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Abstract. In this paper, we introduce the concepts of I-invariant arithmetic convergence, I∗-invariant arithmetic
convergence, strongly q-invariant arithmetic convergence for real sequences and give some inclusion relations.
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1. Introduction and Background

Statistical convergence of a real number sequence was firstly defined by Fast [10]. It became a noteworthy
topic in summability theory after the work of Fridy [11] and Šalát [12].

In the wake of the study of ideal convergence defined by Kostyrko et al. [13], there has been comprehensive
research to discover applications and summability studies of the classical theories. A lot of development have
been seen in area about ideal convergence of sequences after the work of [14–23]

A family of sets I ⊆ 2N is called an ideal iff (i) ∅ ∈ I, (ii) For each A,B ∈ I we have A∪B ∈ I, (iii) For
each A ∈ I and each B ⊆ A we have B ∈ I.

A family of sets F ⊆ 2N is a filter in N iff (i) ∅ /∈ F , (ii) For each A,B ∈ F we have A ∩B ∈ F , (iii) For
each A ∈ F and each B ⊇ A we have B ∈ F .

If I is proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N \ A}

is a filter of N it is called the filter associated with the ideal.
An ideal I on N for which I 6= P (N) is called a proper ideal. A proper ideal I is called admissible if I

contains all finite subsets of N.
A sequence (xk) is said to be I-convergent to L if for each ε > 0,

A (ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I.

If (xk) is I-convergent to L, then we write I− limx = L.

∗Corresponding author. Email address: okisi@bartin.edu.tr (Ömer KİŞİ)
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On Iσ arithmetic convergence

An admissible ideal I ⊆ 2N is said to have the property (AP ) if for any sequence {A1, A2, ...} of mutually
disjoint sets of I, there is sequence {B1, B2, ...} of sets such that each symmetric differenceAi∆Bi (i = 1, 2, ...)

is finite and
∞⋃
i=1

Bi ∈ I.

Let σ be a mapping such that σ : N+ → N+ (the set of all positive integers). A continuous linear functional
Φ on l∞, the space of real bounded sequences, is said to be an invariant mean or a σ mean, if it satisfies the
following conditions:

(1) Φ (xn) ≥ 0, when the sequence (xn) has xn ≥ 0 for all n ∈ N;

(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;

(3) Φ
(
xσ(n)

)
= Φ (xn) for all (xn) ∈ l∞.

The mappings Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers n and m, where
σm (n) denotes the m th iterate of the mapping σ at n. Thus, Φ extends the limit functional on c, the space of
convergent sequences, in the sense that Φ (xn) = limxn, for all (xn) ∈ c.

In case σ is translation mappings σ (n) = n+ 1, the σ-mean is often called a Banach limit.
The space Vσ , the set of bounded sequences whose invariant means are equal, can be shown that

Vσ =

{
(xk) ∈ l∞ : lim

m→∞

1

m

m∑
k=1

xσk(n) = L

}

uniformly in n.
Several authors studied invariant mean and invariant convergent sequence (for examples, see [24–33]).
Savaş and Nuray [26] introduced the concepts of σ-statistical convergence and lacunary σ-statistical

convergence and gave some inclusion relations. Nuray et al. [28] defined the concepts of σ-uniform density of
subsets A of the set N, Iσ-convergence for real sequences and investigated relationships between
Iσ-convergence and invariant convergence also Iσ-convergence and [Vσ]p-convergence. Ulusu and Nuray [29]
investigated lacunary I-invariant convergence and lacunary I-invariant Cauchy sequence of real numbers.
Recently, the concept of strong σ-convergence was generalized by Savaş [30]. The concept of strongly
σ-convergence was defined by Mursaleen [32].

Let E ⊆ N and

sm : = min
n

{∣∣E ∩ {σ (n) , σ2 (n) , ..., σm (n)
}∣∣}

Sm : = max
n

{∣∣E ∩ {σ (n) , σ2 (n) , ..., σm (n)
}∣∣} .

If the following limits exist

V (E) = lim
m→∞

sm
m
, V (E) = lim

m→∞

Sm
m
,

then they are called a lower invariant uniform density and an upper invariant uniform density of the set E,
respectively. If V (E) = V (E), then V (E) = V (E) = V (E) is called the invariant uniform density of E.

The idea of arithmetic convergence was firstly originated by Ruckle [1]. Then, it was further investigated by
many authors (for examples, [2–8]).

A sequence x = (xm) is called arithmetically convergent if for each ε > 0, there is an integer n such that for
every integer m we have |xm − x〈m,n〉| < ε, where the symbol 〈m,n〉 denotes the greatest common divisior of
two integers m and n. We denote the sequence space of all arithmetic convergent sequence by AC.

A sequence x = (xm) is said to be arithmetic statistically convergent if for ε > 0, there is an integer n such
that

lim
t→∞

1

t
|{m ≤ t : |xm − x〈m,n〉| ≥ ε}| = 0.

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. We shall write ASC −
limxm = x〈m,n〉 to denote the sequence (xm) is arithmetic statistically convergent to x〈m,n〉.
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Kişi [7] investigated the concepts of invariant arithmetic convergence, strongly invariant arithmetic
convergence, invariant arithmetic statistically convergence, lacunary invariant arithmetic statistical convergence
for real sequences and obtained interesting results.

In [8], arithmetic I-statistically convergent sequence space AISC, I-lacunary arithmetic statistically
convergent sequence space AISCθ, strongly I-lacunary arithmetic convergent sequence space ANθ [I] were
investigated and some inclusion relations between these spaces were proved.

Kisi [9] gave the notion of lacunary Iσ arithmetic convergence for real sequences and examined relations
between this new type convergence notion and the notions of lacunary invariant arithmetic summability, lacunary
strongly q-invariant arithmetic summability and lacunary σ-statistical arithmetic convergence. Finally, giving
the notions of lacunary Iσ arithmetic statistically convergence, lacunary strongly Iσ arithmetic summability, he
proved the inclusion relation between them.

A sequence x = (xp) is said to be invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

xσp(s) = x〈p,n〉

uniformly in s. In this case we write xp → x〈p,n〉 (AVσ) and the set of all invariant arithmetic convergent
sequences will be demostrated by AVσ.

A sequence x = (xp) is said to be strongly invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,n〉| = 0

uniformly in s. In this case we write xp → x〈p,n〉 [AVσ] to denote the sequence (xp) is strongly invariant
arithmetic convergent to x〈p,n〉 and the set of all invariant arithmetic convergent sequences will be demostrated
by [AVσ] .

A sequence x = (xp) is said to be invariant arithmetic statistically convergent if for every ε > 0, there is an
integer n such that

lim
m→∞

1

m

∣∣{p ≤ m : |xσp(s) − x〈p,n〉| ≥ ε}
∣∣ = 0

uniformly in s. We shall use ASσC to denote the set of all invariant arithmetic statistical convergent sequences.
In this case we write ASσC − limxp = x〈p,n〉 or xp → x〈p,n〉 (ASσC) .

2. Main Results

Definition 2.1. A sequence x = (xp) is called to be I-invariant arithmetic convergent if for every ε > 0, there is
an integer η such that

A (ε) :=
{
p ∈ N : |xp − x〈p,η〉| ≥ ε

}
belongs to Iσ; i.e., V (A (ε)) = 0. We can use AIσC to denote the set of all Iσ arithmetic convergent sequences.
Thus, we define

AIσC =
{
x = (xp) : for some x〈p,η〉, AIσC − limxp = x〈p,η〉

}
.

In this case we write AIσC − limxp = x〈p,η〉 or xp → x〈p,η〉 (AIσC) .

Theorem 2.2. Assume x = (xp) is a bounded sequence. If x is I-invariant arithmetic convergent to x〈p,η〉, then
x is invariant arithmetic convergent to x〈p,η〉.

Proof. Let r,m ∈ N be arbitrary and ε > 0. We estimate

t (r,m) :=

∣∣∣∣xσ(r) + xσ2(r) + ...+ xσm(r)

m
− x〈p,η〉

∣∣∣∣
66



On Iσ arithmetic convergence

Then, we have
t(r,m) ≤ t1(r,m) + t2(r,m),

where

t1(r,m) :=
1

m

∑
1≤j≤m, |xσj(r)−x〈p,η〉|≥ε

|xσj(r) − x〈p,η〉|

and

t2(r,m) =
1

m

∑
1≤j≤m, |xσj(r)−x〈p,η〉|<ε

|xσj(r) − x〈p,η〉|.

Therefore, we have t2(r,m) < ε, for every r = 1, 2, .... The boundedness of (xp) implies that there is K > 0

such that
|xσj(r) − x〈p,η〉| ≤ K, (j = 1, 2, ...; r = 1, 2...),

then, this implies that
t1(r,m) ≤ K

m

∣∣{1 < j ≤ m : |xσj(r) − x〈p,η〉| ≥ ε
}∣∣

≤ K.maxr|{1<j≤m:|xσj(r)−x〈p,η〉|≥ε}|
m

= K.Smm

Hence, (xp) is invariant arithmetic convergent to x〈p,η〉. �

The converse of the previous theorem does not hold. For example, x = (xp) is the sequence defined by
xp = 1 if p is even and xp = 0 if p is odd. When σ (r) = r + 1, this sequence is invariant arithmetic convergent
to 1

2 , but it is not I-invariant arithmetic convergent.

Definition 2.3. A sequence (xp) is said to be strongly q-invariant arithmetic summable to x〈p,η〉, if for an integer
η

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,η〉|q = 0, uniformly in s = 1, 2, ...

where 0 < q <∞. In this case, we write xp → x〈p,η〉([AVσ]q).

Theorem 2.4. Let Iσ ⊂ 2N be an admissible ideal and 0 < q <∞.

(i) If xp → x〈p,η〉([AVσ]q), then xp → x〈p,η〉 (AIσC).

(ii) If x = (xp) ∈ l∞ and xp → x〈p,η〉 (AIσC), then xp → x〈p,η〉([AVσ]q).

Proof. (i) Let ε > 0 and xp → x〈p,η〉([AVσ]q). Then, we can write

m∑
p=1
|xσp(s) − x〈p,η〉|q

≥
∑

1≤p≤m
|xσp(s)−x〈p,η〉|≥ε

|xσp(s) − x〈p,η〉|q

≥ εq.
∣∣{1 ≤ p ≤ m : |xσp(s) − x〈p,η〉| ≥ ε

}∣∣
≥ εq.maxs

∣∣{1 ≤ p ≤ m : |xσp(s) − x〈p,η〉| ≥ ε
}∣∣
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and
1
m

m∑
p=1
|xσp(s) − x〈p,η〉|q

≥ εq.maxs|{p≤m:|xσp(s)−x〈p,η〉|≥ε}|
m

= εq.Smm

for every s = 1, 2, .... This implies limm→∞
Sm
m = 0 and so xp → x〈p,η〉 (AIσC).

(ii) Presume that x ∈ l∞ and xp → x〈p,η〉 (AIσC). Let ε > 0. Since (xp) is bounded, then there is M > 0

such that
|xσp(s) − x〈p,η〉| ≤M,

for p = 1, 2, ...; s = 1, 2, .... Observe that for every s ∈ N we have that

1
m

m∑
p=1
|xσp(s) − x〈p,η〉|q

= 1
m

∑
1≤p≤m

|xσp(s)−x〈p,η〉|≥ε

|xσp(s) − x〈p,η〉|q

+
∑

1≤p≤m
|xσp(s)−x〈p,η〉|<ε

|xσp(s) − x〈p,η〉|q

≤M maxs|{1≤p≤m: |xσp(s)−x〈p,η〉|≥ε}|
m + εq

≤M Sm
m + εq.

Hence, we obtain

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,η〉|q = 0 uniformly in s = 1, 2, ... .

�

Definition 2.5. A sequence x = (xp) is said to be I∗-invariant arithmetic convergent to x〈p,η〉, if there exists a
set M = {m1 < m2 < ... < mp < ...} ∈ F (Iσ) and there is an integer η such that

lim
p→∞

xmp = x〈p,η〉.

In this case, we write xp → x〈p,η〉 (AI∗σC) .

AI∗σ-convergence is better applicable in some situations.

Theorem 2.6. Let Iσ be an admissible ideal. If a sequence (xp) is I∗-invariant arithmetic convergent to x〈p,η〉,
then this sequence is I-invariant arithmetic convergent to x〈p,η〉.

Proof. By assumption, there is a set H ∈ Iσ such that for

M = N \ H = {m1 < m2 < ... < mp < ...}

we have
lim
p→∞

xmp = x〈p,η〉. (2.1)
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Let ε > 0. By (2.1), there is p0 ∈ N such that |xmp − x〈p,η〉| < ε for each p > p0. Then, clearly

{p ∈ N : |xp − x〈p,η〉| ≥ ε} ⊂ H ∪ {m1 < m2 < ... < mp0} . (2.2)

Since Iσ is admissible, the set on the right-hand side of (2.2) belongs to Iσ . Hence, xp → x〈p,η〉 (AIσC). �

The converse of the Theorem 2.6 holds if Iσ has property (AP ) .

Theorem 2.7. Let Iσ ⊂ 2N be an admissible ideal with property (AP ). If xp → x〈p,η〉 (AIσC), then xp →
x〈p,η〉 (AI∗σC).

Proof. Presume that Iσ satisfies condition (AP ) . Let xp → x〈p,η〉 (AIσC). Then, we write{
p ∈ N : |xp − x〈p,η〉| ≥ ε

}
∈ Iσ

for each ε > 0. Put
E1 =

{
p ∈ N : |xp − x〈p,η〉| ≥ 1

}
and

Er =

{
p ∈ N :

1

r
≤ |xp − x〈p,η〉| <

1

r − 1

}
for r ≥ 2, and r ∈ N. Clearly, Ei ∩ Fj = ∅ for i 6= j. By condition (AP ) there is a sequence of sets {Fr}r∈N
such that Ej∆Fj are finite sets for j ∈ N and F =

∞⋃
j=1

Fj ∈ Iσ . It is sufficient to demonstrate that for M = N \

F ,
M = {m = (mi) : mi < mi+1 , i ∈ N} ∈ F (Iσ)

we have
lim

p∈M,p→∞
xp = x〈p,η〉. (2.3)

Let λ > 0. Select r ∈ N such that 1
r+1 < λ. Then

{
p ∈ N : |xp − x〈p,η〉| ≥ λ

}
⊂
r+1⋃
j=1

Ej .

Since Ej∆Fj , j = 1, 2, ..., r + 1 are finite sets, there is p0 ∈ N such thatr+1⋃
j=1

Fj

 ∩ {p ∈ N : p > p0} =

r+1⋃
j=1

Ej

 ∩ {p ∈ N : p > p0} (2.4)

If p > p0 and p /∈ F, then p /∈
r+1⋃
j=1

Fj and by (2.4) p /∈
r+1⋃
j=1

Ej . But then |xp−x〈p,η〉| < 1
r+1 < λ; so (2.3) holds

and we obtain xp → x〈p,η〉 (AI∗σC). �

Now, we shall state a theorem that gives a relation between Sσ arithmetic convergence and I-invariant
arithmetic convergence.

Theorem 2.8. A sequence x = (xp) is Sσ arithmetic convergent to x〈p,η〉 iff it is I-invariant arithmetic
convergent to x〈p,η〉.
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[19] E. Savaş and M. Gürdal, I-statistical convergence in probabilistic normed space, Sci. Bull. Series A Appl.
Math. Physics, 77(4)(2015), 195-204.
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[23] E. Savaş and M. Gürdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science
Asia, 41(2015), 289-294.

[24] R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1963), 81-94.

[25] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.

[26] F. Nuray and E. Savaş, Invariant statistical convergence and A-invariant statistical convergence, Indian J.
Pure Appl. Math., 25(3)(1994), 267-274.
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1. Introduction and Background

Let E be an arbitrary real Banach space with dual E∗. We denote by J the normalized duality mapping from
E into 2E

∗
defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}, (1.1)

where 〈., .〉 denotes the generalized duality pairing.
In the sequel, we give the following definitions which will be useful in this study.

Definition 1.1. Let K be a nonempty subset of real Banach space E. A mapping T : K → K is said to be:

(1) nonexpansive if,

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ K; (1.2)

(2) strongly pseudocontractive (Kim et al. [18]) if for all x, y ∈ K, there exists a constant k ∈ (0, 1) and
j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2; (1.3)

∗Corresponding author. Email address: mfonudo4sure@yahooh.com (Mfon O. Udo)
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(3) φ-strongly pseudocontractive (Kim et al. [18]) if for all x, y ∈ K, there exists a strictly increasing function
φ : [0,∞)→ [0,∞) with φ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖; (1.4)

It has been proved (see [21]) that the class of φ-strongly pseudocontractive mappings properly contains the
class of strongly pseudocontractive mappings. By taking Φ(s) = sφ(s), where φ : [0,∞) → [0,∞) is a
strictly increasing function with φ(0) = 0. However, the converse is not true.

