m2−1

+ R

(
L T1−q

Γ(2− q)

)m2−2

+ . . . + R

(
L T1−q

Γ(2− q)

)m1

= R

(
L T1−q

Γ(2− q)

)m2−1 [
1 +

Γ(2− q)
L T1−q +

(
Γ(2− q)
L T1−q

)2

+ . . . +
(

Γ(2− q)
L T1−q

)m2−m1−1
]

= R

(
L T1−q

Γ(2− q)

)m2−1
1−

(
Γ(2−q)
L T1−q

)m2−m1

1− Γ(2−q)
L T1−q

 .

The right hand side of the last inequality tends to zero as m1, m2 → ∞. This implies that {yn(t)} is
a Cauchy sequence. Consequently, the sequence {yn(t)} is convergent, thanks to the completeness of
the metric space (En, D). If we denote y(t) = lim

n→∞
yn(t), then y(t) satisfies (1.1). It is continuous and

bounded on [0, T]. To prove the uniqueness, let x(t) be a continuous solution of (1.1) on [0, T]. Then

x(t) = f (t) + RL Iqg(t, x(t)), t ≥ 0.

Now, for n ≥ 1, we have

D(x(t), yn(t)) = D
(

RL I1−qg(t, x(t)),RL I1−qg(t, yn(t))
)

≤ 1
Γ(1− q)

∫ t

0
D
(

g(s, x(s))
(t− s)q ,

∫ t

0

g(s, yn(s))
(t− s)q

)
ds

≤ 1
Γ(1− q)

∫ t

0
D (g(s, x(s)), g(s, yn(s)))

ds
(t− s)q

≤ 1
Γ(1− q)

sup
0≤t≤T

D(g(t, x(t)), g(t, yn(t)))
∫ t

0

ds
(t− s)q

≤ L T1−q

Γ(2− q)
sup

0≤t≤T
D(x(t), yn(t))

...

≤
(

L T1−q

Γ(2− q)

)n

sup
0≤t≤T

D(x(t), y0(t)).

Since L T1−q

Γ(2−q) < 1
lim

n→∞
yn(t) = x(t) = y(t), t ∈ [0, T].

This completes the proof.

(2) Case (2): If f is RL(2; q) differentiable, with the same argument as above, we can prove that the solution
is (4.4) with

lim
n→∞

ŷn(t) = x̂(t) = ŷ(t), t ∈ [0, T].
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Abstract

This paper studies the exact solution of the the(2+1)-dimensional hyperbolic nonlinear Schrödinger equa-
tion by the aid of Adomian decomposition method.
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1 Introduction

Nonlinear equations describe fundamental physical phenomena in nature ranging from chaotic behaviour
in biological systems, plasma containment in tokamaks and stellarators for energy generation, to solitonic
fibre optical communication devices. The construction of the exact solutions of nonlinear partial differential
equations (PDEs) is one of the most important and essential tasks which help us for better understanding of
nonlinear complex physical phenomena. In the past couple of decades, there are various mathematical tech-
niques have been developed to carry out the integration of these equations. Some of these commonly studied
techniques are Inverse Scattering Transform [5], bilinear transformation[4], the tanh-sech method[6, 7], ado-
mian decomposition method [3], the tanh-coth method[8], homogeneous balance method[9], Exp-function
method [10], and many others.
The Adomian decomposition method was introduced and developed by George Adomian in [11, 12] and is
well addressed in the literature. A reliable modification of the Adomian decomposition method developed by
Wazwaz and presented in [3]. A considerable amount of research work has been invested recently in apply-
ing this method to a wide class of linear and nonlinear equations for detail see [13, 14, 15, 16, 17, 18] and the
references therein.

In this paper the Adomian decomposition method will determine exact solution to (2+1)-dimensional hy-
perbolic nonlinear Schrödinger equation. In Section 2, we described this method for finding exact solutions for
nonlinear PDEs. In Section 3, we illustrated this method in detail with the hyperbolic Schrödinger equation.
In Section 4, we gave some conclusions.

2 Adomian decomposition method for nonlinear PDEs

We first consider the nonlinear partial differential equation given in an operator form

Lxu(x, y) + Lyu(x, y) + R(u(x, y)) + F(u(x, y)) = g(x, y), (2.1)

∗Corresponding author.
E-mail addresses: ifti cqu@hotmail.com (Iftikhar Ahmed).
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where Lx is the highest order differential in x, Ly is the highest order differential in y, R contains the remaining
linear terms of lower derivatives, F(u(x, y)) is an analytic nonlinear term, and g(x, y) is an inhomogeneous or
forcing term. the decision as to which operator Lx or Ly should be used to solve the problem depends mainly
on two bases: (i) The operator of lowest order should be selected to minimize the size of computational work.
(ii) The selected operator of lowest order should be of best known conditions to accelerate the evaluation of
the components of the solution.For more detail see[3]. Assume that Ly meet these two conditions, therefore
we set

Lyu(x, y) = g(x, y)− Lxu(x, y)− R(u(x, y))− F(u(x, y)). (2.2)

Applying L−1
y to both sides of (2.2) gives

u(x, y) = Φ0 − L−1
y g(x, y)− L−1

y Lxu(x, y)− L−1
y R(u(x, y))− L−1

y F(u(x, y)), (2.3)

where

Φ0 =


u(x, 0)
u(x, 0) + yuy(x, 0)
u(x, 0) + yuy(x, 0) + 1

2! y
2uyy(x, 0)

u(x, 0) + yuy(x, 0) + 1
2! y

2uyy(x, 0) + 1
3! y

3uyyy(x, 0)

L = ∂
∂y ,

L = ∂2

∂y2 ,

L = ∂3

∂y3 ,

L = ∂4

∂y4 ,

Take the solution u(x, y) in a series form

u(x, y) =
∞

∑
n=0

un(x, y), (2.4)

and the nonlinear term F(u(x, y)) by

F(u(x, y)) =
∞

∑
n=0

An, (2.5)

where An are Adomian polynomials that can be generated for all forms of nonlinearity and can be evaluated
by using the following expression

An =
1
n!

dn

dλn

[
F

(
n

∑
i=0

λiui

)]
λ=0

, n = 0, 1, 2 (2.6)

Based on these assumptions, Eq. (2.3) become
∞
∑

n=0
un(x, y) = Φ0 − L−1

y g(x, y)− L−1
y Lx

(
∞
∑

n=0
un(x, y)

)
−L−1

y R
(

∞
∑

n=0
un(x, y)

)
− L−1

y

(
∞
∑

n=0
An

)
.