(3) generalized Φ-pseudocontractive (Albert et al. [1], Chidume and Chidume [4]) if for all x, y ∈ K, there
exists a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 and j(x−y) ∈ J(x−y) satisfying

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − Φ(‖x− y‖); (1.5)

The class of generalized Φ-pseudocontractive mappings is also called uniformly pseudocontractive
mappings (see [4]). Clearly, the class of generalized Φ-pseudocontractive mappings properly contains the
class of φ-pseudocontractive mappings.

(4) generalized Φ-hemicontractive if F (T ) = {x ∈ K : Tx = x} 6= ∅, and there exists a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0, such that for all x ∈ K, p ∈ F (T ), there exists j(x− p) ∈
J(x− p) such that the following inequality holds:

〈Tx− p, j(x− p)〉 ≤ ‖x− p‖2 − Φ(‖x− p‖); (1.6)

Clearly, the class of generalized Φ-hemicontractive mappings includes the class of generalized
Φ-pseudocontractive mappings in which the fixed points set F (T ) is nonempty.

(5) asymptotically generalized Φ-pseudocontractive (Kim et al. [18]) with sequence {hn} ⊂ [1,∞) and
lim
n→

hn = 1, if for each x, y ∈ K, there exist a strictly increasing function Φ : [0,∞)→ [0,∞) satisfying

〈Tnx− Tny, j(x− y)〉 ≤ hn‖x− y‖2 − Φ(‖x− y‖). (1.7)

The class of asymptotically generalized Φ-pseudocontractive mappings is a generalization of the class
of strongly pseudocontractive maps and the class of φ-strongly peudocontractive maps. The class of
asymptotically generalized Φ-pseudocontractive mappings was introduced by Kim et al. [18] in 2009.

(6) asymptotically generalized Φ–hemicontractive with sequence {hn} ⊂ [1,∞) and lim
n→∞

hn = 1 if there

exist a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0, such that for each x ∈ K, p ∈
F (T ), there exists j(x− p) ∈ J(x− p) such that the following inequality holds:

〈Tn − p, j(x− p)〉 ≤ hn‖xn − p‖2 − Φ(‖x− p‖). (1.8)

Clearly, every asymptotically generalized Φ–pseudocontractive mapping with a nonempty fixed point set
is an asymptotically generalized Φ–hemicontractive mapping. It follows that the class of asymptotically
generalized Φ–hemicontractive mapping is most general of all the class of mappings mentioned above.

On the other hand, the class of asymptotically generalized Φ-hemicontractive has been studied by several
Authors (see for example, [3–5, 12, 13, 17, 20, 26, 30]).

The Mann iteration process is defined by the sequence {xn},{
x1 ∈ K,
xn+1 = (1− αn)xn + αnTxn,

∀n ≥ 1, (1.9)
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where {αn} is a sequence in [0,1].
Further, the Ishikawa iteration process is defined by the sequence {xn}

x1 ∈ K,
xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn

∀n ≥ 1, (1.10)

where {αn} and {βn} are sequences in [0,1]. This iteration process reduces to Mann iteration when βn = 0 for
all n ≥ 1.

In 2007, Argawal et al. [2] introduced the following iteration process:
x1 ∈ K,
xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn

∀n ≥ 1, (1.11)

where {αn} and {βn} are the sequences in [0,1]. They showed that their iteration process is independent of Mann
and Ishikawa and converges faster than both for contractions.

In 2007, Sahu et al. [22], [23] introduced the following S-iteration process:


x1 ∈ K,
xn+1 = Tyn,

yn = (1− βn)xn + βnTxn

∀n ≥ 1, (1.12)

where {βn} is the sequence in [0,1].
In 1991, Schu [27] considered the modified Mann iteration process which is a generalization of the Mann

iteration process as follows: {
x1 ∈ K,
xn+1 = (1− αn)xn + αnT

nxn,
∀n ≥ 1, (1.13)

where {αn} is a sequence in [0,1].
In 1994, Tan and Xu [28] studied the modified Ishikawa iteration process which is a generalization of the

Ishikawa iteration process as follows:
x1 ∈ K,
xn+1 = (1− αn)xn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn

∀n ≥ 1, (1.14)

where {αn} and {βn} are sequences in [0,1].
Again, in 2007 Argawal et al. [2] introduced the modified Argawal iteration process as follows:

x1 ∈ K,
xn+1 = (1− αn)Tnxn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn

∀n ≥ 1, (1.15)

The above processes deal with one mapping only. The case of two mappings in iterative processes has also
remained under study since Das and Debata [7] gave and studied a two mappings process. Also see, for
example, [15] and [25]. The problem of approximating common fixed points of finitely many mappings plays an
important role in applied mathematics, especially in the theory of evolution equations and the minimization
problems; see [8–10, 24], for example.
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The following Ishikawa-type iteration process for two mappings has aslo been studied by many authors
including [7, 15, 25, 26]. 

x1 ∈ K,
xn+1 = (1− αn)xn + αnT

nyn,

yn = (1− βn)xn + βnS
nxn

∀n ≥ 1, (1.16)

where {αn} and {βn} are sequences in [0,1].

In 2009, Khan et al. [16] modified the Argawal iteration process (1.15) to the case of two mappings as follows:
x1 ∈ K,
xn+1 = (1− αn)Tnxn + αnS

nyn,

yn = (1− βn)xn + βnT
nxn

∀n ≥ 1, (1.17)

{αn} and {βn} are two sequences in [0,1].

In 2013, Kang et al. [14] considered the following iteration process:
x1 ∈ K,
xn+1 = Syn,

yn = (1− βn)xn + βnTxn

∀n ≥ 1, (1.18)

where {βn} is the sequence in [0,1]. They proved the following results.

Theorem 1.2 (see [14]). Let K be a nonempty closed convex subset of a real Banach space E, let S : K → K

be a nonexpansive mapping, and let T : K → K be a Lipschitz strongly pseudocontractive mapping such that
p ∈ F (S)

⋂
F (T ) = {x ∈ K : Sx = Tx = x} and

‖x− Sy‖ ≤ ‖Sx− Sy‖, ‖x− Ty‖ ≤ ‖Tx− Ty‖ (1.19)

for all x, y ∈ K. Let {βn} be sequence in [0,1] satisfying

(i)
∞∑

n=1
βn =∞;

(ii) lim
n→∞

βn = 0.

For arbitrary x1 ∈ K, the iteration process defined by (1.18) converges strongly to a fixed point p of S and T .

In 2016, Gopinath et al. [11] considered the following modified S-iteration process:
x1 ∈ K,
xn+1 = Syn,

yn = (1− βn)xn + βnT
nxn

∀n ≥ 1, (1.20)

where {β} is the sequence in [0,1]. They proved the following result.

Theorem 1.3 (see [11]). Let K be a nonempty closed convex subset of a real Banach space E, let S : K → K be
a nonexpansive mapping, and let T : K → K be a uniform L-Lipschitzian, asymptotically demicontractive
mapping with sequence {hn} ⊂ [0, 1), lim

n→∞
hn = 1 such that

‖x− Sy‖ ≤ ‖Sx− Sy‖, x, y ∈ K (1.21)

‖x− Ty‖ ≤ ‖Tx− Ty‖, x, y ∈ K. (1.22)
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Assume that F (S)
⋂
F (T ) = {x ∈ K : Sx = Tx = x} 6= ∅. Let p ∈ F (S)

⋂
F (T ) and {βn} be sequences in

[0,1] satisfying

(i)
∞∑

n=1
βn =∞;

(ii) lim
n→∞

βn = 0.

For arbitrary x1 ∈ K, the iteration process defined by (1.20) converges strongly to a fixed point p of S and T .

In [14], Kang et al. introduced the following condition.

Remark 1.4. Let S, T : K → K be two mappings. The mappings S and T are said to satisfy condition (C3) if

‖x− Sy‖ ≤ ‖Sx− Sy‖, ‖x− Ty‖ ≤ ‖Tx− Ty‖ (1.23)

for all x, y ∈ K.
Inspired and motivated by the above results, we modify (1.20) for finite families of nonexpansive and

asymptotically generalized Φ-hemicontractive mappings in Banach spaces. The result in this paper can be view
as generalization and extension of the corresponding results of Kang et al. [14], Gopinath et al. [11] and several
others in the literature.

Definition 1.5. Let {Si}Ni=1 : K → K be finite family of nonexpansive mappings and {Ti}Ni=1 : K → K be
finite family of asymptotically generalized Φ–hemicontractive mappings. Define the sequence {xn} as follows:


x1 ∈ K,
xn+1 = Si(n)yn,

yn = (1− αn)xn + αnT
k(n)
i(n) xn

∀n ≥ 1, (1.24)

where {αn} is a sequence in [0,1] and n = (k − 1)N + i, i = i(n) ∈ {1, 2, ..., N}, k = k(n) ≥ 1 is some
positive integers and k(n)→∞ as n→∞.

Remark 1.6. If we take N = 1, then (1.24) reduces to (1.20). Again, if we take N = 1 and Tn = T for all
n ≥ 1, then (1.24) reduces to (1.18).

The purpose of this paper is to study the strong convergence of the new modified hybrid S-iteration process
(1.24) for the finite families of nonexpansive and asymptotically generalized Φ-hemicontractive mappings in
Banach space.

2. Preliminaries

In order to prove our main results, we also need the following lemmas.
Lemma 2.1 (see [3]). Let J : E → 2E

∗
be the normalized duality mapping. Then for any x, y ∈ E, one has

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y). (2.1)

Lemma 2.2 (see [29]). Let {ρn} and {θn} be nonnegative sequences satisfying

ρn+1 ≤ (1− θn)ρn + ωn (2.2)

where θn ∈ [0, 1],
∑

n≥1 θn =∞ and ωn = o(θn). Then lim
n→∞

ρn = 0.
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3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a real Banach space E. Let {Si}Ni=1 : K →
K be finite family of nonexpansive mappings and let {Ti}Ni=1 : K → K be finite family of asymptotically
generalized Φ–hemicontractive mappings with {Ti(K)}Ni=1 bounded and the sequence {hin} ⊂ [1,∞), where
lim
n→∞

hin = 1 for each 1 ≤ i ≤ N . Furthermore, let {Ti}Ni=1 be uniformly continuous. Assume that p ∈ F =⋂N
i=1 F (Si)

⋂⋂N
i=1 F (Ti)

= {x ∈ K : Six = Tix = x} 6= ∅, for each 1 ≤ i ≤ N . Let hn = sup{hin : 1 ≤ i ≤ N} and {αn} be a
sequence in [0,1] satisfying the following conditions:

(i)
∞∑

n=1
αn =∞,

(ii) lim
n→∞

αn = 0.

For arbitrary x1 ∈ K, let {xn} be the sequence iteratively defined by (1.24). Then the sequence {xn} converges
strongly at common fixed p of Si and Ti for each 1 ≤ i ≤ N .

Proof. Let p ∈ F and since Ti(K) is bounded, we set

M1 = ‖x0 − p‖+ sup
n≥1
‖T k(n)

i(n) xn − p‖, 1 ≤ i ≤ N.

It is clear that ‖x0 − p‖ ≤ M1. Let ‖xn − p‖ ≤ M1. Next we will prove that ‖xn+1 − p‖ ≤ M1. From (1.24),
we have

‖xn+1 − p‖ = ‖Sn(i)yn − p‖
= ‖Si(n)yn − Si(n)p‖
≤ ‖yn − p‖
= ‖(1− αn)xn + αnT

k(n)
i(n) xn − p‖

= ‖(1− αn)(xn − p) + αn(T
k(n)
i(n) xn − p)‖

≤ (1− αn)‖xn − p‖+ αn‖T k(n)
i(n) xn − p‖

≤ (1− αn)M1 + αnM1 = M1.

This implies that {‖xn − p‖} is bounded.
Let

M2 = sup
n≥1
‖xn − p‖+M1. (3.1)

From (1.24) and condition (ii), we obtain

‖xn − yn‖ = ‖xn − (1− αn)xn − αnT
k(n)
i(n) xn‖

= αn‖xn − T k(n)
i(n) xn‖

≤ αn(‖xn − p‖+ ‖T k(n)
i(n) xn − p‖)

≤ αn(M2 +M1)→ 0 as n→∞, (3.2)

which implies that {‖xn − yn‖} is bounded.
Again, let

M3 = sup
n≥1
‖xn − yn‖+M2.
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Since,

‖yn − p‖ = ‖yn − xn + xn − p‖
≤ ‖xn − yn‖+ ‖xn − p‖
≤ M3

therefore, {‖yn − p‖} is bounded.
Set

M4 = sup
n≥1
‖yn − p‖+ sup

n≥1
‖T k(n)

i(n) yn − p‖.

Denote

M = M1 +M2 +M3 +M4, obviously, M <∞.

Now from (1.24) for all n ≥ 1, we obtain

‖xn+1 − p‖2 = ‖Si(n)yn − p‖2 = ‖Si(n)yn − Si(n)p‖2 ≤ ‖yn − p‖2, (3.3)

thus by Lemma 2.1 and (1.8), we get

‖yn − p‖2 = ‖(1− αn)xn + αnT
k(n)
i(n) xn − p‖

2

= ‖(1− αn)(xn − p) + αn(T
k(n)
i(n) xn − p)‖

2

≤ (1− αn)2‖xn − p‖2 + 2αn〈T k(n)
i(n) xn − p, j(yn − p)〉

= (1− αn)2‖xn − p‖2 + 2αn〈T k(n)
i(n) xn − T

k(n)
i(n) yn + T

k(n)
i(n) yn − p, j(yn − p)〉

= (1− αn)2‖xn − p‖2 + 2αn〈T k(n)
i(n) xn − T

k(n)
i(n) yn, j(yn − p)〉

+2αn〈T k(n)
i(n) yn − p, j(yn − p)〉

≤ (1− αn)2‖xn − p‖2 + 2αn‖T k(n)
i(n) xn − T

k(n)
i(n) yn‖‖yn − p‖

+2αn{hn‖yn − p‖2 − Φ(‖yn − p‖)}
= (1− αn)2‖xn − p‖2 + 2αnδin

+2αnhn‖yn − p‖2 − 2αnΦ(‖yn − p‖), (3.4)

where

δin = M‖T k(n)
i(n) xn − T

k(n)
i(n) yn‖, (1 ≤ i ≤ N).

From (3.2), we have

lim
n→∞

‖xn − yn‖ = 0.

From the uniform continuity of Ti , (1 ≤ i ≤ N) leads to

lim
n→∞

‖T k(n)
i(n) xn − T

k(n)
i(n) yn‖ = 0,

thus, we have

lim
n→∞

δin = 0.

78



Approximation of common fixed points of finite family of Nonexpansive...

Also,

‖yn − p‖2 = ‖(1− αn)xn + αnT
k(n)
i(n) xn − p‖

2

= ‖(1− αn)(xn − p) + αn(T
k(n)
i(n) xn − p)‖

2

≤ (1− αn)‖xn − p‖2 + αn‖T k(n)
i(n) xn − p‖

2

≤ ‖xn − p‖2 +M2αn, (3.5)

where the first inequality holds by the convexity of ‖ · ‖2.
Now substituting (3.5) into (3.4), we obtain

‖yn − p‖2 ≤ (1− αn)2‖xn − p‖2 + 2αnδin

+2αnhn(‖xn − p‖2 +M2αn)− 2αnΦ(‖yn − p‖)
= (1− 2αn + α2

n)‖xn − p‖2 + 2αnhn‖xn − p‖2 + 2hnM
2α2

n

+2αnδin − 2αnΦ(‖yn − p‖)
= (1− 2αn)‖xn − p‖2 + (α2

n + 2αnhn)‖xn − p‖2 + 2hnM
2α2

n

+2αnδin − 2αnΦ(‖yn − p‖)
≤ (1− 2αn)‖xn − p‖2 + (α2

n + 2αnhn)M2 + 2hnM
2α2

n

+2αnδin − 2αnΦ(‖yn − p‖)
≤ (1− 2αn)‖xn − p‖2 + αn[M2(αn + 2hn + 2αnhn) + 2δin]. (3.6)

Hence, from (3.3) and (3.6) we obtain

‖xn+1 − p‖2 ≤ (1− 2αn)‖xn − p‖2 + αn[M2(αn + 2hn + 2αnhn) + δin].