(2.7)

The components un(x, y), n ≥ 0 of the solution u(x, y) can be recursively determined by using the relation

u0(x, y) = Φ0 − L−1
y g(x, y),

uk+1(x, y) = −L−1
y Lxuk − L−1

y R(uk)− L−1
y (Ak), k ≥ 0.

(2.8)

Next find the components of
∞
∑

n=0
un(x, y) by

u0(x, y) = Φ0 − L−1
y g(x, y),

u1(x, y) = −L−1
y Lxu0(x, y)− L−1

y R (u0(x, y))− L−1
y A0,

u2(x, y) = −L−1
y Lxu1(x, y)− L−1

y R (u1(x, y))− L−1
y A1,

u3(x, y) = −L−1
y Lxu2(x, y)− L−1

y R (u2(x, y))− L−1
y A2,

u4(x, y) = −L−1
y Lxu3(x, y)− L−1

y R (u3(x, y))− L−1
y A3,

.

.

.

where each component can be determined by using the preceding component. Having the calculated the
components un(x, y), n ≥ 0, the solution in a series form is readily obtained.
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3 Exact solutions for(2+1)-dimensional hyperbolic Schrödinger equation

In this section we obtain exact solution of (2+1)-dimensional hyperbolic nonlinear Schrödinger equation
by using the decomposition method. The hyperbolic nonlinear Schrödinger equation given by[1] is

iut +
1
2

uxx −
1
2

uyy + |u|2u = 0 (3.1)

where u is a complex valued function, while x, y and t are the independent variables. In order to seek exact
solution, we assume that u(x, y, 0) = ei(mx+ny) Multiplying Eq.(3.1) by i, we may express this equation in an
operator form as follows

Ltu(x, y, t) =
i
2

Lxxu(x, y, t)− i
2

Lyyu(x, y, t) + i|u(x, y, t)|2u(x, y, t) (3.2)

where Lt is defined by Lt = ∂
∂t and the inverse operator L−1

t is identified by

L−1
t (·) =

t∫
0

(·)dt

Applying L−1
t to both sides of (3.2) and using the initial condition we obtain

u(x, y, t) = ei(mx+ny) +
i
2

L−1
t (u(x, y, t))xx −

i
2

L−1
t (u(x, y, t))yy + iL−1

t |u(x, y, t)|2u(x, y, t), (3.3)

where |u(x, y, t)|2u(x, y, t)is nonlinear term.
Substituting

u(x, y, t) =
∞

∑
n=0

un(x, y, t) (3.4)

and nonlinear term

|u(x, y, t)|2u(x, y, t) =
∞

∑
n=0

An (3.5)

into (3.3) gives

∞

∑
n=0

un(x, y, t) = ei(mx+ny) +
i
2

L−1
t

(
∞

∑
n=0

un(x, y, t)

)
xx

− i
2

L−1
t

(
∞

∑
n=0

un(x, y, t)

)
yy

+ iL−1
t

(
∞

∑
n=0

An

)
(3.6)

Adomian’s analysis introduces the recursive relation

u0(x, y, t) = ei(mx+ny),
uk+1(x, y, t) = i

2 L−1
t (uk)xx − i

2 L−1
t (uk)yy + iL−1

t (Ak) , k ≥ 0.
(3.7)

since u is a complex function so we can write

|u|2 = uū (3.8)

where ū is the conjugate of u. this means that (3.5) can be written as

u2ū =
∞

∑
n=0

An (3.9)

By using formal technique to find adomian polynomial used in [3] we find that (3.9)has the following poly-
nomial representation

A0 = u2
0ū0,

A1 = 2u0u1ū0 + u2
0ū1,

A2 = 2u0u2ū0 + u2
1ū0 + 2u0u1ū1 + u2

0ū2,
A3 = 2u0u3ū0 + 2u1u2ū0 + 2u0u2ū1 + u2

1ū1 + 2u0u1ū2 + u2
0ū3

(3.10)
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that in turn gives the first few components by

u0(x, y, t) = ei(mx+ny),

u1(x, y, t) = i
2 L−1

t (u0xx )−
i
2 L−1

t

(
u0yy

)
+ iL−1

t (A0),

u2(x, y, t) = i
2 L−1

t
(
u1xx

)
− i

2 L−1
t

(
u1yy

)
+ iL−1

t (A1),

u3(x, y, t) = i
2 L−1

t (u2xx )−
i
2 L−1

t

(
u2yy

)
+ iL−1

t (A2),

(3.11)

we obtain

u0(x, y, t) = ei(mx+ny), A0 = u2
0ū0 = ei(mx+ny),

u1(x, y, t) = i
2 L−1

t

(
−m2ei(mx+ny)

)
− i

2 L−1
t

(
−n2ei(mx+ny)

)
+ iL−1

t (ei(mx+ny)) = it( n2

2 − m2

2 + 1)ei(mx+ny),

u2(x, y, t) = i
2 L−1

t
(
u1xx

)
− i

2 L−1
t

(
u1yy

)
+ iL−1

t (A1) = (it)2

2!

(
n2

2 − m2

2 + 1
)2

ei(mx+ny)

u3(x, y, t) = i
2 L−1

t (u2xx )−
i
2 L−1

t

(
u2yy

)
+ iL−1

t (A2) = (it)3

3!

(
n2

2 − m2

2 + 1
)3

ei(mx+ny)

(3.12)

Accordingly, the series solution is given by

u(x, y, t) =
∞

∑
n=0

un(x, y, t) = u1 + u2 + u3 + ...

u(x, y, t) = ei(mx+ny)

[
1 +

it
1!

(
n2

2
− m2

2
+ 1
)

+
(it)2

2!

(
n2

2
− m2

2
+ 1
)2

+ ...

]
(3.13)

that gives exact solution of (3.1) in closed form

u(x, y, t) = ei
(

mx+ny+
(

n2
2 −m2

2 +1
)

t
)

(3.14)

.

4 Conclusion

The Adomian decomposition method is successfully used to establish new exact solution. The perfor-
mance of this method is found to be reliable and effective and can give more solutions, which may be impor-
tant for the explanation of some nonlinear complex physical phenomena.
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Recurrence relations of multiparameter K-Mittag-Leffler function
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Abstract

In this paper we evaluate the functional relation between Multiparameter K-Mittag-Leffler function
defined by [2] and K-Series defined by [3]. Also we evaluate the recurrence relations and integral repre-
sentation of Multiparameter K-Mittag-Leffler function. Some particular cases have been discussed.
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1 Introduction

In [8] the author introduce the generalized K-Gamma Function Γk(x) as

Γk(x) = lim
n→∞

n!kn(nk)
x
k −1

(x)n,k
, k > 0, x ∈ C\kZ−, (1.1)

where (x)n,k is the k-Pochhammer symbol and is given by

(x)n,k = x(x + k)(x + 2k).....(x + (n− 1)k), x ∈ C, k ∈ R, n ∈ N+. (1.2)

K-Gamma function is given by,

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt, x ∈ C, k ∈ R, Re(x) > 0, (1.3)

and it follows easily that

Γk(x) = k
x
k −1Γ(

x
k
). (1.4)

Γk(x + k) = xΓk(x). (1.5)

(x)n,k = kn(
x
k
)n. (1.6)

(x)n,k =
Γk(x + nk)

Γk(x)
. (1.7)

nk(x)n−1,k = (x)n,k − (x − k)n,k. (1.8)

(x)n+j,k = (x)j,k(x + jk)n,k (1.9)

The Multiparameter K-Mittag-Leffler function defined by [2], as
∗Corresponding author.

E-mail addresses: drksgehlot@rediffmail.com (Kuldeep Singh Gehlot).
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Definition 1.1. Let k ∈ R+ = (0, ∞); aj, br, βi ∈ C; ηi ∈ R (j = 1, 2, .., p; r = 1, 2, .., q; i = 1, 2, .., m). Then the
Multiparameter K-Mittag-Leffler function defined as,

pK(β,η)m
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1; z] =

∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)
, (1.10)

where Γk(x) is the K-Gamma function given by (1.1) and (γ)n,k is the K-Pochhammer symbol given by (1.2).

The series (1.10) is defined when none of the parameter br(r = 1, 2, .., q) is negative integer or zero. If any
parameter aj(j = 1, 2, .., p) in (1.10) is zero or negative, the series terminates into polynomial in z.
Convergent conditions for the series (1.10) are given by Ratio test,
(i) If p < q + ∑m

i=1(
ηi
k ), then the power series on the right of (1.10) is absolutely convergent for all z ∈ C.

(ii) If p = q + ∑m
i=1(

ηi
k ), then the power series on the right of (1.10) is absolutely convergent for all

|kp−q−∑m
i=1( ηi

k )z| < ∏m
i=1(|

ηi
k |)

ηi
k and |kp−q−∑m

i=1( ηi
k )z| = ∏m

i=1(|
ηi
k |)

ηi
k , Re(∑

q
r=1(

br
k ) + ∑m

i=1(
βi
k ) − ∑

p
j=1(

aj
k )) >

2+q+m−p
2 .

2 Main Results

In this section we evaluate the functional relation between Multiparameter K-Mittag-Leffler Function and
K-Series. Also we evaluate the recurrence relations and integral representation of Multiparameter K-Mittag-
Leffler Function. Nine particular cases have been evaluated for different values of parameters.

Theorem 2.1. The functional relation between Multiparameter K-Mittag-Leffler function and K-Series is given by,

pK(β,η)m
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1; z]

= k∑m
i=1(1− βi

k )
pK(β,η)m

q [(
aj

k
)p

j=1; (
br

k
)q

r=1, (
βi
k

,
ηi
k

)m
i=1; zkp−q−∑m

i=1
ηi
k ]. (2.1)

And its counter part is given by

pK(β,η)m
q [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1; z]

= k∑m
i=1(βi−1)

pK(β,η)m
q,k [(kaj)

p
j=1; (kbr)

q
r=1, (kβi, kηi)

m
i=1; zk∑m

i=1 ηi+q−p]. (2.2)

Proof. From equation (1.10), we have

A ≡ pK(β,η)m
q,k [z] =

∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)
,

using equations (1.4) and (1.6), we obtain

A ≡
∞

∑
n=0

∏
p
j=1 kpn(

aj
k )n zn

∏
q
r=1 kqn( br

k )n ∏m
i=1 k

ηin+βi
k −1Γ( ηi

k n + βi
k )

,

A ≡ k∑m
i=1(1− βi

k )
∞

∑
n=0

∏
p
j=1(

aj
k )n (zkp−q−∑m

i=1
ηi
k )n

∏
q
r=1(

br
k )n ∏m

i=1 Γ( ηi
k n + βi

k )
,

A ≡ k∑m
i=1(1− βi

k )
pK(β,η)m

q [(
aj

k
)p

j=1; (
br

k
)q

r=1, (
βi
k

,
ηi
k

)m
i=1; zkp−q−∑m

i=1
ηi
k ].