For all n ≥ 1, put

ρn = ‖xn − p‖,
θn = 2αn,

ωn = αn[M2(αn + 2hn + 2αnhn) + δin],

then according to Lemma 2.2, we obtain that

lim
n→∞

‖xn − p‖ = 0. (3.7)

Completing the proof of Theorem 3.1.

Corollary 3.2. Let K be a nonempty closed convex subset of a real Banach space E. Let S : K → K be a
nonexpansive mapping and let T : K → K be an asymptotically generalized Φ–hemicontractive mappings with
T (K) bounded and the sequence {hn} ⊂ [1,∞), where lim

n→∞
hn = 1. Furthermore, let T be uniformly

continuous. Assume that p ∈ F = F (S)
⋂
F (T ) = {x ∈ K : Sx = Tx = x} 6= ∅. Let {αn} be a sequence in

[0,1] satisfying the following conditions:

(i)
∞∑

n=1
αn =∞,

(ii) lim
n→∞

αn = 0.
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For arbitrary x1 ∈ K, let {xn} be a sequence iteratively defined by
x1 ∈ K,
xn+1 = Syn,

yn = (1− αn)xn + αnTxn

∀n ≥ 1. (3.8)

Then the sequence {xn} converges strongly at common fixed p of S and T .
Proof. Taking N = 1 and Tn = T in Theorem 3.1, the conclusion can be obtained immediately.

Remark 3.4.

(i) Corollary 3.3 recaptures the results of Kang et al. [14]. It follows that the result Kang et al. [14] is a special
case of our result. Hence, our result extends and improves the results of Kang et al [14] and many others
in the literature.

(ii) In our result the necessity of condition (C3) as considered by [14] and [11] is not required to prove our
strong convergence theorem.

The above results are also valid for Lipschitz asymptotically generalized Φ-hemicontractive mappings.
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1. Introduction and Background

In 1989, Ganster and Reilly [4] studied the notion of locally closed sets in topological spaces, which is defined
by Bourbaki [3] as a subset of a topological space (X, τ) is locally closed if it is the intersection of an open and
a closed set of X .

In this paper we have extend the notion of locally closed sets in the area of binary soft topological spaces.
The notion of binary soft topological spaces is one of the latest topics, which is a combination of two popular
ideas, binary topological spaces and soft topological spaces. Jothi and Thangavelu [5] introduced the concept of
topology between two sets, known as binary topology. Binary topology is a structure which carries the subsets
of two universal sets. The pioneer work of Molodtsov [7] on soft sets act as a successful mathematical tool
over fuzzy mathematics, interval mathematics and theory of probability. In 2016, Acikgoz and Tas [1] defined
binary soft sets as, (A, ρ) is a binary soft set over the two universal sets U1, U2 if A : ρ → P (U1) × P (U2),
A(%) = (X,Y ) for every % ∈ ρ and X ⊆ U1, Y ⊆ U2, where P (U1) and P (U2) represents the power sets
of U1 and U2 respectively and ρ is a set of constraints. Further, some set operations on binary soft sets namely,
complement of a binary soft set, union, intersection and difference of binary soft sets are defined, and also, the
notions of binary soft subset, binary absolute and null soft sets are initiated by [1].

1. (G, ρ) is called a binary soft subset of (H, ρ) overU1, U2 ifX1 ⊆ X2 and Y1 ⊆ Y2 whereG(%) = (X1, Y1)

and H(%) = (X2, Y2) for all % ∈ ρ and is denoted by (G, ρ) ⊆ (H, ρ).

∗Corresponding author. Email addresses: pgpatil@kud.ac.in (P. G. Patil), nagashree.bhat.k@gmail.com (Nagashree N. Bhat)
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2. (G, ρ) over U1, U2 is called a binary absolute soft set if G(%) = (U1, U2) for all % ∈ ρ and is denoted by ˜̃ρ.

3. (H, ρ) over U1, U2 is called a binary null soft set if H(%) = (∅, ∅) for all % ∈ ρ and is denoted by
˜̃∅.

In 2017, Benchalli et al. [2] coined the concept of binary soft topological spaces and stated the definition of
binary soft topology as, a collection τ of binary soft subsets over U1, U2 is a binary soft topology over U1, U2 if˜̃∅, ˜̃ρ ∈ τ and τ is closed under arbitrary union and finite intersection of binary soft sets. The members of τ are
binary soft open sets and their family is denoted by BSO(U1, U2). The complements of binary soft open sets
are binary soft closed sets, and the structure (U1, U2, τ, ρ) is a binary soft topological space. Also the notions of
binary soft interior and binary soft closure of binary soft sets are introduced by [2]. Let (A, ρ) be a binary soft
subset in (U1, U2, τ, ρ), then:

1. binary soft interior of (A, ρ) is denoted by (A, ρ)} and is given by the union of all binary soft open sets
contained in (A, ρ).

2. binary soft closure of (A, ρ) is denoted by (A, ρ) and is given by the intersection of all binary soft closed
sets containing (A, ρ).

Patil et al. [9], [10] studied new separation axioms in binary soft topological spaces as well as introduced and
investigated binary soft functions in binary soft topological spaces. A binary soft function f : (U1, U2, τ, ρ) →
(V1, V2, η, ω) is called binary soft continuous [10], if f−1(V, ω) ∈ BSO(U1, U2) for all (V, ω) ∈ BSO(V1, V2).
In continuation, Patil et al. [11] studied the compactness and connectedness properties of binary soft topological
spaces by introducing the notion of infiniteness in binary soft sets.

The main aim of this work is to study the concept of binary soft locally closed sets and hence to define binary
soft submaximal spaces. A new type of binary soft functions namely, BSLC-continuous and BSLC-irresolute
functions are defined, which are the generalizations of binary soft continuity. Further, the notions of binary
soft contra locally closed sets are introduced and via these ideas BScoLC-continuous and BScoLC-irresolute
functions are introduced.

2. Binary Soft Locally Closed Sets

Definition 2.1. A binary soft set (L, ρ) over U1, U2 is said to be a binary soft locally closed set in (U1, U2, η, ρ)

if (L, ρ) = (O, ρ) ∩ (C, ρ), where (O, ρ), (C, ρ)′ ∈ η.

The family of all binary soft locally closed sets in (U1, U2, η, ρ) is denoted by BSLC(U1, U2).

Example 2.2. Let U1 = {a1, a2}, U2 = {b1, b2} and ρ = {%1, %2} with

η = {˜̃∅, ˜̃ρ, {(%1, ({a1}, {b1})), (%2, ({a1}, {b1}))}, {(%1, ({a2}, {b1})), (%2, ({a2}, {b1}))},
{(%1, ({a1, a2}, {b1})), (%2, ({a1, a2}, {b1}))}, {(%1, (∅, {b1})), (%2, (∅, {b1}))}}.

Then, (U1, U2, η, ρ) is a binary soft topological space. Here,

BSLC(U1, U2) = {
˜̃∅, ˜̃ρ, {(%1, ({a1}, {b1})), (%2, ({a1}, {b1}))}, {(%1, ({a2}, {b1})), (%2, ({a2}, {b1}))},
{(%1, ({a1, a2}, {b1})), (%2, ({a1, a2}, {b1}))}, {(%1, (∅, {b1})), (%2, (∅, {b1}))},
{(%1, ({a2}, {b2})), (%2, ({a2}, {b2}))}, {(%1, ({a1}, {b2})), (%2, ({a1}, {b2}))},
{(%1, (∅, {b2})), (%2, (∅, {b2}))}{(%1, ({a1, a2}, {b2})), (%2, ({a1, a2}, {b2}))},
{(%1, ({a1}, ∅)), (%2, ({a1}, ∅))}, {(%1, ({a2}, ∅)), (%2, ({a2}, ∅))},
{(%1, ({a1, a2}, ∅)), (%2, ({a1, a2}, ∅))}}.

Remark 2.3. Every binary soft open and binary soft closed sets are binary soft locally closed.

Remark 2.4. A binary soft subset (L, ρ) over U1, U2 is binary soft locally closed in (U1, U2, η, ρ) if and only if
(L, ρ)′ is the union of binary soft open and binary soft closed set.
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Remark 2.5. From Example 2.2, it is clear that the complement of a binary soft locally closed set need not be
binary soft locally closed.

Theorem 2.6. For a binary soft subset (L, ρ) of (U1, U2, η, ρ), the following statements are equivalent:

1. (L, ρ) is binary soft locally closed.

2. (L, ρ) = (O, ρ) ∩ (L, ρ) for some (O, ρ) ∈ η.

3. (L, ρ) \ (L, ρ) is binary soft closed.

4. (L, ρ) ∪
(
(L, ρ)

)′
is binary soft open.

Proof. (1)⇒ (2)

Let (L, ρ) = (O, ρ) ∩ (C, ρ) for some (O, ρ), (C, ρ)′ ∈ η.
Since (L, ρ) ⊆ (O, ρ) and (L, ρ) ⊆ (L, ρ), we have (L, ρ) ⊆ (O, ρ) ∩ (L, ρ).
Again, (L, ρ) ⊆ (C, ρ) = (C, ρ). Therefore, (O, ρ) ∩ (L, ρ) ⊆ (O, ρ) ∩ (C, ρ) = (L, ρ).
Hence, (L, ρ) = (O, ρ) ∩ (L, ρ).
(2)⇒ (1)

(L, ρ) is binary soft closed. Therefore, (O, ρ) ∩ (L, ρ) = (L, ρ) is binary soft locally closed.
(2)⇒ (3)

(L, ρ) \ (L, ρ) = (L, ρ) \
[
(O, ρ) ∩ (L, ρ)

]
=
[
(L, ρ) \ (O, ρ)

]
∪ ˜̃∅ = (L, ρ) ∩ (O, ρ)′.

Therefore, (L, ρ) \ (L, ρ) is binary soft closed.
(3)⇒ (2)

Let (O, ρ) =
[
(L, ρ) \ (L, ρ)

]′
. Therefore, (O, ρ) ∈ η.

Now,

(O, ρ) ∩ (L, ρ) =
[
(L, ρ) \ (L, ρ)

]′
∩ (L, ρ) =

[
(L, ρ) ∩ (L, ρ)′

]′
∩ (L, ρ) =

[
(L, ρ)

′
∪ (L, ρ)

]
∩ (L, ρ) =˜̃∅ ∪ [(L, ρ) ∩ (L, ρ)

]
= (L, ρ).

(3)⇒ (4)

Let (C, ρ) = (L, ρ) \ (L, ρ). Therefore, (C, ρ)′ ∈ η.

That is, (C, ρ)′ =
[
(L, ρ) \ (L, ρ)

]′
=
[
(L, ρ) ∩ (L, ρ)′

]′
= (L, ρ) ∪

(
(L, ρ)

)′
is binary soft open.

(4)⇒ (3)

Let (O, ρ) = (L, ρ) ∪
(
(L, ρ)

)′
be binary soft open.

Then, (O, ρ)′ =
[
(L, ρ) ∪

(
(L, ρ)

)′]′
= (L, ρ) ∩ (L, ρ)′ = (L, ρ) \ (L, ρ) is binary soft closed.

�

Remark 2.7. The family BSLC(U1, U2) is closed under finite intersection.

Remark 2.8. Union of two binary soft locally closed sets need not be binary soft locally closed.

In Example 2.2,
{(%1, ({a1}, {b1})), (%2, ({a1}, {b1}))}, {(%1, ({a1}, {b2})), (%2, ({a1}, {b2}))} ∈ BSLC(U1, U2). But
{(%1, ({a1}, {b1, b2})), (%2, ({a1}, {b1, b2}))} /∈ BSLC(U1, U2).

Theorem 2.9. If (A, ρ), (B, ρ) ∈ BSLC(U1, U2) are binary soft separated, then, (A, ρ) ∪ (B, ρ) ∈
BSLC(U1, U2).
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Proof. Since, (A, ρ), (B, ρ) ∈ BSLC(U1, U2), there exist (U, ρ), (V, ρ) ∈ η such that
(A, ρ) = (U, ρ) ∩ (A, ρ) and (B, ρ) = (V, ρ) ∩ (B, ρ).
Therefore, (A, ρ) ∪ (B, ρ) = [(U, ρ) ∪ (V, ρ)] ∩ [(A, ρ) ∪ (B, ρ)] ∈ BSLC(U1, U2). �

Theorem 2.10. In a binary soft topological space (U1, U2, η, ρ), let (A, ρ) ∈ BSLC(U1, U2). If (B, ρ) ⊆ (A, ρ)

and (B, ρ) ∈ BSLC(A, ηA, ρ), then, (B, ρ) ∈ BSLC(U1, U2).

Proof. Since (B, ρ) ∈ BSLC(A, ηA, ρ), (B, ρ) = (AO, ρ) ∩ (AC, ρ) for some (AO, ρ), (AC, ρ)′ ∈ ηA, where
(O, ρ) ∩ (C, ρ)′ ∈ η.
Therefore, (B, ρ) = [(A, ρ) ∩ (O, ρ)] ∩ [(A, ρ) ∩ (C, ρ)] = (A, ρ) ∩ [(O, ρ) ∩ (C, ρ)].
By Remark 2.7, (B, ρ) ∈ BSLC(U1, U2). �

Theorem 2.11. If (A, ρ) ⊆ (B, ρ) in (U1, U2, η, ρ) and (B, ρ) ∈ BSLC(U1, U2), then there exist (U, ρ) ∈
BSLC(U1, U2) such that (A, ρ) ⊆ (U, ρ) ⊆ (B, ρ).

Proof. (B, ρ) = (O, ρ) ∩ (B, ρ) for some (O, ρ) ∈ τ . Since (A, ρ) ⊆ (B, ρ) ⊆ (O, ρ) and (A, ρ) ⊆ (A, ρ), we
get (A, ρ) ⊆ (O, ρ) ∩ (A, ρ) = (U, ρ), say. Thus, (U, ρ) ∈ BSLC(U1, U2) and (A, ρ) ⊆ (U, ρ) ⊆ (B, ρ). �

Definition 2.12. A binary soft topological space (U1, U2, η, ρ) is binary soft submaximal if and only if every
binary soft subset over U1, U2 is binary soft locally closed.

Definition 2.13. A binary soft subset (A, ρ) of a binary soft topological space (U1, U2, η, ρ) is said to be

1. binary soft semi-open if (A, ρ) ⊆ ((A, ρ)}).

2. binary soft pre-open if (A, ρ) ⊆
(
(A, ρ)

)}
[6].

3. binary soft α-open if (A, ρ) ⊆
(
((A, ρ)})

)}
.

4. binary soft β-open or binary soft semi-pre-open if (A, ρ) ⊆
(
(A, ρ)

)}
.

The respective complements of above binary soft sets are known as binary soft semi-closed, binary soft pre-closed
[6], binary soft α-closed and binary soft β-closed or binary soft semi-pre-closed sets.

Definition 2.14. A binary soft function f : (U1, U2, τ, ρ) → (V1, V2, η, ω) is said to be a binary soft semi-
continuous (binary soft pre-continuous, binary soft α-continuous, binary soft β-continuous respectively) if the
binary soft inverse image of any binary soft open set in (V1, V2, η, ω) is binary soft semi-open (binary soft pre-
open, binary soft α-open, binary soft β-open respectively).

Theorem 2.15. For a binary soft subset (A, ρ) of (U1, U2, τ, ρ), the following statements are equivalent:

1. (A, ρ) ∈ BSO(U1, U2).

2. (A, ρ) ∈ BSLC(U1, U2) and binary soft α-open.

3. (A, ρ) ∈ BSLC(U1, U2) and binary soft pre-open.

Proof. (1)⇒ (2) and (2)⇒ (3) are obvious.
(3)⇒ (1)

(A, ρ) ⊆
(
(A, ρ)

)}
and (A, ρ) = (U, ρ) ∩ (A, ρ) for some (U, ρ) ∈ BSO(U1, U2).

Now, (A, ρ) ⊆ (U, ρ) ∩
(
(A, ρ)

)}
= (U, ρ)} ∩

(
(A, ρ)

)}
=
(
(U, ρ) ∩ (A, ρ)

)}
= (A, ρ)}.

Therefore, (A, ρ) ∈ BSO(U1, U2). �
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3. Binary Soft Locally Closed Continuous Maps

Definition 3.1. A binary soft function f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) is said to be a binary soft locally closed
continuous (briefly, BSLC-continuous) map if f−1(V, ω) ∈ BSLC(U1, U2) for every (V, ω) ∈ BSO(V1, V2).