Theorem 2.2. Let b ∈ C, β ∈ R and the convergent conditions of Multiparameter K-Mittag-Leffler function are
satisfies, then

pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (b, β); z]

= b pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (b + k, β); z]

+βz
d
dz pK(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (b + k, β); z]. (2.3)
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Proof. Consider the right hand side of equation (2.3) and using equation (1.10), we have

A ≡ b pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (b + k, β); z]

+βz
d
dz pK(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (b + k, β); z],

A ≡ b
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(βn + b + k)

+βz
d
dz

∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(βn + b + k)
,

A ≡
∞

∑
n=0

∏
p
j=1(aj)n,k(βn + b) zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(βn + b + k)
,

using equation (1.5), we obtain

A ≡ pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (b, β); z].

Theorem 2.3. Let a ∈ C and the convergent conditions of Multiparameter K-Mittag-Leffler Function are satisfies, then

p+1K(β,η)m+1
q,k [(aj)

p
j=1, a + k; (br)

q
r=1, (βi, ηi)

m
i=1, (k, 1); z]

− p+1K(β,η)m+1
q,k [(aj)

p
j=1, a; (br)

q
r=1, (βi, ηi)

m
i=1, (k, 1); z]

=
kz ∏

p
j=1(aj)

∏
q
r=1(br)

pK(β+η,η)m+1
q,k [(aj + k)p

j=1; (br + k)q
r=1, (βi + ηi, ηi)

m
i=1, (1, 1); z]. (2.4)

Proof. Consider the left hand side of equation (2.4) and using equation (1.10), we have

A ≡ p+1K(β,η)m+1
q,k [(aj)

p
j=1, a + k; (br)

q
r=1, (βi, ηi)

m
i=1, (k, 1); z]

− p+1K(β,η)m+1
q,k [(aj)

p
j=1, a; (br)

q
r=1, (βi, ηi)

m
i=1, (k, 1); z],

A ≡
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(n + k)
[(a + k)n,k − (a)n,k],

using equation (1.8), we obtain

A ≡
∞

∑
n=1

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(n + k)
[nk(a + k)n−1,k],

replacing n by n + 1, we obtain

A ≡
∞

∑
n=0

∏
p
j=1(aj)n+1,k zn+1

∏
q
r=1(br)n+1,k ∏m

i=1 Γk(ηi(n + 1) + βi)Γk(n + 1 + k)
[(n + 1)k(a + k)n,k],

using equations (1.5) and (1.9), we obtain

A ≡
∞

∑
n=0

∏
p
j=1(aj)1,k(aj + k)n,k zn+1[(n + 1)k(a + k)n,k]

∏
q
r=1(br)1,k(br + k)n,k ∏m

i=1 Γk(ηin + βi + ηi)(n + 1)Γk(n + 1)
,

A ≡
kz ∏

p
j=1(aj)

∏
q
r=1(br)

pK(β+η,η)m+1
q,k [(aj + k)p

j=1; (br + k)q
r=1, (βi + ηi, ηi)

m
i=1, (1, 1); z].
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Theorem 2.4. Let β ∈ C, Re(β) > 0, α ∈ R and the convergent conditions of Multiparameter K-Mittag-Leffler
Function are satisfies, then

pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + k, α); z]

−k pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 2k, α); z]

= z2α2
pK̈(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

+z{α2 + 2α(β + k)} pK̇(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

+β(β + 2k) pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]. (2.5)

Proof. From equations (1.10) and (1.5), we have

pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + k, α); z]

=
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)(αn + β)Γk(αn + β)
. (2.6)

Again,

pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 2k, α); z]

=
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)(αn + β + k)(αn + β)Γk(αn + β)
. (2.7)

=
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)
1
k

[
1

(αn + β)
− 1

(αn + β + k)

]
using equation (2.6), we obtain

S = pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + k, α); z]

−k pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 2k, α); z]. (2.8)

Where

S =
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)(αn + β + k)
. (2.9)

Applying a simple identity 1
u = k

u(u+k) + 1
(u+k) , for u = αn + β + k to equation (2.9), we obtain

S =
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)

×
[

k
(αn + β + k)(αn + β + 2k)

+
1

(αn + β + 2k)

]
,

S =
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)

×
[

k(αn + β)
(αn + β)(αn + β + k)(αn + β + 2k)

+
(αn + β)(αn + β + k)

(αn + β)(αn + β + k)(αn + β + 2k)

]
,

using equation (1.5), we have

S =
∞

∑
n=0

∏
p
j=1(aj)n,k zn[n2α2 + 2nα(β + k) + β(β + 2k)]

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
. (2.10)
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We express each summation in right side of (2.5) as follows;

d
dz
{z pK(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + 3k, α); z]}

=
∞

∑
n=0

∏
p
j=1(aj)n,k(n + 1) zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
,

z pK̇(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + 3k, α); z]

+ pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

=
∞

∑
n=0

∏
p
j=1(aj)n,k(n + 1) zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
,

z pK̇(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + 3k, α); z]

=
∞

∑
n=0

n ∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
. (2.11)

Again

d2

dz2 {z2
pK(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + 3k, α); z]}

=
∞

∑
n=0

∏
p
j=1(aj)n,k(n + 2)(n + 1) zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
,

z2
pK̈(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + 3k, α); z]

+4z pK̇(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

+2 pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

=
∞

∑
n=0

(n2 + 3n + 1) ∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
,

using equation (2.11)

z2
pK̈(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + 3k, α); z]

+z pK̇(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

=
∞

∑
n=0

n2 ∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β + 3k)
. (2.12)

using equations (2.11), (2.12) in equation (2.10), we obtain

S = z2α2
pK̈(β,η)m+1

q,k [(aj)
p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

+z{α2 + 2α(β + k)} pK̇(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z]

+β(β + 2k) pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 3k, α); z].