Definition 3.2. A binary soft function f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) is said to be a binary soft locally closed
irresolute (briefly, BSLC-irresolute) map if f−1(V, ω) ∈ BSLC(U1, U2) for every (V, ω) ∈ BSLC(V1, V2).

Theorem 3.3. Every binary soft continuous function is BSLC-irresolute, but not conversely.

Proof. Let f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) be binary soft continuous. Then, for any (V, ω) ∈ BSO(V1, V2) ⊆
BSLC(V1, V2), f−1(V, ω) ∈ BSO(U1, U2) ⊆ BSLC(U1, U2). Thus, f is BSLC-irresolute.

Example 3.4. Let U1 = {a1, a2}, U2 = {b1, b2}, ρ = {1, 2} and V1 = {x1, x2}, V2 = {y1, y2}, ω = {i, ii}
with τ = {˜̃∅, ˜̃ρ, {(1, ({a1}, {b1})), (2, ({a1, a2}, {b2}))}} and η = {˜̃∅, ˜̃ω, {(i, ({x1}, {y2})), (ii, (∅, {y1}))}}.
Define f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) as u1 : U1 → V1, u2 : U2 → V2 and p : ρ→ ω so that
u1(a1) = x2, u1(a2) = x1, u2(b1) = y1, u2(b2) = y2, p(1) = i, p(2) = ii.

Then, BSLC(U1, U2) = {
˜̃∅, ˜̃ρ, {(1, ({a1}, {b1})), (2, ({a1, a2}, {b2}))}, {(1, ({a2}, {b2})), (2, (∅, {b1}))}}

and BSLC(V1, V2) = {
˜̃∅, ˜̃ω, {(i, ({x1}, {y2})), (ii, (∅, {y1}))}, {(i, ({x2}, {y1})), (ii, ({x1, x2}, {y2}))}}.

Now, f is BSLC-irresolute but not binary soft continuous.

�

Theorem 3.5. Every BSLC-irresolute map is BSLC-continuous, but not conversely.

Proof. Let f : (U1, U2, τ, ρ) → (V1, V2, η, ω) be BSLC-irresolute. Then, for any (V, ω) ∈ BSO(V1, V2) ⊆
BSLC(V1, V2), f−1(V, ω) ∈ BSLC(U1, U2). Thus, f is BSLC-continuous.

Example 3.6. Let U1 = {a1, a2}, U2 = {b1, b2}, ρ = {1, 2} and V1 = {x1, x2}, V2 = {y1, y2, y3}, ω = {i, ii}
with
τ = {˜̃∅, ˜̃ρ, {(1, ({a1}, {b1})), (2, ({a1}, {b1}))}, {(1, ({a2}, {b1})), (2, ({a2}, {b1}))},
{(1, ({a1, a2}, {b1})), (2, ({a1, a2}, {b1}))}, {(1, (∅, {b1})), (2, (∅, {b1}))}} and

η = {˜̃∅, ˜̃ω, {(i, ({x1}, ∅)), (ii, ({x1}, ∅))}}.
Define f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) as u1 : U1 → V1, u2 : U2 → V2 and p : ρ→ ω so that
u1(a1) = x1, u1(a2) = x2, u2(b1) = y1, u2(b2) = y2, p(1) = i, p(2) = ii.
Now, f is BSLC-continuous but not BSLC-irresolute.
Because, {(i, ({x2}, {y1, y2})), (ii, ({x2}, {y1, y2}))} ∈ BSLC(V1, V2) but f−1 ({(i, ({x2}, {y1, y2})),
(ii, ({x2}, {y1, y2}))}) = {(1, ({a2}, {b1, b2})), (2, ({a2}, {b1, b2}))} /∈ BSLC(U1, U2)

�

Theorem 3.7. A binary soft topological space (U1, U2, τ, ρ) is binary soft submaximal if and only if every binary
soft function f : (U1, U2, τ, ρ) → (V1, V2, η, ω) is BSLC-continuous, where (V1, V2, η, ω) is any binary soft
topological space.

Proof. Consider any (V, ω) ∈ BSO(V1, V2). Then, for any f : (U1, U2, τ, ρ) → (V1, V2, η, ω), f−1(V, ω) ∈
BSLC(U1, U2) as (U1, U2, τ, ρ) is binary soft submaximal. Therefore, f is BSLC-continuous.
Conversely, take any binary soft subset (A, ρ) over U1, U2. Then, there exist some (V, ω) ∈ BSO(V1, V2) and
BSLC-continuous function f so that f−1(V, ω) = (A, ρ) ∈ BSLC(U1, U2). Hence, (U1, U2, τ, ρ) is binary soft
submaximal. �
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Theorem 3.8. Let f : (U1, U2, τ, ρ) → (V1, V2, η, ω) and g : (V1, V2, η, ω) → (W1,W2, µ, σ) be two binary
soft functions. Then,

1. g ◦ f is BSLC-irresolute if both f and g are BSLC-irresolute.

2. g ◦ f is BSLC-continuous if f is BSLC-irresolute and g is BSLC-continuous.

Proof. (1) Let f and g are BSLC-irresolute and (W,σ) ∈ BSLC(W1,W2). Since g is BSLC-irresolute,
g−1(W,σ) ∈ BSLC(V1, V2). Further, since f is BSLC-irresolute, f−1(g−1(W,σ)) = (g ◦ f)−1(W,σ) ∈
BSLC(U1, U2). Hence, g ◦ f is BSLC-irresolute.

(2) Let f be BSLC-irresolute, g is BSLC-continuous and (W,σ) ∈ BSO(W1,W2). Since g is
BSLC-continuous, g−1(W,σ) ∈ BSLC(V1, V2). Further, since f is BSLC-irresolute, f−1(g−1(W,σ)) = (g ◦
f)−1(W,σ) ∈ BSLC(U1, U2). Hence, g ◦ f is BSLC-continuous. �

Proposition 3.9. Let f : (U1, U2, τ, ρ) → (V1, V2, η, ω) be a binary soft function. Then f is binary soft
continuous if and only if

1. f is both BSLC-continuous and binary soft α-continuous.

2. f is both BSLC-continuous and binary soft pre-continuous.

Definition 3.10. If (A, ρ) ∈ BSLC(U1, U2) in (U1, U2, τ, ρ) then (A, ρ)′ is called a binary soft contra locally
closed set.

The family of all binary soft contra locally closed sets is denoted by BSLC ′(U1, U2).

Remark 3.11. If (B, ρ) ∈ BSLC ′(U1, U2), then there exist some (G, ρ), (H, ρ)′ ∈ BSO(U1, U2) so that
(B, ρ) = (G, ρ) ∪ (H, ρ).

Example 3.12. In Example 2.2,

BSLC ′(U1, U2) = {
˜̃∅, ˜̃ρ, {(%1, ({a1}, {b1})), (%2, ({a1}, {b1}))}, {(%1, ({a2}, {b1})), (%2, ({a2}, {b1}))},

{(%1, ({a1, a2}, {b1})), (%2, ({a1, a2}, {b1}))}, {(%1, (∅, {b1})), (%2, (∅, {b1}))},
{(%1, ({a2}, {b2})), (%2, ({a2}, {b2}))}, {(%1, ({a1}, {b2})), (%2, ({a1}, {b2}))},
{(%1, (∅, {b2})), (%2, (∅, {b2}))}{(%1, ({a1, a2}, {b2})), (%2, ({a1, a2}, {b2}))},
{(%1, ({a1}, {b1, b2})), (%2, ({a1}, {b1, b2}))}, {(%1, ({a2}, {b1, b2})), (%2, ({a2}, {b1, b2}))},
{(%1, (∅, {b1, b2})), (%2, (∅, {b1, b2}))}}.

Remark 3.13. Every binary soft open and binary soft closed sets are binary soft contra locally closed sets.

Theorem 3.14. A binary soft set (A, ρ) ∈ BSLC ′(U1, U2) if and only if (A, ρ) = (A, ρ)} ∪ (C, ρ) for some
binary soft closed set (C, ρ).

Proof. We have, (A, ρ) = (O, ρ) ∪ (C, ρ) for some (O, ρ), (C, ρ)′ ∈ BSO(U1, U2). Since, (C, ρ) ⊆ (A, ρ) and
(A, ρ)} ⊆ (A, ρ), we get (A, ρ)} ∪ (C, ρ) ⊆ (A, ρ).
Also, (O, ρ) ⊆ (A, ρ)} as (O, ρ) ⊆ (A, ρ). Now, (O, ρ) ∪ (C, ρ) = (A, ρ) ⊆ (A, ρ)} ∪ (C, ρ).
Hence, (A, ρ) = (A, ρ)} ∪ (C, ρ). �

Theorem 3.15. If a binary soft contra locally closed set is binary soft pre-closed, then it is binary soft closed.

Proof. We have, (A, ρ) = (A, ρ)} ∪ (C, ρ) for some binary soft closed set (C, ρ) as well as (A, ρ)} ⊆ (A, ρ).
Now, (C, ρ) ∪ (A, ρ)} ⊆ (A, ρ), since (C, ρ) is binary soft closed. Therefore, (C, ρ) ∪ (A, ρ)} = (A, ρ) ⊆
(A, ρ). Hence, (A, ρ) is binary soft closed. �
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Remark 3.16. The family BSLC ′(U1, U2) is closed under union.

Remark 3.17. Intersection of two binary soft contra locally closed sets need not be binary soft contra locally
closed.

In Example 2.2,
{(%1, ({a1}, {b1})), (%2, ({a1}, {b1}))}, {(%1, ({a1}, {b2})), (%2, ({a1}, {b2}))} ∈ BSLC ′(U1, U2). But
{(%1, ({a1}, ∅)), (%2, ({a1}, ∅))} /∈ BSLC ′(U1, U2).

Definition 3.18. A binary soft function f : (U1, U2, τ, ρ) → (V1, V2, η, ω) is called a binary soft contra
locally closed continuous (briefly, BScoLC-continuous) function if for any (V, ω) ∈ BSO(V1, V2), f−1(V, ω) ∈
BSLC ′(U1, U2).

Definition 3.19. A binary soft function f : (U1, U2, τ, ρ) → (V1, V2, η, ω) is called a binary soft contra
locally closed irresolute (briefly, BScoLC-irresolute) function if for any (V, ω) ∈ BSLC(V1, V2), f−1(V, ω) ∈
BSLC ′(U1, U2).

Theorem 3.20. Every binary soft continuous function is BScoLC-irresolute.

Theorem 3.21. Every BScoLC-irresolute function is BScoLC-continuous.

Remark 3.22. The binary soft functions BSLC-continuous and BScoLC-continuous are independent.

Example 3.23. In Example 3.6, f is BSLC-continuous but not BScoLC-continuous.
Further, consider U1 = {a1, a2}, U2 = {b1, b2}, ρ = {1, 2} and
V1 = {x1, x2}, V2 = {y1, y2}, ω = {i, ii} with

τ = {˜̃∅, ˜̃ρ, {(1, ({a1}, {b1})), (2, ({a1}, {b1}))}, {(1, ({a2}, {b1})), (2, ({a2}, {b1}))},
{(1, ({a1, a2}, {b1})), (2, ({a1, a2}, {b1}))}, {(1, (∅, {b1})), (2, (∅, {b1}))}}

and η = {˜̃∅, ˜̃ω, {(i, ({x1}, {y1, y2})), (ii, ({x1}, {y1, y2}))}}.
Define f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) as u1 : U1 → V1, u2 : U2 → V2 and p : ρ→ ω so that
u1(a1) = x1, u1(a2) = x2, u2(b1) = y1, u2(b2) = y1, p(1) = i, p(2) = ii.
Now, f is BScoLC-continuous but not BSLC-continuous.

Remark 3.24. The binary soft functions BSLC-irresolute and BScoLC-irresolute are independent.

Example 3.25. Let U1 = {a1, a2}, U2 = {b1, b2}, ρ = {1, 2};
V1 = {x1, x2}, V2 = {y1, y2}, ω = {i, ii} and
W1 = {c1, c2}, W2 = {d1, d2}, σ = {i, ii} with

τ = {˜̃∅, ˜̃ρ, {(1, ({a1}, {b1})), (2, ({a1}, {b1}))}, {(1, ({a2}, {b1})), (2, ({a2}, {b1}))},
{(1, ({a1, a2}, {b1})), (2, ({a1, a2}, {b1}))}, {(1, (∅, {b1})), (2, (∅, {b1}))}};

η = {˜̃∅, ˜̃ω, {(i, ({x1}, ∅)), (ii, ({x1}, ∅))}} and

µ = {˜̃∅, ˜̃σ, {(i, ({c1}, {d1, d2})), (ii, ({c1}, {d1, d2}))}}.
Define f : (U1, U2, τ, ρ)→ (V1, V2, η, ω) as u1 : U1 → V1, u2 : U2 → V2 and p : ρ→ ω

so that u1(a1) = x2, u1(a2) = x1, u2(b1) = y1, u2(b2) = y2, p(1) = ii, p(2) = i.
Then, f is BSLC-irresolute but not BScoLC-irresolute.
Define g : (U1, U2, τ, ρ)→ (W1,W2, µ, σ) as u1 : U1 →W1, u2 : U2 →W2 and p : ρ→ σ

so that u1(a1) = c1, u1(a2) = c2, u2(b1) = d2, u2(b2) = d1, p(1) = i, p(2) = ii.
Then, f is BScoLC-irresolute but not BSLC-irresolute.
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1. Introduction and Background

Considering heat equation in a domain Ω in R3
vs = ∆v (s, x) ∈ Q∞
v = 0 (s, x) ∈ Σ∞

v(0, x) = v0(x) x ∈ Ω,

(1.1)

where ∆ is the Laplace operator, Q∞ = R+×Ω and Σ∞ = R+×Γ. We rewrite this partial differential equation
as an ordinary differential equation of the form {

v
′

= Av

v(0) = v0

(1.2)

in an infinite-dimensional Banach space X which is chosen suitably, so that the unbounded linear operator
A : D(A) ⊆ X → X generate a C0-Semigroup of contractions.

∗Corresponding author. Email address: olaakinyele04@gmail.com (Akinola Yussuff Akinyele)
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Let X be a Banach space, Xn ⊆ X be a finite set, H is a Hibert space, (T (s))s≥0 is a C0-semigroup, ω −
ORCPn is the ω-order reversing partial contraction mapping, Mm be matrix, Pn is a partial transformation
semigroup,L(X) is a bounded linear operator on X , ρ(A) is a resolvent set, σ(A) is the spectrum and A ∈
ω −ORCPn is a generator of C0-semigroup.
Akinyele et al. [1], introduced some results on perturbation of infinitesimal generator in semigroup and also in
[2], Akinyele et al. obtained infinitesimal generator of Mean Ergodic theorem in semigroup of linear operator.
Amann [3], established and solved some linear quasilinear parabolic problems and also in [4], Amann introduced
measures to a linear parabolic problems. Arendt [5], introduced some Laplace transform in vector-valued and
Cauchy problems. Balakrishnan [6], obtained an operator in infinitesimal generator of semigroup. Banach [7],
established and introduced the concept of Banach spaces. Barbu [8], deduced some boundary problems for partial
differential equation. Carja and Vrabie [9], obtained some results on new viability for semilinear differential
insertion. Rauf and Akinyele [10], obtained ω-order-preserving partial contraction mapping and established the
properties, also in [11], Rauf et al. established some stability and spectra properties on semigroup of linear
operator. Vrabie [12], deduced some results of C0-semigroup and its applications. Yosida [13], established made
a representation and differentiability of one-parameter semigroup.

2. Preliminaries

Definition 2.1 (ω-ORCPn) [10]
A transformation α ∈ Pn is called ω-order-reversing partial contraction mapping if
∀x, y ∈Domα : x ≤ y =⇒ αx ≥ αy and at least one of its transformation must satisfy αy = y such that
T (s+ t) = T (s)T (t) whenever t, s > 0 and otherwise for T (0) = I .
Definition 2.2 (C0-semigroup) [12]
A C0-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.3 (C0-semigroup of contraction)[12]
A C0-semigroup {T (s); s ≥ 0} is called of type (ζ, ω) with ζ ≥ 1 and ω ∈ R, if for each t ≥ 0, we have
‖T (s)‖L(X) ≤ ζetω .

A C0-semigroup {T (s); s ≥ 0} is called a C0-semigroup of contraction or non expansive operator, if it is of type
1 < α < 0 for all α ∈ R, and for each s ≥ 0, we have
‖T (s)‖L(X) ≤ 1.

Definition 2.4 (Differential operator) [8]
A differential operator is an operator defined as a function of the differentiation operator.

Example 1
Consider the 3× 3 matrix [Mm(C)], and for each β > 0 such that β ∈ ρ(A), where ρ(A) is a resolvent set on X .
Suppose

A =

3 2 1

2 2 1

3 2 2


and assume T (t) = etAβ , then

etAβ =

e3tβ e2tβ etβ

e2tβ e2tβ etβ

e3tβ e2tβ e2tβ

 .

Example 2
In the H−1(Ω) setting, assume Ω be a nonempty and open subset in Rn, let X = H−1(Ω), and suppose we
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define A : D(A) ⊆ X → X by {
D(A) = H1

0 (Ω)

Av = ∆v,
(2.1)

for each v ∈ D(A) and A ∈ ω − ORCPn. It follows that H1
0 (Ω) is equipped with the usual norm on H−1(Ω)

defined by
‖v‖H1(Ω) = (‖v‖2L2(Ω) + ‖∇‖2L2(Ω))

1
2 .

Example 3
In the L2(Ω) setting, suppose Ω be a nonempty and open subset in Rn and assume X = L2(Ω). Consider the
operator A on X , defined by {

D(A) = {x ∈ H1
0 (Ω); ∆v ∈ L2(Ω)}

Av = ∆v,
(2.2)

for each x ∈ D(A) and A ∈ ω −ORCPn.
Theorem 2.1
Suppose Ω is a nonempty, open and bounded subset in Rn whose boundary is of class C1, r ∈ N and p, q ∈
[1,+∞). Then,

i. if rp < n and q < np
n−rp , we have that W r,p(Ω) is compactly imbedded in Lq(Ω);

ii. if rp = n and q ∈ [1,+∞) is compactly imbedded in Lq(Ω); and

iii. if rp > n, then W r,p(Ω) is compactly imbedded in C(Ω).

Theorem 2.2
Assume H is a Hibert space and {A,D(A)} a densely defined operator. Then we have,

i. if (I −A)−1 ∈ L(H), then A is self-adjoint if and only if A is symmetric; and

ii. if (I ±A)−1 ∈ L(H), then A is skew - adjoint if and only if A is skew - symmetric.

Theorem 2.3
For any β > 0 and f ∈ H−1(Ω), the equation βv −∆v = f has a unique solution v ∈ H1

0(Ω).
Theorem 2.4
Suppose Ω is a nonempty open and bounded subset in Rn whose boundary Γ is of class C1. Then ‖.‖ : H1(Ω)→
R+. defined by

‖v‖ = (‖∇v‖2L2(Ω) + ‖vΓ‖2L2(Γ))
1
2

for each v ∈ H1(Ω), is a norm on H1(Ω) and equivalent with the usual one. In particular, the restriction of this
norm to H1

0 (Ω), i.e. ‖.‖ : H1
0 (Ω)→ R+ defined by

‖v‖0 = ‖∇v‖L2(Ω),

for each v ∈ H1
0 (Ω), is a norm on H1

0 (Ω) (called the gradient norm) equivalent with the usual one. In respect
with this norm the application D : H1

0 (Ω)→ H−1(Ω), defined by

< u,∆v >H1
0 (Ω),H−1(Ω)=

∫
Ω

∇v∇udw,

is a canonical isomorphism between H1
0 (Ω) and its dual H−1. The restriction of this application to H2 coincides

with −∆, where ∆ is the Laplace operator in the sense of distributions over ∆(Ω).
Theorem 2.5
The application I − ∆ : H1

0 (Ω) → H−1(Ω) is the canonical isomorphism between H1
0 (Ω), endowed with the
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usual norm on H1(Ω) and its dual H−1(Ω), equipped with the usual dual norm. In addition, for each v ∈ H1
0

and each u ∈ L2(Ω), we have
< v, u >L2(Ω)=< v, u >H1

0 (Ω),H−1(Ω) .

Theorem 2.6(Hille-Yoshida)[12]
A linear operator {A,D(A)} is the infinitesimal generator for a C0-semigroup of contraction if and only if

i. A is densely defined and closed; and

ii. (0,+∞) ⊆ ρ(A) and for each β > 0, we have

‖R(β,A)‖L(X) ≤
1

β
. (2.3)

Theorem 2.7
Assume {A,D(A)} is the infinitesimal generator of a C0-semigroup and let ‖.‖D(A) : D(A)→ R+ and |.|D(A) :

D(A) → R+ be defined by ‖x‖D(A) = ‖x‖ + ‖Ax‖, and respectively by |x|D(A) = ‖X − Ax‖, for each
x ∈ D(A). Then:

i. ‖.‖D(A) is a norm on D(A), called the graph norm, with respect to which D(A) is a Banach space;

ii. D(A) endowed with the norm ‖.‖D(A) is continuously imbedded in X;

iii. A ∈ L(D(A), X) where D(A) is endowed with ‖.‖D(A);

iv. |.|D(A) is a norm on D(A) equivalent with ‖.‖D(A);

v. I −A is an isometry from (D(A), |.|D(A)) to (X, ‖.‖); and

vi. for each x ∈ D(A), S(.)x ∈ C[0,+∞); D(A) ∪ C1([0,+∞);X)1.

3. Main Results

This section section presents results of ω-ORCPn on Laplace operator with respect to the Dirichlet boundary
condition by generating a C0-semigroup of contractions:
Theorem 3.1
The operator A ∈ ω −ORCPn defined by

‖v‖H1(Ω) = (‖v‖2L2(Ω) + ‖∇v‖2L2(Ω))
1
2 .

is the generator of a C0-semigroup of contractions. In addition, A is self-adjoint and ‖.‖D(A) is equivalent with
the norm of the space H−1(Ω).
Proof:
By virtue of Theorem 2.5, we know that I − ∆ is the canonical isomorphism between H1

0 (Ω), endowed with
usual norm of H1(Ω), and its dual H−1(Ω). Let us denote that F = (I −∆)−1 is an isometry joining H−1(Ω)

and H1
0 (Ω). Consequently

< v, u >H−1(Ω)=< Fv, Fu >H1
0 (Ω) (3.1)

for each u, v ∈ H−1(Ω). Let u, v ∈ H1
0 (Ω), then we have

< v, Fu >H1
0 (Ω)=

∫
Ω

∇v∇(Fu)dw +

∫
Ω

uFvdw

=

∫
Ω

v(−∆(Fu))dw +

∫
Ω

vFudw

=

∫
Ω

v(I −∆)F (u)dw =< v, u >L2(Ω) .

(3.2)
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From (3.1), taking into account that F (I −∆) = I , we deduce

< −∆v, u >H−1(Ω)=< v −∆v, u >H−1(Ω) − < v, u >H−1(Ω)

=< F (v −∆v), Fu >H1
0 (Ω) − < v, u >H−1(Ω)

=< v, Fv >H−1(Ω) − < v, u >H−1(Ω) .

From (3.2), we have
< ∆v, u >H−1(Ω)=< v, u >H−1(Ω) − < v, u >L2(Ω) . (3.3)

Therefore A is symmetric. But (I − A)−1 ∈ L(H−1(Ω)), and therefore by Theorem 2.2, it follows that A is
self-adjoint. Taking u = v in (3.3), we obtain

< Av, v >H−1(Ω)= ‖v‖2H−1(Ω) − ‖v‖
2
L2(Ω) ≤ 0. (3.4)

Theorem 2.3 shows that, for β > 0, we have (βI −A)−1 ∈ L(H−1(Ω)), while (3.4) implies that, for β > 0, we
have

< λv −Av, v >H−1(Ω)≥ λ‖v‖2H−1(Ω).

Hence ‖R(β;A)‖L(H−1(Ω)) ≤ 1
β . Since H1

0 (Ω) is dense in H−1(Ω), we are in the hypothesis of Theorem 2.6,
from where it follows that A generates a C0-semigroup of contractions on H−1(Ω). Finally by (iv) in Theorem
2.7 and (3.4), it follows that ‖.‖D(A) is equivalent with the norm of the space HΩ and this complete the proof.
Theorem 3.2
The linear operator A ∈ ω −ORCPn defined by{

D(A) = {v ∈ H1
0 (Ω); ∆v ∈ L2(Ω)}

Av = ∆v,
(3.5)

for each v ∈ D(A) is the infinitesimal generator of a C0-semigroup of contractions. Moreover, A is self-
adjoint and (D(A), ‖.‖D(A)) is continuously included in H1

0 (Ω). Suppose Ω is bounded with C1 boundary, then
(D(A), ‖.‖D(A)) is compactly imbedded in L2(Ω).
Proof:
Assume C∞0 (Ω) is dense in L2(Ω), and C∞0 (Ω) ⊆ D(A), it follows that A is densely defined. Let λ > 0 and
f ∈ L2(Ω). Since L2(Ω) is continuously imbedded in H−1(Ω), and −∆ : H1

0 (Ω) → H−1(Ω) is the duality
mapping with respect to the gradient norm on H1

0 (Ω), we have

< Av, u >L2(Ω)=< ∇v,∇u >L2(Ω)=< u,∆v >H1
0 (Ω), H1(Ω) . (3.6)

By Theorem 3.1, we know that for any λ > 0 and f ∈ L2(Ω) (notice that L2(Ω) ⊂ H−1(Ω)), the equation

λv −∆v = f (3.7)

has a unique solution vλ ∈ H1
0 (Ω) ⊂ L2(Ω). So, ∆vλ = λvλ− f is in L2(Ω), which shows that vλ ∈ D(A) and

λvλ − Avλ = f . Taking the L2 inner product on both sides of (3.7) above by vλ and taking into account that by
(3.6), we have < Av, v >L2(Ω)≤ 0 for each v ∈ D(A), then we deduce that

λ‖vλ‖2L2(Ω) ≤ < f, vλ >L2(Ω)≤ ‖f‖L2(Ω)‖vλ‖L2(Ω),

which shows that ‖R(λ;A)‖L(X) ≤ 1
λ . Finally from (3.6) and Theorem 2.2, it follows that A is self-adjoint.

Considering both inclusions, then D(A) ⊂ H1
0 ⊂ L2(Ω) are continuous, and the latter is compact whenever Ω

is bounded by Theorem 2.1. Hence the proof is achieved.
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Theorem 3.3
Let A ∈ ω − ORCPn be the Laplace operator with the Dirichlet boundary condition in H−1(Ω), let λ > 0 and
1 ≤ p < +∞. Then:
(1.) There exists a unique Rλ ∈ L(Lp(Ω)) so that Rλu = R(λ;A)u for all u ∈ H−1(Ω) ∩ Lp(Ω) and Rλ
satisfies:

i. ‖Rλu‖Lp(Ω) ≤ 1
λ‖u‖Lp(Ω);

ii. for each f ∈ Lp(Ω), ARλf ∈ Lp(Ω) and λRλf −ARλf = f ; and

iii. for each λ > 0 and µ > 0,Rλ(Lp(Ω)) = Rµ(Lp(Ω)).

(2.) Let R1 ∈ L(Lp(Ω)) for each u ∈ R(Lp(Ω)), we have ∆u ∈ Lp(Ω), and the operator A : D(A) ⊆
Lp(Ω)→ Lp(Ω), defined by {

D(A) = R1(Lp(Ω))

Au = ∆u for u ∈ D(A),

is the generator of a C0-semigroup of contractions.
Proof:
Since H−1(Ω) ∩ Lp(Ω) is dense in Lp(Ω), then it follows that R(λ;A) has a unique extensionRλ ∈ L(Lp(Ω))

satisfying (i). Next, let (fk)k∈N be a sequence in D(Ω) convergent to f in Lp(Ω). AsRλfk − λARλfk = fk in
H−1(Ω), we haveRλf − λARλf = f in D1(Ω), from there we get (ii). Finally, let f ∈ H−1(Ω)∩Lp(Ω), and
u = Rλf ∈ H−1(Ω) ∩ Lp(Ω). For each µ > 0, we have

µu−∆u = f + (µ− λ)Rλf (3.8)

Let us denote by g the right-hand side of (3.8), i.e.

g = f + (µ− λ)Rλf

and let us observe thatRλf = u = Rµg ∈ H−1(Ω) ∩ Lp(Ω) and therefore

Rλ(H−1(Ω) ∩ Lp(Ω)) ⊆ Rµ(H−1(Ω) ∩ Lp(Ω)).

Analogously
Rµ(H−1(Ω) ∩ Lp(Ω)) ⊆ (Rλ(H−1(Ω) ∩ Lp(Ω)),

and so
Rλ(H−1(Ω) ∩ Lp(Ω)) = (Rµ(H−1(Ω) ∩ Lp(Ω)).

Since H−1(Ω) ∩ Lp(Ω) is dense in Lp(Ω), and Rλ, Rµ are linear and continuous operators in Lp(Ω), then we
deduce (iii). And this complete the proof of (1). To prove (2), for each u ∈ R1(Lp(Ω)) and A ∈ ω − ORCPn,
we have ∆u ∈ Lp(Ω), follows from (ii) in (1) above. So let u ∈ D(A), λ > 0, A ∈ ω−ORCPn and denote that
f = λu−∆u. From (iii) in (1), there exists g ∈ Lp(Ω) such that u = Rλg. We then conclude that g = λu−∆u

and so f = g. Then λ ∈ ρ(A) and R(λ;A) = (λI − A)−1 = Rλ. This relation in (i) from (1) above show that
‖R(λ;A)‖Lp(Ω) ≤ 1

λ‖u‖Lp(Ω). Thus A satisfies (ii) in Theorem 2.6. To complete the proof, we have to merely
to show that D(A) is dense in Lp(Ω). To this aim, let u ∈ D(Ω) and f = u−∆u ∈ D(Ω). Obviously u = R1f

and therefore D(Ω) ⊆ D(A). Hence D(A)is dense in LP (Ω) which complete the proof.
Theorem 3.4
Let Ω be a nonempty and open subset in Rn with C1 boundary Γ, let X = [H−1(Ω)]∗ then:
(i.) operator A : D(A) ⊆ X → X , defined by{

D(A) = H1(Ω)

< Au, v >H1(Ω),[H1(Ω)]∗ =< ∇u,∇v >L2(Ω)
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for each u, v ∈ H1(Ω) and A ∈ ω −ORCPn is the generator of a C0-semigroup of contraction on X; and
(ii.) the operator {B,D(B)}, defined by{

D(B) = {u ∈ H2(Ω);uv = 0 on Γ

Bu = ∆, for u ∈ D(B)

is the generator of a C0-semigroup of contraction on X .
Proof:
Since H1(Ω) is densely imbedded in [H1(Ω)]∗, in view of Theorem 2.6, we have merely to show that for each
λ > 0, the operator λI −A : D(A) ⊆ X → X , where A is defined as above is one to one onto and

‖(λI −A)−1‖L(X) ≤
1

λ
. (3.9)

But this simply follows from the obvious identity

< λu−Au, u >[H1(Ω)]∗,H1(Ω)= λ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

and this achieves the proof of (i). To prove (ii), let u ∈ D(B). Then, for each v ∈ H1(Ω), we have

< Au, v >H1(Ω),[H1(Ω)]∗=< ∇u,∇v >L2(Ω)=< ∆u, v >L2(Ω)

and thus, Au = Bu for each u ∈ D(B) and A,B ∈ ω −ORCPn. In addition

< Bu, v >L2(Ω)= − < ∇u,∇v >L2(Ω)

for each u, v ∈ D(B) and B ∈ ω−ORCPn. Thus B is symmetric and for each λ > 0, λI −B is bijective from
D(B) to L2(Ω) and

‖(λI −B)−1‖L(X) ≤
1

λ
.

If D(B) is dense in X = L2(Ω), then we are in the hypothesis of the Theorem 2.6 and this complete the proof.

4. Conclusion

This paper have established that ω − ORCPn generates a C0-semigroup of contractions which was obtained by
a Laplace operator with Dirichlet boundary condition.
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identities and present matrices related with these sequences.
Keywords: Pell numbers, Pell-Lucas numbers, dual hyperbolic numbers, dual hyperbolic Pell numbers, Cassini identity.