170 Kuldeep Singh Gehlot / Recurrence Relations of...

Theorem 2.5. Let β ∈ C, Re(β) > 0, α ∈ R and the convergent conditions of Multiparameter K-Mittag-Leffler
function are satisfies, then ∫ 1

0
tβ+k−1

pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β, α); tα]dt

= pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + k, α); 1]

−k pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 2k, α); 1]. (2.13)

Proof. Put z = 1 in equations (2.8) and (2.9), we have

S = pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + k, α); 1]

−k pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 2k, α); 1]

=
∞

∑
n=0

∏
p
j=1(aj)n,k

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)(αn + β + k)
. (2.14)

Consider the left hand side integral,

A ≡
∫ 1

0
tβ+k−1

pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β, α); tα]dt,

using equation (1.10), we have

A ≡
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)

∫ 1

0
tαn+β+k−1dt,

A ≡
∞

∑
n=0

∏
p
j=1(aj)n,k zn

∏
q
r=1(br)n,k ∏m

i=1 Γk(ηin + βi)Γk(αn + β)(αn + β + k)
,

from equation (2.14), we obtain

A ≡ pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)m

i=1, (β + k, α); 1]

−k pK(β,η)m+1
q,k [(aj)

p
j=1; (br)

q
r=1, (βi, ηi)

m
i=1, (β + 2k, α); 1].

2.1 Particular Cases

The particular cases of this paper are given by particularzing the values of parameters, we obtain the result
for different known Mittag-Leffler Functions, given as:

(a) If we set k = 1, then we obtain the results for K-Series definded by [3].

(b) If we set k = 1, p = q = m and b1 = b2 = ... = bm = 1, we obtain the results for the 3M-Parameter
Multi-Index Mittag-Leffler function definded by [4].

(c) If we set k = 1, p = q = 1, a1 = ρ, b1 = 1, then we obtain the results for the Generalized Mittag-Leffler
function studied by [5].

(d) If we set k = 1, p = q = 1, a1 = b1 = 1 and ηi = 1
αi

, then we obtain the results for the Multi-Index
Mittag-Leffler function studied by [10].
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(e) If we set k = 1, m = 1, then we obtain the results for Generalized M-Series definded by [9].

(f) If we set p = q = m = 1, a1 = δ, b1 = k, then we obtain the results for the K- Mittag-Leffler function
studied by [1].

(g) If we set k = 1, p = q = m = 1, a1 = δ, b1 = 1, then we obtain the results for the Generalized Mittag-
Leffler function studied by [7].

(h) If we set k = 1, p = q = m = 1, a1 = b1 = 1, then we obtain the results for the Mittag-Leffler func-
tion studied by [11].

(i) If we set k = 1, p = q = m = 1, a1 = b1 = 1 and β = 1, then we obtain the results for the Mittag-Leffler
function studied by [6].
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Abstract

By introducing new concepts on the probability theory, new integral inequalities are established for the
fractional expectation and the fractional variance for continuous random variables. These inequalities gener-
alize some interested results in [N.S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis: Some inequalities for
the dispersion of a random variable whose p.d.f. is defined on a finite interval, J. Inequal. Pure Appl. Math., Vol. 2
Iss. 1 Art. 1 (2001), 1-18].

Keywords: Integral inequalities, Riemann-Liouville integral, random variable, fractional dispersion, fractional
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1 Introduction

It is well known that the integral inequalities play a fundamental role in the theory of differential equations
and applied sciences. Significant development in this theory has been achieved for the last two decades. For
details, we refer to [4, 7, 11, 16, 19, 20, 21, 23] and the references therein. Moreover, the study of fractional
type inequalities is also of great importance. We refer the reader to [2, 3, 6, 8, 10] for further information and
applications. Let us introduce now the results that have inspired our work. The first one is given in [5]; in
their paper, using Korkine identity and Holder inequality for double integrals, N.S. Barnett et al. established
several integral inequalities for the expectation E(X) and the variance σ2(X) of a random variable X having a
probability density function (p.d.f.) f : [a, b] → R+. In [13, 14], P. Kumar presented new inequalities for the
moments and for the higher order central moments of a continuous random variable. In [15], Y. Miao and G.
Yang gave new upper bounds for the standard deviation σ(X), for the quantity σ2(X) + (t− E(X))2, t ∈ [a, b]
and for the Lp absolute deviation of a random variable X. Recently, G.A. Anastassiou et al. [2] proposed a
generalization of the weighted Montgomery identity for fractional integrals with weighted fractional Peano
kernel. More recently, M. Niezgoda [18] proposed new generalizations of the results of P. Kumar [14], by
applying some Ostrowski-Gruss type inequalities. Other paper deal with these probability inequalities can be
found in [1, 17, 22].

In this paper, we introduce new concepts on ”fractional random variables”. Then, we obtain new inte-
gral inequalities for the fractional dispersion and the fractional variance functions of a continuous random
variable X having the probability density function (p.d. f .) f : [a, b] → R+. We also present new results for
the ”fractional expectation and the fractional variance”. For our results, some classical integral inequalities of
Barnet et al. [5] can be deduced as some special cases.

∗Corresponding author.
E-mail address: zzdahmani@yahoo.fr (Zoubir Dahmani).
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2 Preliminaries

Definition 2.1. [12] The Riemann-Liouville fractional integral operator of order α ≥ 0, for a continuous function h on
[a, b] is defined as

Jα[h(t)] = 1
Γ(α)

∫ t
a (t− τ)α−1h(τ)dτ; α > 0, a < t ≤ b,

J0[h(t)] = h(t),
(2.1)

where Γ(α) :=
∫ ∞

0 e−uuα−1du.

We give the following properties:

Jα Jβ[h(t)] = Jα+β[h(t)], α ≥ 0, β ≥ 0, (2.2)

and
Jα Jβ[h(t)] = Jβ Jα[h(t)], α ≥ 0, β ≥ 0. (2.3)

We introduce also the following new concepts and definitions:

Definition 2.2. The fractional expectation function of order α ≥ 0, for a random variable X with a positive p.d. f . f
defined on [a, b] is defined as

EX,α(t) := Jα[t f (t)] = 1
Γ(α)

∫ t
a (t− τ)α−1τ f (τ)dτ; α ≥ 0, a < t ≤ b. (2.4)

In the same way, we define the fractional expectation function of X − E(X) by:

Definition 2.3. The fractional expectation function of order α ≥ 0, for a random variable X − E(X) is defined as

EX−E(X),α(t) := 1
Γ(α)

∫ t
a (t− τ)α−1(τ − E(X)) f (τ)dτ; α ≥ 0, a < t ≤ b, (2.5)

where f : [a, b] → R+ is the p.d.f. of X.

For t = b, we introduce the following concept:

Definition 2.4. The fractional expectation of order α ≥ 0, for a random variable X with a positive p.d.f. f defined on
[a, b] is defined as

EX,α = EX,α = 1
Γ(α)

∫ b
a (b− τ)α−1τ f (τ)dτ; α ≥ 0. (2.6)

For the fractional variance of X, we introduce the two definitions:

Definition 2.5. The fractional variance function of order α ≥ 0 for a random variable X having a p.d.f. f : [a, b] → R+

is defined as
σ2

X,α(t) := Jα[(t− E(X))2 f (t)] = 1
Γ(α)

∫ t
a (t− τ)α−1(τ − E(X))2 f (τ)dτ;

α ≥ 0, a < t ≤ b.
(2.7)

where E(X) :=
∫ b

a τ f (τ)dτ is the classical expectation of X.

Definition 2.6. The fractional variance of order α ≥ 0, for a random variable X with a p.d.f. f : [a, b] → R+ is defined
as

σ2
X,α = 1

Γ(α)

∫ b
a (b− τ)α−1(τ − E(X))2 f (τ)dτ; α >≥ 0. (2.8)

We give the following important properties:

(P1∗) : If we take α = 1 in Definition 2.4, we obtain the classical expectation: EX,1 = E(X).
(P2∗) : If we take α = 1 in Definition 2.6, we obtain the classical variance: σ2

X,1 = σ2(X) =
∫ b

a (τ−E(X))2 f (τ)dτ.

(P3∗) : For α > 0, the p.d. f . f satisfies Jα[ f (b)] = (b−a)α−1

Γ(α) .
(P4∗) : For α = 1, we have the well known property Jα[ f (b)] = 1.
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3 Main Results

In this section, we present new results for fractional continuous random variables. The first main result is
the following theorem:

Theorem 3.1. Let X be a continuous random variable having a p.d.f. f : [a, b] → R+. Then we have:
(a) : For all a < t ≤ b, α ≥ 0,

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ || f ||2∞

[ (t− a)α

Γ(α + 1)
Jα[t2]− (Jα[t])2

]
, (3.9)

provided that f ∈ L∞[a, b].
(b) : The inequality

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ 1

2
(t− a)2(Jα[ f (t)])2 (3.10)

is also valid for all a < t ≤ b, α ≥ 0.

Proof. Let us define the quantity

H(τ, ρ) := (g(τ)− g(ρ))(h(τ)− h(ρ)); τ, ρ ∈ (a, t), a < t ≤ b. (3.11)

Taking a function p : [a, b] → R+, multiplying (3.11) by (t−τ)α−1

Γ(α) p(τ); τ ∈ (a, t), then integrating the resulting
identity with respect to τ from a to t, we can state that

1
Γ(α)

∫ t

a
(t− τ)α−1 p(τ)H(τ, ρ)dτ

= Jα[pgh(t)]− g(ρ)Jα[ph(t)]− h(ρ)Jα[pg(t)] + g(ρ)h(ρ)Jα[p(t)].

(3.12)

Now, multiplying (3.12) by (t−ρ)α−1

Γ(α) p(ρ); ρ ∈ (a, t) and integrating the resulting identity with respect to ρ over
(a, t), we can write

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 p(τ)p(ρ)H(τ, ρ)dτdρ

= 2Jα[p(t)]Jα[pgh(t)]− 2Jα[pg(t)]Jα[ph(t)].

(3.13)

In (3.13), taking p(t) = f (t), g(t) = h(t) = t− E(X), t ∈ (a, b), we have

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 f (τ) f (ρ)(τ − ρ)2dτdρ

= 2Jα[ f (t)]Jα[ f (t)(t− E(X))2]− 2
(

Jα[ f (t)(t− E(X))]
)2

.

(3.14)

On the other hand, we have

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ || f ||2∞ 1
Γ2(α)

∫ t
a

∫ t
a (t− τ)α−1(t− ρ)α−1(τ − ρ)2dτdρ

≤ || f ||2∞
[
2 (t−a)α

Γ(α+1) Jα[t2]− 2(Jα[t])2
]
.

(3.15)

Thanks to (3.14), (3.15), we obtain the part (a) of Theorem 3.1.
For the part (b), we have

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ supτ,ρ∈[a,t] |(τ − ρ)|2(Jα[ f (t)])2 = (t− a)2(Jα[ f (t)])2.

(3.16)

Then, by (3.14) and (3.16), we get the desired inequality (3.10).
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We give also the following corollary:

Corollary 3.1. Let X be a continuous random variable with a p.d.f. f defined on [a, b]. Then:
(i) : If f ∈ L∞[a, b], then for any α ≥ 0, we have

(b− a)(α−1)

Γ(α)
σ2

X,α − E2
X,α ≤ || f ||

2
∞

[ 2(b− a)2α+2

Γ(α + 1)Γ(α + 3)
−

( (b− a)α+1

Γ(α + 2)

)2]
. (3.17)

(ii) : The inequality
(b− a)(α−1)

Γ(α)
σ2

X,α − E2
X,α ≤

1
2

(b− a)2α

Γ2(α)
(3.18)

is also valid for any α ≥ 0.

Remark 3.1. (r1) : Taking α = 1 in (i) of Corollary 3.1, we obtain the first part of Theorem 1 in [5].
(r2) : Taking α = 1 in (ii) of Corollary 3.1, we obtain the last part of Theorem 1 in [5].