Contents

1 Introduction 99

2 Dual Hyperbolic Generalized Pell Numbers, Generating Functions and Binet’s Formulas 102

3 Obtaining Binet Formula from Generating Function 105

4 Some Identities 107

5 Linear Sums 110

6 Matrices related with Dual Hyperbolic Generalized Pell Numbers 113

1. Introduction

A generalized Pell sequence {Vn}n≥0 = {Vn(V0, V1)}n≥0 is defined by the second-order recurrence relations

Vn = 2Vn−1 + Vn−2; V0 = a, V1 = b, (n ≥ 2) (1.1)

with the initial values V0, V1 not all being zero. The sequence {Vn}n≥0 can be extended to negative subscripts
by defining

V−n = −2V−(n−1) + V−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (1.1) holds for all integer n.
The first few generalized Pell numbers with positive subscript and negative subscript are given in the following

Table 1.
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Table 1. A few generalized Pell numbers
n Vn V−n
0 V0
1 V1 −2V0 + V1
2 V0 + 2V1 5V0 − 2V1
3 2V0 + 5V1 −12V0 + 5V1
4 5V0 + 12V1 29V0 − 12V1
5 12V0 + 29V1 −70V0 + 29V1

If we set V0 = 0, V1 = 1 then {Vn} is the well-known Pell sequence and if we set V0 = 2, V1 = 2 then
{Vn} is the well-known Pell-Lucas sequence. In other words, Pell sequence {Pn}n≥0 and Pell-Lucas sequence
{Qn}n≥0 are defined by the second-order recurrence relations

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1 (1.2)

and
Qn = 2Qn−1 +Qn−2, Q0 = 2, Q1 = 2. (1.3)

The sequences {Pn}n≥0 and {Qn}n≥0 can be extended to negative subscripts by defining

P−n = −2P−(n−1) + P−(n−2)

and
Q−n = −2Q−(n−1) +Q−(n−2)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2) and (1.3) hold for all integer n.
Pell sequence has been studied by many authors and more detail can be found in the extensive literature

dedicated to these sequences, see for example, [3, 8, 9, 11, 13, 16, 19, 20, 29]. For higher order Pell sequences,
see [17, 18, 24, 25].

We can list some important properties of generalized Pell numbers that are needed.

• Binet formula of generalized Pell sequence can be calculated using its characteristic equation which is
given as

t2 − 2t− 1 = 0.

The roots of characteristic equation are

α = 1 +
√
2, β = 1−

√
2

and the roots satisfy the following

α+ β = 2, αβ = −1, α− β = 2
√
2.

Using these roots and the recurrence relation, Binet formula can be given as

Vn =
Aαn −Bβn

α− β
(1.4)

where A = V1 − V0β and B = V1 − V0α.

• Binet formula of Pell and Pell-Lucas sequences are

Pn =
αn − βn

α− β
and

Qn = αn + βn

respectively.
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• The generating function for generalized Pell numbers is

g(t) =
W0 + (W1 − 2W0) t

1− 2t− t2
. (1.5)

• The Cassini identity for generalized Pell numbers is

Vn+1Vn−1 − V 2
n = (2V0V1 − V 2

1 − V 2
0 ). (1.6)

•

Aαn = αVn + Vn−1, (1.7)

Bβn = βVn + Vn−1. (1.8)

The hypercomplex numbers systems [15], are extensions of real numbers. Complex numbers,

C = {z = a+ ib : a, b ∈ R, i2 = −1},

hyperbolic (double, split-complex) numbers [23],

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1},

and dual numbers [10],
D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

are some commutative examples of hypercomplex number systems. Quaternions [12],

HQ = {q = a0 + ia1 + ja2 + ka3},

where a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1, octonions [2] and sedenions [26] are some non-
commutative examples of hypercomplex number systems.

The algebras C (complex numbers), HQ (quaternions), O (octonions) and S (sedenions) are real algebras
obtained from the real numbers R by a doubling procedure called the Cayley-Dickson Process. This doubling
process can be extended beyond the sedenions, (see for example [4, 14, 21]).

• Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) [12] as an extension to the
complex numbers.

• Hyperbolic numbers with complex coefficients are introduced by J. Cockle in 1848 [7].

• H. H. Cheng and S. Thompson [5] introduced dual numbers with complex coefficients.

• Akar, Yüce and Şahin [1] introduced dual hyperbolic numbers.

A dual hyperbolic number is a hyper-complex number and is defined by

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2 and a3 are real numbers.
The set of all dual hyperbolic numbers are denoted by

HD = {a0 + ja1 + εa2 + εja3}
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where a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0. The base elements {1, j, ε, εj} of dual hyperbolic
numbers satisfy the following properties (commutative multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj denotes the
dual hyperbolic unit ((jε)2 = 0).

The product of two dual hyperbolic numbers q = a0 + ja1 + εa2 + jεa3 and p = b0 + jb1 + εb2 + jεb3 is
qp = a0b0 + a1b1 + j(a0b1 + a1b0) + ε(a0b2 + a2b0 + a1b3 + a3b1) + jε(a0b3 + a1b2 + a2b1 + b0a3)

and addition of dual hyperbolic numbers is defined as componentwise.
For more information on the dual hyperbolic numbers, see [1].
In this paper, we define the dual hyperbolic generalized Pell numbers in the next section and give some

properties of them.

2. Dual Hyperbolic Generalized Pell Numbers, Generating Functions and Binet’s
Formulas

In this section, we define dual hyperbolic generalized Pell numbers and present generating functions and Binet
formulas for them.

In [6], the authors defined dual hyperbolic Pell and Pell-Lucas numbers and in [28], the author introduced
dual hyperbolic generalized Fibonacci numbers.We now define dual hyperbolic generalized Pell numbers over
HD. The nth dual hyperbolic generalized Pell number is

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3. (2.1)

As special cases, the nth dual hyperbolic Pell numbers and the nth dual hyperbolic Pell-Lucas numbers are given
as

P̂n = Pn + jPn+1 + εPn+2 + jεPn+3

and
Q̂n = Qn + jQn+1 + εQn+2 + jεQn+3

respectively. It can be easily shown that
V̂n = 2V̂n−1 + V̂n−2. (2.2)

The sequence {V̂n}n≥0 can be extended to negative subscripts by defining

V̂−n = −2V̂−(n−1) + V̂−(n−2)

for n = 1, 2, 3, ... respectively. Therefore, recurrence (2.2) holds for all integer n.
The first few dual hyperbolic generalized Pell numbers with positive subscript and negative subscript are

given in the following Table 2.

Table 2. A few dual hyperbolic generalized Pell numbers
n V̂n V̂−n
0 V̂0 ...

1 V̂1 −2V̂0 + V̂1
2 V̂0 + 2V̂1 5V̂0 − 2V̂1
3 2V̂0 + 5V̂1 −12V̂0 + 5V̂1
4 5V̂0 + 12V̂1 29V̂0 − 12V̂1
5 12V̂0 + 29V̂1 −70V̂0 + 29V̂1
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Note that

V̂0 = V0 + jV1 + εV2 + jεV3

= V0 + jV1 + ε(V0 + 2V1) + jε(2V0 + 5V1),

V̂1 = V1 + jV2 + εV3 + jεV4

= V1 + j(V0 + 2V1) + ε(2V0 + 5V1) + jε(5V0 + 12V1).

For dual hyperbolic Pell numbers (taking Vn = Pn, P0 = 0, P1 = 1) we get

P̂0 = j + 2ε+ 5jε,

P̂1 = 1 + 2j + 5ε+ 12jε,

and for dual hyperbolic Pell-Lucas numbers (taking Vn = Qn, Q0 = 2, Q1 = 2) we get

Q̂0 = 2 + 2j + 6ε+ 14jε,

Q̂1 = 2 + 6j + 14ε+ 34jε.

A few dual hyperbolic Pell numbers and dual hyperbolic Pell-Lucas numbers with positive subscript and negative
subscript are given in the following Table 3 and Table 4.

Table 3. Dual hyperbolic Pell numbers
n P̂n P̂−n
0 j + 2ε+ 5jε ...

1 1 + 2j + 5ε+ 12jε 1 + ε+ 2jε

2 2 + 5j + 12ε+ 29jε −2 + j + jε

3 5 + 12j + 29ε+ 70jε 5 + ε− 2j

4 12 + 29j + 70ε+ 169jε −12 + 5j − 2ε+ jε

5 29 + 70j + 169ε+ 408jε 29 + 5ε− 12j − 2jε

Table 4. Dual hyperbolic Pell-Lucas numbers
n Q̂n Q̂−n
0 2 + 2j + 6ε+ 14jε ...

1 2 + 6j + 14ε+ 34jε −2 + 2j + 2ε+ 6jε

2 6 + 14j + 34ε+ 82jε 6 + 2ε− 2j + 2jε

3 14 + 34j + 82ε+ 198jε −14 + 6j − 2ε+ 2jε

4 34 + 82j + 198ε+ 478jε 34 + 6ε− 14j − 2jε

5 82 + 198j + 478ε+ 1154jε −82 + 34j − 14ε+ 6jε

Now, we will state Binet’s formula for the dual hyperbolic generalized Pell numbers and in the rest of the
paper, we fix the following notations:

α̂ = 1 + jα+ εα2 + jεα3,

β̂ = 1 + jβ + εβ2 + jεβ3.
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Ÿüksel Soykan, Mehmet Gümüş and Melih Göcen

Note that we have the following identities:

α̂ = 1 + jα+ ε(2α+ 1) + jε(5α+ 2),

β̂ = 1 + jβ + ε(2β + 1) + jε(5β + 2),

α̂2 = 2 + 2α+ 2αj + (12 + 28α)ε+ (8 + 20α)jε,

β̂
2
= 2 + 2β + 2βj + (12 + 28β)ε+ (8 + 20β)jε,

α̂β̂ = 2j + 12jε,

α̂2β̂ = 2α+ 2j + (4 + 22α)ε+ (14 + 4α)jε,

α̂β̂
2
= 2β + 2j + (4 + 22β)ε+ (14 + 4β)jε,

α̂2β̂
2
= 4 + 48ε.

Theorem 2.1. (Binet’s Formula) For any integer n, the nth dual hyperbolic generalized Pell number is

V̂n =
Aα̂αn −Bβ̂βn

α− β
. (2.3)

Proof. Using Binet’s formula

Vn =
Aαn −Bβn

α− β

of the generalized Pell numbers, we obtain

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

=
Aαn −Bβn

α− β
+ j

Aαn+1 −Bβn+1

α− β

+ε
Aαn+2 −Bβn+2

α− β
+ jε

Aαn+3 −Bβn+3

α− β

=
A(1 + jα+ εα2 + jεα3)αn

α− β

−B(1 + jβ + εβ2 + jεβ3)βn

α− β
.

This proves (2.3).
As special cases, for any integer n, the Binet’s Formula of nth dual hyperbolic Pell number is

P̂n =
α̂αn − β̂βn

α− β
(2.4)

and the Binet’s Formula of nth dual hyperbolic Pell-Lucas number is

Q̂n = α̂αn + β̂βn. (2.5)

Next, we present generating function.

Theorem 2.2. The generating function for the dual hyperbolic generalized Pell numbers is

∞∑
n=0

V̂nx
n =

V̂0 + (V̂1 − 2V̂0)x

1− 2x− x2
. (2.6)
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Proof. Let

g(x) =

∞∑
n=0

V̂nx
n

be generating function of the dual hyperbolic generalized Pell numbers. Then, using the definition of the dual
hyperbolic generalized Pell numbers, and substracting 2xg(x) and x2g(x) from g(x), we obtain (note the shift in
the index n in the third line)

(1− 2x− x2)g(x) =
∞∑
n=0

V̂nx
n − 2x

∞∑
n=0

V̂nx
n − x2

∞∑
n=0

V̂nx
n

=

∞∑
n=0

V̂nx
n − 2

∞∑
n=0

V̂nx
n+1 −

∞∑
n=0

V̂nx
n+2

=

∞∑
n=0

V̂nx
n − 2

∞∑
n=1

V̂n−1x
n −

∞∑
n=2

V̂n−2x
n

= (V̂0 + V̂1x)− 2V̂0x

+

∞∑
n=2

(V̂n − 2V̂n−1 − V̂n−2)xn

= (V̂0 + V̂1x)− 2V̂0x

= V̂0 + (V̂1 − 2V̂0)x.

Note that we used the recurrence relation V̂n = 2V̂n−1 + V̂n−2. Rearranging above equation, we get

g(x) =
V̂0 + (V̂1 − 2V̂0)x

1− 2x− x2
.

As special cases, the generating functions for the dual hyperbolic Pell and dual hyperbolic Pell-Lucas numbers
are

∞∑
n=0

P̂nx
n =

(j + 2ε+ 5jε) + (1 + ε+ 2jε)x

1− 2x− x2

and
∞∑
n=0

Q̂nx
n =

(2 + 2j + 6ε+ 14jε) + (−2 + 2j + 2ε+ 6jε)x

1− 2x− x2

respectively.

3. Obtaining Binet Formula from Generating Function

We will next find Binet formula of dual hyperbolic generalized Pell number {V̂n} by the use of generating
function for V̂n.

Theorem 3.1. (Binet formula of dual hyperbolic generalized Pell numbers)

V̂n =
d1α

n

(α− β)
− d2β

n

(α− β)
(3.1)

where

d1 = V̂0α+ (V̂1 − 2V̂0),

d2 = V̂0β + (V̂1 − 2V̂0).
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Proof. Let
h(x) = 1− 2x− x2.

Then for some α and β we write
h(x) = (1− αx)(1− βx)

i.e.,
1− 2x− x2 = (1− αx)(1− βx) (3.2)

Hence 1
α ve 1

β are the roots of h(x). This gives α and β as the roots of

h(
1

x
) = 1− 2

x
− 1

x2
= 0.

This implies x2 − 2x− 1 = 0. Now, by (2.6) and (3.2), it follows that

∞∑
n=0

V̂nx
n =

V̂0 + (V̂1 − 2V̂0)x

(1− αx)(1− βx)
.

Then we write
V̂0 + (V̂1 − 2V̂0)x

(1− αx)(1− βx)
=

A1

(1− αx)
+

A2

(1− βx)
. (3.3)

So
V̂0 + (V̂1 − 2V̂0)x = A1(1− βx) +A2(1− αx).

If we consider x = 1
α , we get V̂0 + (V̂1 − 2V̂0)

1
α = A1(1− β 1

α ). This gives

A1 =
V̂0α+ (V̂1 − 2V̂0)

(α− β)
=

d1
(α− β)

.

Similarly, we obtain

V̂0 + (V̂1 − 2V̂0)
1

β
= A2(1− α

1

β
)

⇒ V̂0β + (V̂1 − 2V̂0) = A2(β − α)

and so

A2 = − V̂0β + (V̂1 − 2V̂0)

(α− β)
= − d2

(α− β)
.

Thus (3.3) can be written as

∞∑
n=0

V̂nx
n = A1(1− αx)−1 +A2(1− βx)−1.

This gives
∞∑
n=0

V̂nx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn =

∞∑
n=0

(A1α
n +A2β

n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

V̂n = A1α
n +A2β

n

and then we get (3.1).
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Note that from (2.3) and (3.1) we have

(V1 − V0β)α̂ = V̂0α+ (V̂1 − 2V̂0),

(V1 − V0α)β̂ = V̂0β + (V̂1 − 2V̂0).

Next, using Theorem 3.1, we present the Binet formulas of dual hyperbolic Pell and dual hyperbolic Pell-
Lucas numbers.

Corollary 3.2. Binet formulas of dual hyperbolic Pell and dual hyperbolic Pell-Lucas numbers are

P̂n =
α̂αn − β̂βn

α− β

and
Q̂n = α̂αn + β̂βn

respectively.

4. Some Identities

We now present a few special identities for the dual hyperbolic generalized Pell sequence {V̂n}. The following
theorem presents the Catalan’s identity for the dual hyperbolic generalized Pell numbers.

Theorem 4.1. (Catalan’s identity) For all integers n and m, the following identity holds

V̂n+mV̂n−m − V̂ 2
n = (−1)n−m+1((A+B)V2m−1+(Aβ+Bα)V2m−2(−1)mAB)

8 (2j + 12jε).

Proof. Using the Binet Formula

V̂n =
Aα̂αn −Bβ̂βn

α− β
and

Aαn = αVn + Vn−1,

Bβn = βVn + Vn−1,

we get
V̂n+mV̂n−m − V̂ 2

n

=
(Aα̂αn+m −Bβ̂βn+m)(Aα̂αn−m −Bβ̂βn−m)− (Aα̂αn −Bβ̂βn)2

(α− β)2

=
−ABα̂β̂αn+mβn−m −ABβ̂α̂αn−mβn+m + 2ABα̂β̂αnβn

(α− β)2

=
−ABα̂β̂αn+mβn−m −ABα̂β̂αn−mβn+m + 2ABα̂β̂αnβn

(α− β)2

= −ABα̂β̂ (α
m − βm)

2

(α− β)2
αn−mβn−m

=
(−1)n−m+1AB (αm − βm)

2

8
α̂β̂

= (−1)n−m+1((A+B)V2m−1+(Aβ+Bα)V2m−2(−1)mAB)
8 (2j + 12jε)

where αβ = −1 and α̂β̂ = 2j + 12jε.