We shall further generalize Theorem 3.1 by considering two fractional positive parameters:

Theorem 3.2. Let X be a continuous random variable having a p.d.f. f : [a, b] → R+. Then we have:
(a∗) : For all a < t ≤ b, α ≥ 0, β ≥ 0,

Jα[ f (t)]σ2
X,β(t) + Jβ[ f (t)]σ2

X,α(t)− 2(EX−E(X),α(t))(EX−E(X),β(t))

≤ || f ||2∞
[

(t−a)α

Γ(α+1) Jβ[t2] + (t−a)β

Γ(β+1) Jα[t2]− 2(Jα[t])(Jβ[t])
]
,

(3.19)

where f ∈ L∞[a, b].
(b∗) : The inequality

Jα[ f (t)]σ2
X,β(t) + Jβ[ f (t)]σ2

X,α(t)− 2(EX−E(X),α(t))(EX−E(X),β(t))

≤ (t− a)2 Jα[ f (t)]Jβ[ f (t)]
(3.20)

is also valid for any a < t ≤ b, α ≥ 0, β ≥ 0.

Proof. Using (3.11), we can write

1
Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 p(τ)p(ρ)H(τ, ρ)dτdρ

= Jα[p(t)]Jβ[pgh(t)] + Jβ[p(t)]Jα[pgh(t)]

−Jα[ph(t)]Jβ[pg(t)]− Jβ[ph(t)]Jα[pg(t)].

(3.21)

Taking p(t) = f (t), g(t) = h(t) = t− E(X), t ∈ (a, b) in the above identity, yields

1
Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 f (τ) f (ρ)(τ − ρ)2dτdρ

= Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

−2Jα[ f (t)(t− E(X))]Jβ[ f (t)(t− E(X))].

(3.22)

We have also
1

Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ || f ||2∞ 1
Γ(α)Γ(β)

∫ t
a

∫ t
a (t− τ)α−1(t− ρ)β−1(τ − ρ)2dτdρ

≤ || f ||2∞
[

(t−a)α

Γ(α+1) Jβ[t2] + (t−a)β

Γ(β+1) Jα[t2]− 2Jα[t]Jβ[t]
]
.

(3.23)
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Thanks to (3.22) and (3.23), we obtain (a∗).
To prove (b∗), we use the fact that supτ,ρ∈[a,t] |(τ − ρ)|2 = (t− a)2. We obtain

1
Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ (t− a)2 Jα[ f (t)]Jβ[ f (t)].

(3.24)

And, by (3.22) and (3.24), we get (3.20).

Remark 3.2. (r1) : Applying Theorem 3.2 for α = β, we obtain Theorem 3.1.
(r2) : Taking α = β = 1 in (a∗) of Theorem 3.4, we obtain the first inequality of Theorem 1 in [5].
(r3) : Taking α = β = 1 in (b∗) of Theorem 3.2, we obtain the last part of Theorem 1 in [5].

We give also the following fractional integral result:

Theorem 3.3. Let f be the p.d.f. of X on [a, b]. Then for all a < t ≤ b, α ≥ 0, we have:

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ 1

4
(b− a)2(Jα[ f (t)])2. (3.25)

Proof. Using Theorem 3.1 of [9], we can write∣∣∣Jα[p(t)]Jα[pg2(t)]− (Jα[pg(t)])2
∣∣∣

≤ 1
4

(
Jα[p(t)]

)2
(M−m)2.

(3.26)

Taking p(t) = f (t), g(t) = t − E(X), t ∈ [a, b], then M = b − E(X), m = a − E(X). Hence, (3.25) allows us to
obtain

0 ≤ Jα[ f (t)]Jα[ f (t)(t− E(X))2]−
(

Jα[ f (t)(t− E(X))]
)2

≤ 1
4 (Jα[ f (t)])2(b− a)2.

(3.27)

This implies that

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ 1

4
(Jα[ f (t)])2(b− a)2. (3.28)

Theorem 3.3 is thus proved.

For t = b, we propose the following interesting inequality:

Corollary 3.2. Let f be the p.d.f. of X on [a, b]. Then for any α ≥ 0, we have:

(b− a)(α−1)

Γ(α)
σ2

X,α − (EX−E(X),α)2 ≤ 1
4Γ2(α)

(b− a)2α. (3.29)

Remark 3.3. Taking α = 1 in Corollary 3.2, we obtain Theorem 2 of [5].

We also present the following result for the fractional variance function with two parameters:

Theorem 3.4. Let f be the p.d.f. of the random variable X on [a, b]. Then for all a < t ≤ b, α ≥ 0, β ≥ 0, we have:

Jα[ f (t)]σ2
X,β(t) + Jβ[ f (t)]σ2

X,α(t)

+2(a− E(X))(b− E(X))Jα[ f (t)]Jβ[ f (t)]

≤ (a + b− 2E(X))
(

Jα[ f (t)](EX−E(X),β(t)) + Jβ[ f (t)](EX−E(X),α(t))
)

.

(3.30)
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Proof. Thanks to Theorem 3.4 of [9], we can state that:[
Jα[p(t)]Jβ[pg2(t)] + Jβ[p(t)]Jα(pg2(t)]− 2Jα[pg(t)]Jβ[pg(t)]

]2

≤
[(

MJα[p(t)]− Jα[pg(t)]
)(

Jβ[pg(t)]−mJβ[p(t)]
)
+

(
Jα[pg(t)]−mJα[p(t)]

)(
MJβ[p(t)]− Jβ[pg(t)]

)]2
.

(3.31)

In (3.31), we take p(t) = f (t), g(t) = t− E(X), t ∈ [a, b]. We obtain[
Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

−2Jα[ f (t)(t− E(X))]Jβ[ f (t)(t− E(X))]
]2

≤
[(

MJα[ f (t)]− Jα[ f (t)(t− E(X))]
)(

Jβ[ f (t)(t− E(X))]−mJβ[ f (t)]
)
+

(
Jα[ f (t)(t− E(X))]−mJα[ f (t)]

)(
MJβ[ f (t)]− Jβ[ f (t)(t− E(X))]

)]2
.

(3.32)

Combining (3.22) and (3.32) and taking into account the fact that the left hand side of (3.22) is positive, we
get:

Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

−2Jα[ f (t)(t− E(X))]Jβ[ f (t)(t− E(X))]

≤
(

MJα[ f (t)]− Jα[ f (t)(t− (EX))]
)(

Jβ[ f (t)(t− E(X))]−mJβ[ f (t)]
)
+

(
Jα[ f (t)(t− E(X))]−mJα[ f (t)]

)(
MJβ[ f (t)]− Jβ[ f (t)(t− E(X))]

)
.

(3.33)

Therefore,
Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

≤ M
(

Jα[ f (t)](EX−E(X),β(t)) + Jβ[ f (t)](EX−E(X),α(t))
)

+m
(

Jα[ f (t)](EX−E(X),β(t)) + Jβ[ f (t)](EX−E(X),α(t))
)

−2mMJα[ f (t)]Jβ[ f (t)].

(3.34)

Substituting the values of m and M in (3.28) , then a simple calculation allows us to obtain (3.30). Theorem
3.4 is thus proved.

To finish, we present to the reader the following corollary:

Corollary 3.3. Let f be the p.d.f. of X on [a, b]. Then for all a < t ≤ b, α ≥ 0, the inequality

σ2
X,α(t) + (a− E(X))(b− E(X))Jα[ f (t)]

≤ (a + b− 2E(X))EX−E(X),α(t)
(3.35)

is valid.



178 Zoubir Dahmani / Fractional inequalities for random...

References

[1] A.M. Acu, F. Sofonea, C.V. Muraru, Gruss and Ostrowski type inequalities and their applications, Scien-
tific Studies and Research: Series Mathematics and Informatics, 23(1)(2013), 5-14.

[2] G.A. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery identities for frac-
tional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10(4)(2009), 1-6.

[3] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer Science, LLC, 2009.

[4] N.S. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis, Some inequalities for the expectation and variance
of a random variable whose PDF is n-time differentiable, J. Inequal. Pure Appl. Math., 1(21)(2000), 1-29.

[5] N.S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis, Some inequalities for the dispersion of a ran-
dom variable whose PDF is defined on a finite interval, J. Inequal. Pure Appl. Math., 2(1)(2001), 1-18.

[6] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math.,
10(3)(2009), 1-12.

[7] P.L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les
memes limites, Proc. Math. Soc. Charkov, 2(1882), 93-98.

[8] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Sciences, 9(4)(2010),
493-497.

[9] Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integrals, JARPM, Journal of
Advanced Research in Pure Mathematics, 2(4)(2010), 31-38.

[10] Z. Dahmani, On Minkowski and Hermite-Hadamad integral inequalities via fractional integration, Ann.
Funct. Anal., 1(1)(2010, 51-58.

[11] S.S. Dragomir, A generalization of Gruss’s inequality in inner product spaces and applications, J. Math.
Annal. Appl., 237(1)(1999), 74-82.

[12] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order,
Springer Verlag, Wien, (1997), 223-276.

[13] P. Kumar, Moment inequalities of a random variable defined over a finite interval, J. Inequal. Pure Appl.
Math., 3(3)(2002), 1-24.

[14] P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval,
Computers and Mathematics with Applications, 48(2004), 257-273.

[15] Y. Miao, G. Yang, A note on the upper bounds for the dispersion, J. Inequal. Pure Appl. Math., 8(3)(2007),
1-13.

[16] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic
Publishers, Dordrecht, 1993.

[17] T.F. Mori, Sharp inequalities between centered moments, J. Math. Annal. Appl., 10(4)(2009), 1-19.

[18] M. Niezgoda, New bounds for moments of continuous random varialbes, Comput. Math. Appl.,
60(12)(2010), 3130-3138.

[19] B.G. Pachpatte, On multidimensional Gruss type integral inequalities, J. Inequal. Pure Appl. Math., 32
(2002), 1-15.

[20] F. Qi, A.J. Li, W.Z. Zhao, D.W. Niu, J. Cao, Extensions of several integral inequalities, J. Inequal. Pure Appl.
Math., 7(3)(2006), 1-6.

[21] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2)(2000), 1-9.



Zoubir Dahmani / Fractional inequalities for random... 179

[22] R. Sharma, S. Devi, G. Kapoor, S. Ram, N.S. Barnett, A brief note on some bounds connecting lower order
moments for random variables defined on a finite interval, Int. J. Theo. Appl. Sci., 1(2)(2009), 83-85.

[23] M.Z. Sarikaya, N. Aktan, H. Yildirim, On weighted Chebyshev-Gruss like inequalities on time scales, J.
Math. Inequal., 2(2)(2008), 185-195.

Received: January 3, 2014; Accepted: March 04, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Coefficients Inequalities
	Radius of starlikeness
	Results Involving Modified Hadamard Products
	Closure Theorems
	Partial Sums
	Acknowledgment
	Introduction
	Lie Symmetry of the System
	Optimal system of (2.1)
	Conclusion
	Introduction
	Preliminary results on quasi-beta normed spaces
	Stability results: Direct method
	Stability results: Fixed point method
	Introduction
	Preliminaries
	Main results
	Introduction
	Mathematical Formulation of the Problem
	Solution of the Problem
	Discussion of the Results
	Conclusions
	Acknowledgment
	Introduction
	Auxiliary facts and results
	Riemann-Liouville Fractional H-differentiability
	Main Theorem
	Introduction
	Adomian decomposition method for nonlinear PDEs
	Exact solutions for(2+1)-dimensional hyperbolic Schrödinger equation
	Conclusion
	Introduction
	Main Results
	Particular Cases

	Introduction
	Preliminaries
	Main Results