As special cases of the above theorem, we give Catalan’s identity of dual hyperbolic Pell and dual hyperbolic
Pell-Lucas numbers. Firstly, we present Catalan’s identity of dual hyperbolic Pell numbers.
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Corollary 4.2. (Catalan’s identity for the dual hyperbolic Pell numbers) For all integers n and m, the following
identity holds

P̂n+mP̂n−m − P̂ 2
n =

(−1)n−m+1 (P2m−1 + P2m − (−1)m)

2
(j + 6jε).

Proof. Taking Vn = Pn in Theorem 4.1 we get the required result.
Secondly, we give Catalan’s identity of dual hyperbolic Pell-Lucas numbers.

Corollary 4.3. (Catalan’s identity for the dual hyperbolic Pell-Lucas numbers) For all integers n and m, the
following identity holds

Q̂n+mQ̂n−m − Q̂2
n = (−1)n−m (Q2m − 2(−1)m) (2j + 12jε).

Proof. Taking Vn = Qn in Theorem 4.1, we get the required result.
Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the dual hyperbolic generalized

Pell sequence.

Corollary 4.4. (Cassini’s identity) For all integers n, the following identity holds

V̂n+1V̂n−1 − V̂ 2
n = (−1)n((A+B)V1+(Aβ+Bα)V2+2AB)

4 (j + 6jε).

As special cases of Cassini’s identity, we give Cassini’s identity of dual hyperbolic Pell and dual hyperbolic
Pell-Lucas numbers. Firstly, we present Cassini’s identity of dual hyperbolic Pell numbers.

Corollary 4.5. (Cassini’s identity of dual hyperbolic Pell numbers) For all integers n, the following identity holds

P̂n+1P̂n−1 − P̂ 2
n = 2(−1)n(j + 6jε).

Secondly, we give Cassini’s identity of dual hyperbolic Pell-Lucas numbers.

Corollary 4.6. (Cassini’s identity of dual hyperbolic Pell-Lucas numbers) For all integers n, the following
identity holds

Q̂n+1Q̂n−1 − Q̂2
n = 16(−1)n+1(j + 6jε).

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using the Binet Formula of
the dual hyperbolic generalized Pell sequence:

V̂n =
Aα̂αn −Bβ̂βn

α− β
.

The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of the dual hyperbolic generalized
Pell sequence {V̂n}.

Theorem 4.7. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

V̂m+1V̂n − V̂mV̂n+1 = (VnVm−1 − VmVn−1) (2j + 12jε).

(b) (Gelin-Cesàro’s identity)

V̂n+2V̂n+1V̂n−1V̂n−2 − V̂ 4
n =

AB(−1)n+1

2
(k1 + k2j + k3ε+ k4jε)

where
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k1 = 26 (−1)nAB + 6(V2n−1 (V0 + V1) + V2n(V0 + 3V1))

k2 = 3(4V2n(V0 + 2V1) + V2n−1 ((A+B) + 2(V0 + V1)))

k3 = 12(26 (−1)nAB + 2V2n(5V0 + 13V1) + V2n−1 (A+B + 8(V0 + V1)))

k4 = 12(V2n(16V0 + 36V1) + V2n−1 (3(A+B) + 10(V1 + V0))).

(c) (Melham’s identity)

V̂n+1V̂n+2V̂n+6−V̂ 3
n+3 = 2 (−1)nAB((91Vn+38Vn−1)+(38Vn+15Vn−1)j+(1077Vn+448Vn−1)ε+

(448Vn + 181Vn−1)jε).

Proof.

(a) Using (1.7) and (1.8) we obtain

V̂m+1V̂n − V̂mV̂n+1

=
ABα̂β̂(−αm+1βn − αnβm+1 + αmβn+1 + αn+1βm)

(α− β)2

=
AB (αnβm − αmβn)

(α− β)
α̂β̂

=
(αVn + Vn−1)(βVm + Vm−1)

(α− β)
(2j + 12jε)

− (αVm + Vm−1)(βVn + Vn−1)

(α− β)
(2j + 12jε)

= (VnVm−1 − VmVn−1) (2j + 12jε).

(b) It requires lengthy and tedious work. So we omit the proof.

(c) Using (1.7), (1.8) and Binet formula of V̂n, we get

V̂n+1V̂n+2V̂n+6 − V̂ 3
n+3 = (−1)n+1

AB
(
− 30+23

√
2

4 Aα̂αn + −30+23
√
2

4 Bβ̂βn
)
α̂β̂

and then using

α̂2β̂ = 2α+ 2j + (4 + 22α)ε+ (14 + 4α)jε,

α̂β̂
2
= 2β + 2j + (4 + 22β)ε+ (14 + 4β)jε,

we obtain the required result.

As special cases of the above theorem, we give the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of
dual hyperbolic Pell and dual hyperbolic Pell-Lucas numbers. Firstly, we present the d’Ocagne’s, Gelin-Cesàro’s
and Melham’ identities of dual hyperbolic Pell numbers.

Corollary 4.8. Let n and m be any integers. Then, for the dual hyperbolic Pell numbers, the following identities
are true:

(a) (d’Ocagne’s identity)

P̂m+1P̂n − P̂mP̂n+1 = (PnPm−1 − PmPn−1) (2j + 12jε).
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(b) (Gelin-Cesàro’s identity)

P̂n+2P̂n+1P̂n−1P̂n−2−P̂ 4
n = (−1)n+1

(13 (−1)n+3(3P2n+P2n−1)+6(2P2n+P2n−1)j+12(13 (−1)n+
13P2n + 5P2n−1)ε+ 24(9P2n + 4P2n−1)jε).

(c) (Melham’s identity)

P̂n+1P̂n+2P̂n+6− P̂ 3
n+3 = 2 (−1)n ((91Pn+38Pn−1)+ (38Pn+15Pn−1)j+(1077Pn+448Pn−1)ε+

(448Pn + 181Pn−1)jε).

Secondly, we present the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of dual hyperbolic Pell-Lucas
numbers.

Corollary 4.9. Let n and m be any integers. Then, for the dual hyperbolic Pell-Lucas numbers, the following
identities are true:

(a) (d’Ocagne’s identity)

Q̂m+1Q̂n − Q̂mQ̂n+1 = (QnQm−1 −QmQn−1) (2j + 12jε).

(b) (Gelin-Cesàro’s identity)

Q̂n+2Q̂n+1Q̂n−1Q̂n−2 − Q̂4
n = 32(−1)n(26 (−1)n+1

+ 3(2Q2n + Q2n−1) + 3(3Q2n + Q2n−1)j +

12(26 (−1)n+1
+ 9Q2n + 4Q2n−1)ε+ 12(13Q2n + 5Q2n−1)jε).

(c) (Melham’s identity)

Q̂n+1Q̂n+2Q̂n+6 − Q̂3
n+3 = 16 (−1)n+1

((91Qn + 38Qn−1) + (38Qn + 15Qn−1)j + (1077Qn +

448Qn−1)ε+ (448Qn + 181Qn−1)jε).

5. Linear Sums

In this section, we give the summation formulas of the dual hyperbolic generalized Pell numbers with positive
and negatif subscripts. Now, we present the summation formulas of the generalized Pell numbers.

Proposition 5.1. For the generalized Pell numbers, for n ≥ 0 we have the following formulas:

(a)
∑n
k=0 Vk = 1

2 (Vn+2 − Vn+1 − V1 + V0).

(b)
∑n
k=0 V2k = 1

2 (V2n+1 − V1 + 2V0).

(c)
∑n
k=0 V2k+1 = 1

2 (V2n+2 − V2 + 2V1).

Proof. For the proof, see Soykan [27].
Next, we present the formulas which give the summation of the first n dual hyperbolic generalized Pell

numbers.

Theorem 5.2. For n ≥ 0, dual hyperbolic generalized Pell numbers have the following formulas:.

(a)
∑n
k=0 V̂k = 1

2 (V̂n+2 − V̂n+1 − V̂1 + V̂0).

(b)
∑n
k=0 V̂2k = 1

2 (V̂2n+1 − V̂1 + 2V̂0).

(c)
∑n
k=0 V̂2k+1 = 1

2 (V̂2n+2 − V̂0).
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Proof. Note that using Proposition 5.1 (a) we get

n∑
k=0

Vk+1 =
1

2
(Vn+3 − Vn+2 − V1 − V0),

n∑
k=0

Vk+2 =
1

2
(Vn+4 − Vn+3 − 3V1 − V0),

n∑
k=0

Vk+3 =
1

2
(Vn+5 − Vn+4 − 7V1 − 3V0).

Then it follows that
n∑
k=0

V̂k = 1
2 ((Vn+2 + jVn+3 + εVn+4 + jεVn+5)− (Vn+1 + jVn+2 + εVn+3 + jεVn+4)

+(−V1 + V0) + j(−V1 − V0) + ε(−3V1 − V0) + jε(−7V1 − 3V0))

=
1

2
(V̂n+2 − V̂n+1 + ((−V1 + V0) + j(−V2 + V1) + ε(−V3 + V2) + jε(−V4 + V3))

=
1

2
(V̂n+2 − V̂n+1 − V̂1 + V̂0).

This proves (a).
(b) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=0

V2k+2 =
1

2
(V2n+3 − V1),

n∑
k=0

V2k+3 =
1

2
(V2n+4 − 2V1 − V0).

Then it follows that

n∑
k=0

V̂2k

=
1

2
((V2n+1 + jV2n+2 + εV2n+3 + jεV2n+4)

+((−V1 + 2V0) + j(−V0) + ε(−V1) + jε(−2V1 − V0)))

=
1

2
((V2n+1 + jV2n+2 + εV2n+3 + jεV2n+4)

+((−V1 + 2V0) + j(−V2 + 2V1) + ε(−V3 + 2V2) + jε(−V4 + 2V3))

=
1

2
((V2n+1 + jV2n+2 + εV2n+3 + jεV2n+4)

−(V1 + jV2 + εV3 + jεV4) + 2(V0 + jV1 + εV2 + jεV3))

=
1

2
(V̂2n+1 − V̂1 + 2V̂0).

(c) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=0

V2k+4 =
1

2
(V2n+5 − 5V1 − 2V0).
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Then it follows that

n∑
k=0

V̂2k+1

=
1

2
((V2n+2 + jV2n+3 + εV2n+4 + jεV2n+5)

−(V0 + jV1 + ε(2V1 + V0) + jε(5V1 + 2V0)))

=
1

2
(V̂2n+2 − (V0 + jV1 + εV2 + jεV3))

=
1

2
(V̂2n+2 − V̂0).

As a first special case of the above theorem, we have the following summation formulas for dual hyperbolic
Pell numbers:

Corollary 5.3. For n ≥ 0, dual hyperbolic Pell numbers have the following properties:

(a)
∑n
k=0 P̂k = 1

2 (P̂n+2 − P̂n+1 − P̂1 + P̂0) =
1
2 (P̂n+2 − P̂n+1 − (1 + j + 3ε+ 7jε)).

(b)
∑n
k=0 P̂2k = 1

2 (P̂2n+1 − P̂1 + 2P̂0) =
1
2 (P̂2n+1 − (1 + ε+ 2jε)).

(c)
∑n
k=0 P̂2k+1 = 1

2 (P̂2n+2 − P̂0) =
1
2 (P̂2n+2 − (j + 2ε+ 5jε)).

As a second special case of the above theorem, we have the following summation formulas for dual hyperbolic
Pell-Lucas numbers:

Corollary 5.4. For n ≥ 0, dual hyperbolic Pell-Lucas numbers have the following properties.

(a)
∑n
k=0 Q̂k = 1

2 (Q̂n+2 − Q̂n+1 − Q̂1 + Q̂0) =
1
2 (Q̂n+2 − Q̂n+1 − 4 (j + 2ε+ 5jε)).

(b)
∑n
k=0 Q̂2k = 1

2 (Q̂2n+1 − Q̂1 + 2Q̂0) =
1
2 (Q̂2n+1 + 2(1− j − ε− 3jε)).

(c)
∑n
k=0 Q̂2k+1 = 1

2 (Q̂2n+2 − Q̂0) =
1
2 (Q̂2n+2 − (2 + 2j + 6ε+ 14jε)).

Now, we present the formula which give the summation formulas of the generalized Pell numbers with
negative subscripts.

Proposition 5.5. For n ≥ 1 we have the following formulas:

(a)
∑n
k=1 V−k = 1

2 (−3V−n−1 − V−n−2 + V1 − V0).

(b)
∑n
k=1 V−2k = 1

2 (−V−2n−1 + V1 − 2V0).

(c)
∑n
k=1 V−2k+1 = 1

2 (−V−2n + V0).

Proof. This is given in Soykan [27].
Next, we present the formulas which give the summation of the first n dual hyperbolic generalized Pell

numbers with negative subscripts

Theorem 5.6. For n ≥ 1, dual hyperbolic generalized Pell numbers have the following formulas:

(a)
∑n
k=1 V̂−k = 1

2 (−3V̂−n−1 − V̂−n−2 + V̂1 − V̂0).

(b)
∑n
k=1 V̂−2k = 1

2 (−V̂−2n−1 + V̂1 − 2V̂0).
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(c)
∑n
k=1 V̂−2k+1 = 1

2 (−V̂−2n + V̂0).

Proof. We prove (a). Note that using Proposition 5.1 (a) we get

n∑
k=1

V−k+1 =
1

2
(−3V−n − V−n−1 + V1 + V0),

n∑
k=1

V−k+2 =
1

2
(−3V−n+1 − V−n + 3V1 + V0),

n∑
k=1

V−k+3 =
1

2
(−3V−n+2 − V−n+1 + 7V1 + 3V0).

Then it follows that∑n
k=1 V̂−k = 1

2 (3(V−n−1 + jV−n + εV−n+1 + jεV−n+2)− (V−n−2 + jV−n−1 + εV−n + jεV−n+1)

+(V1 − V0) + j(V1 + V0) + ε(3V1 + V0) + jε(7V1 + 3V0))

=
1

2
(−3V̂−n−1 − V̂−n−2 + ((V1 − V0) + j(V2 − V1) + ε(V3 − V2) + jε(V4 − V3))

=
1

2
(−3V̂−n−1 − V̂−n−2 + V̂1 − V̂0).

This proves (a). (b) and (c) can be proved similarly.
As a first special case of above theorem, we have the following summation formulas for dual hyperbolic Pell

numbers:

Corollary 5.7. For n ≥ 1, dual hyperbolic Pell numbers have the following properties:

(a)
∑n
k=1 P̂−k = 1

2 (−3P̂−n−1 − P̂−n−2 + P̂1 − P̂0) =
1
2 (−3P̂−n−1 − P̂−n−2 + (1 + j + 3ε+ 7jε)).

(b)
∑n
k=1 P̂−2k = 1

2 (−P̂−2n−1 + P̂1 − 2P̂0) =
1
2 (−P̂−2n−1 + (1 + ε+ 2jε)).

(c)
∑n
k=1 P̂−2k+1 = 1

2 (−P̂−2n + P̂0) =
1
2 (−P̂−2n + (j + 2ε+ 5jε)).

Corollary 5.8. For n ≥ 1, dual hyperbolic Pell-Lucas numbers have the following properties.

(a)
∑n
k=1 Q̂−k = 1

2 (−3Q̂−n−1 − Q̂−n−2 + Q̂1 − Q̂0) =
1
2 (−3Q̂−n−1 − Q̂−n−2 + (4j + 8ε+ 20jε)).

(b)
∑n
k=1 Q̂−2k = 1

2 (−Q̂−2n−1 + Q̂1 − 2Q̂0) =
1
2 (−Q̂−2n−1 + (−2 + 2j + 2ε+ 6jε)).

(c)
∑n
k=1 Q̂−2k+1 = 1

2 (−Q̂−2n + Q̂0) =
1
2 (−Q̂−2n + (2 + 2j + 6ε+ 14jε)).

6. Matrices related with Dual Hyperbolic Generalized Pell Numbers

We define the square matrix M of order 2 as:

M =

(
2 1

1 0

)
such that detM = −1. Induction proof may be used to establish

Mn =

(
Pn+1 Pn
Pn Pn−1

)
(6.1)

and (the matrix formulation of Vn) (
Vn+1

Vn

)
=

(
2 1

1 0

)n(
V1
V0

)
. (6.2)
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Now, we define the matrices MV as

MV =

(
V̂3 V̂2
V̂2 V̂1

)
.

This matrice MV is called dual hyperbolic generalized Pell matrix. As special cases, dual hyperbolic Pell matrix
and dual hyperbolic Pell-Lucas matrix are

MP =

(
P̂3 P̂2

P̂2 P̂1

)
and

MQ =

(
Q̂3 Q̂2

Q̂2 Q̂1

)

respectively.

Theorem 6.1. For n ≥ 0, the following is valid:

MV

(
2 1

1 0

)n
=

(
V̂n+3 V̂n+2

V̂n+2 V̂n+1

)
. (6.3)

Proof. We prove by mathematical induction on n. If n = 0, then the result is clear. Now, we assume it is true
for n = k, that is

MVM
k =

(
V̂k+3 V̂k+2

V̂k+2 V̂k+1

)
.

If we use (2.1), then we have V̂k+2 = 2V̂k+1 + V̂k. Then, by induction hypothesis, we obtain

MVM
k+1 = (MVM

k)M =

(
V̂k+3 V̂k+2

V̂k+2 V̂k+1

)(
2 1

1 0

)

=

(
2V̂k+3 + V̂k+2 V̂k+3

2V̂k+2 + V̂k+1 V̂k+2

)

=

(
V̂k+4 V̂k+3

V̂k+3 V̂k+2

)
.

Thus, (6.3) holds for all non-negative integers n.

Remark 6.2. The above theorem is true for n ≤ −1. It can also be proved by induction.

Corollary 6.3. For all integers n, the following holds:

V̂n+2 = V̂2Pn+1 + V̂1Pn.

Proof. The proof can be seen by the coefficient of the matrix MV and (6.1).
Taking Vn = Pn and Vn = Qn, respectively, in the above corollary, we obtain the following results.

Corollary 6.4. For all integers n, the followings are true.

(a) P̂n+2 = P̂2Pn+1 + P̂1Pn.

(b) Q̂n+2 = Q̂2Pn+1 + Q̂1Pn.
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Abstract. In this paper we shall use the upper and lower solutions method to prove the existence of at least one solution for
the second order equation defined on unbounded intervals with integral conditions on the boundary:

u′′ (t)−m2u (t) + f(t, e−mtu (t) , e−mt u′ (t)) = 0, for all t ∈ [0,+∞) ,

u (0)− 1

m
u′ (0) =

+∞∫
0

e−2msu (s) ds, lim
t→+∞

{
e−mtu (t)

}
= B,

where m > 0,m 6= 1
6
, B ∈ R and f : [0,+∞)× R2 → R is a continuous function satisfying a suitable locally L1 bounded

condition and a kind of Nagumo’s condition with respect to the first derivative.

AMS Subject Classifications: 34B40, 34B15, 74H20.

Keywords: Boundary value problems, Integral boundary conditions, Upper and lower solutions method, Existence of
solution.
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1. Introduction

Integral boundary conditions have been considered in many papers on the literature. They represent a nonlocal
dependence of the solution at some points of the interval. For instance, Jankowski uses the method of lower and
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upper solutions in [15] to ensure the existence of the first order differential equation on a bounded interval with
integral boundary condition

x′(t) = f(t, x(t)), t ∈ [0, T ], x(0) = λ

∫ T

0

x(s) ds+ d.

This method have been used in second order differential equations on bounded intervals by A. Boucherif on
[2], where the following problem is considered

x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1],

coupled to the integral boundary conditions

x(0)− ax′(0) =

∫ 1

0

g0(s)x(s) ds x(1) + bx′(1) =

∫ 1

0

g1(s)x(s) ds.

Many authors have deduced existence, uniqueness and multiplicity of solutions for different kind of
differential equations defined on bounded intervals and coupled to suitable integral boundary conditions, see
[10, 11, 13, 19–21, 26] and references therein. The used tools are related to continuation methods.

Equations defined on unbounded intervals have had a great attention in the literature.This is mainly due to
the search of heteroclinic or homoclinic solutions of many evolution equations. It is important to note that there
are many types of solutions defined on unbounded domains, see for instance, the monograph of Agarwal and
O’Regan [1] or the paper of Rohleder, Burkotová, López-Somoza and Stryja [23]. Many results on this direction
have been obtained for instance in [6, 7, 9, 12, 16–18, 22, 24].

We point out that in [14] it is considered the following equation

(q(t)u(n−1)(t))′ = f(t, u(t), u′(t), . . . , u(n−1)(t)), a.e. t ∈ (0,+∞),

subject to the integral boundary conditions

u(i)(0) = 0, i = 1, 2, . . . , n− 3,

and

u(n−2)(0) =

m∑
i=1

αi

ξi∫
0

u(t)dt, lim
t→+∞

{q(t)u(n−1)(t)} = 0.

The existence of solutions follows from degree theory.
The method of lower and upper solutions is a very well known tool that has been used in many different

problems. We refer to the monograph [5] and the survey [4] and references therein.
In [25], Yan, Agarwal and O’Regan use the upper and lower solution method for the boundary value problem

y′′(t) + φ(t), f(t, y(t), y′(t) = 0; t ∈ [0,+∞)

coupled to the boundary conditions

a, y(0)− b, y′(0) = y0 ≥ 0, lim
t→+∞

{y′(t)} = k > 0

In [17] this method has been applied to the same second order equation but with the following boundary
conditions

y′(0)− a, y′′(0) = B, lim
t→+∞

{y′′(t)} = C

Following the ideas developed in previous mentioned works, in this paper we are interested in to deduce
existence of solutions via this method for a particular problem defined in an unbounded interval. The boundary
conditions have functional dependence at the starting point and it is assumed an asymptotic behavior at +∞.
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More concisely, the considered problem is the following one:

u′′ (t)−m2u (t) + f
(
t, e−mtu (t) , e−mt u′ (t)

)
= 0, for all t ∈ [0,+∞) , (1.1)

u (0)− 1

m
u′ (0) =

+∞∫
0

e−2msu (s) ds, lim
t→+∞

{
e−mtu (t)

}
= B, (1.2)

where m > 0,m 6= 1
6 , B ∈ R and f : [0,+∞) × R2 → R is a continuous function satisfying the following

locally bounded condition

(F ) For each ρ > 0, there exists a positive function ϕρ, such that ϕρ ∈ L1 [0,+∞) such that, for all x, y ∈
(−ρ, ρ) , it is satisfied that

|f (t, x, y)| ≤ ϕρ(t), for all t ∈ [0,+∞) .

The paper is divided in four sections. After this introduction, it is given a section with preliminary results,
where the expression of the Green’s function is obtained. On next section, it is obtained an a priori bound by
means of a Nagumo kind condition. Moreover, the method of lower and upper solutions is developed to deduce
the existence of at least one solution of the considered problem. The last section is devoted to show an example
of the applicability of the obtained results.

2. Preliminaries

First recall some notation, definitions and theorems which will be used later.
We will denote R+ := [0,+∞), R+

0 := (0,+∞) and define the space

X =

{
x ∈ C1 [0,+∞) : lim

t→+∞
e−mtx (t) ∈ R

}
endowed with the norm ‖x‖1 = max {‖x‖ , ‖x′‖}, where

‖y‖ = sup
t∈[0,+∞)

{∣∣e−mty (t)
∣∣} .

Remark 2.1. Notice that if x ∈ X is such that

lim
t→+∞

e−mtx (t) = l ∈ R

then
lim

t→+∞
e−mtx′ (t) = ml ∈ R.

As a consequence, ‖·‖1 is well defined on X .

It is not difficult to verify that (X, ‖·‖1) is a Banach space.
Next we introduce the concept of lower and upper solutions

Definition 2.2. A function α ∈ C2 [0,+∞) ∩ X is a lower solution of the functional boundary value problem
(1.1)-(1.2) if the following inequalities hold for some B1 ∈ R:

(a) α (0)− 1
mα
′ (0) ≤

+∞∫
0

e−2msα (s) ds, lim
t→+∞

{e−mtα (t)} = B1 < B,

(b) α′′ (t)−m2α (t) + f (t, e−mtα (t) , e−mtα′ (t)) ≥ 0, for all t ∈ (0,+∞) .
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A function β ∈ C2 [0,+∞) ∩X is an upper solution if it satisfies the reversed inequalities.
Next lemma gives the exact solution for the associated linear problem by using the Green’s function technique.

Lemma 2.3. Assume that y : [0,+∞) → R is such that y ∈ L1 [0,+∞), m > 0, m 6= 1
6 and B ∈ R. Then the

linear functional boundary value problem
u′′ (t)−m2u (t) + y (t) = 0, t ∈ (0,+∞)

u (0)− 1
mu
′ (0) =

+∞∫
0

e−2msu (s) ds, lim
t→+∞

{
e−mtu (t)

}
= B

(2.1)

has a unique solution u ∈ X , given by

u (t) =

∫ +∞

0

G (t, s) y (s) ds+
3B

6m− 1
e−mt +Bemt (2.2)

where

G (t, s) =
e−mt

2m2 (6m− 1)

(
3e−ms − 2e−2ms

)
+

1

2m

{
em(s−t), s ≤ t
em(t−s), s > t

. (2.3)

Proof. Firstly we solve the following boundary value problem{
u′′ (t)−m2u (t) + y (t) = 0, t ∈ (0,+∞)

u (0)− 1
mu
′ (0) = A, lim

t→+∞
{e−mtu (t)} = B, (2.4)

where A ∈ R.
The general solution of the homogeneous equation

u′′ (t)−m2u (t) = 0, t ∈ (0,+∞) ,

follows the expression
u (t) = d1e

−mt + d2e
mt,

with d1, d2 ∈ R.
First, it is obvious that the unique solution on X of the homogeneous problem{

v′′ (t)−m2 v (t) = 0, t ∈ (0,+∞)

v (0)− 1
mv
′ (0) = A, lim

t→+∞
{e−mtv (t)} = B.

is given by

v(t) =
A

2
e−mt +Bemt.

Then the solution of the boundary value problem (2.4) has the form

u (t) =

∫ +∞

0

g (t, s) y (s) ds+
A

2
e−mt +Bemt, (2.5)

where

g (t, s) =

{
C1 (s) e−mt + C2 (s) emt, t < s

C3 (s) e−mt + C4 (s) emt, t ≥ s .

Using the fact that g is continuous and ∂g
∂t has a jump (which equals 1) at t = s (see [3] for details), we get

g (t, s) =
1

2m

{
em(t−s), t < s

em(s−t), t ≥ s . (2.6)
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Now, in (2.5), putting A =
+∞∫
0

e−2msu (s) ds, it yields

∫ +∞

0

e−2msu (s) ds =

∫ +∞

0

(
e−2ms

∫ +∞

0

g (s, r) y (r) dr

)
ds

+
A

2

∫ +∞

0

e−3msds+B

∫ +∞

0

e−msds.

So, by interchanging the order of integration we obtain

A =
6m

6m− 1

∫ +∞

0

(∫ +∞

0

e−2msg (s, r) ds

)
y (r) dr +

6B

6m− 1

=
3

m2 (6m− 1)

∫ +∞

0

(
e−mr − 2

3
e−2mr

)
y(r)dr +

6B

6m− 1
. (2.7)

Finally, replacing (2.7) in (2.5), we have

u (t) =

∫ +∞

0

g (t, s) y (s) ds+
e−mt

2m2 (6m− 1)

∫ +∞

0

(
3e−ms − 2e−2ms

)
y(s)ds

+
3Be−mt

6m− 1
+Bemt,

which gives the result of the lemma. �

In order to deduce the existence results, the following compactness criteria will be useful.

Lemma 2.4. [8]
A set M ⊂ X is relatively compact if the following conditions hold:
(i) M is bounded in X.
(ii) The functions from M are equicontinuous on any compact sub-interval of [0,+∞).
(iii) The functions from M are equiconvergent at +, that is, for any ε > 0, there exists a T = T (ε) > 0 such

that,
∣∣e−mtx(i) (t)− limt→+∞ e−mtx(i) (t)

∣∣ < ε for all t ≥ T , i = 0, 1 and x ∈M .

3. Main Result.

In this section we prove the existence and location of at least one solution for Problem (1.1)- (1.2).
In a first moment we introduce a kind of Nagumo’s condition, that impose a growth restriction on the

dependence with respect to the last variable of the nonlinear part of the equation.

Definition 3.1. Consider α and β ∈ X be such that α ≤ β on [0,+∞). Define

D =
{

(t, x, y) ∈ [0,+∞)× R2 : e−mtα (t) ≤ x ≤ e−mtβ (t)
}
,

and suppose that f : D → R is a continuous function that satisfies:

|f(t, u, v)| ≤ h(|v|) ∀(t, u, v) ∈ D, (3.1)

where h : [0,+∞)→ [0,+∞) is a continuous and nondecreasing function such that

lim
s→+∞

s

h(s)
>

(
2

m2|6m− 1|
+

1

m

)
. (3.2)
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To guarantee the existence of solutions of (1.1)-(1.2) we have to find a priori bounds for the derivative of all
the posible solutions of the considered problem. Hence, we need the following lemma.

Lemma 3.2. Let α, β be a pair of lower and upper solutions for Problem (1.1)–(1.2) such that α ≤ β on [0,+∞),
and let f : [0,+∞) × R2 → R be a continuous function satisfying the conditions on Definition 3.1. Then there
exists b > 0, such that for every solution u of (1.1)-(1.2) with α (t) ≤ u (t) ≤ β (t) ,∀t ∈ [0,+∞), we have

‖u′‖ ≤ b.

Proof. From Lemma 2.3, we know that the solutions of Problem (1.1)–(1.2) are characterized as the solutions of
the following integral equation:

u(t) =

∫ +∞

0

G(t, s)f(s, e−msu(s), e−msu′(s))ds. (3.3)

Differentiating in (3.3), we obtain

e−mtu′(t) =

∫ +∞

0

e−mt
∂G

∂t
(t, s)f(s, e−msu(s), e−msu′(s))ds. (3.4)

Now, we have that

e−mt
∂G

∂t
(t, s) = − e−2mt

2m (6m− 1)

(
3e−ms − 2e−2ms

)
+

1

2

{
−em(s−2t) , s ≤ t
e−ms , s > t

. (3.5)

Using (3.1), and the fact that h is nondecreasing, we get

|e−mtu′(t)| ≤
∫ +∞

0

e−mt
∣∣∣∂G
∂t

(t, s)
∣∣∣|f(s, e−msu(s), e−msu′(s))|ds

≤
∫ +∞

0

e−2mt

2m |6m− 1|
(
3e−ms + 2e−2ms

)
h(|e−msu′(s)|)ds

+

∫ t

0

em(s−2t)

2
h(|e−msu′(s)|)ds+

∫ +∞

t

e−ms

2
h(|e−msu′(s)|)ds

≤ h(‖u′‖)
(

2e−2mt

m2|6m− 1|
+
e−2mt (2emt − 1)

2m

)
≤ h(‖u′‖)

(
2

m2|6m− 1|
+

1

m

)
, for all t ∈ [0,+∞),

which implies that
‖u′‖

h(‖u′‖)
≤
(

2

m2|6m− 1|
+

1

m

)
.

Then, from (3.2), we deduce that there exists b > 0 such that ‖u′‖ < b.
This completes the proof. �

Now, we are in a position to prove the main result of this paper.

Theorem 3.3. Let α and β be a pair of lower and upper solutions for the functional boundary value problem
(1.1)-(1.2) such that α (t) ≤ β (t) for every t ∈ [0,+∞) and let f : [0,+∞)×R2 → R be a continuous function
satisfying the conditions on Definition 3.1.. Then the functional boundary value problem (1.1)–(1.2) has at least
one solution u ∈ C2 [0,+∞) ∩X such that

α (t) ≤ u (t) ≤ β (t) , ∀t ∈ [0,+∞) .
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Proof. First, we define the truncated functions

p(t, x) = max {α(t),min {x, β(t)}}

and
q(y) = max {−K,min {y,K}},

where K = max{b, ‖α‖1, ‖β‖1} and b is the constant given in Lemma 3.2.
Consider now the following modified problem

u′′ (t)−m2u (t) + F (t, u(t), e−mtu′(t)) = 0, t ∈ (0,+∞)

u (0)− 1
mu
′ (0) =

+∞∫
0

e−2msp(s, u (s))ds, lim
t→+∞

{
e−mtu (t)

}
= B

(3.6)

with
F (t, x, y) = f(t, e−mtp(t, x), q(y)).

We will show that the solutions of the modified problem (3.6) lie in a region where f is unmodified i.e.
α (t) ≤ u (t) ≤ β (t) , and −b ≤ e−mtu′ (t) ≤ b for all t ∈ [0,+∞) and, hence, they will be solutions of
problem (1.1)–(1.2). The proof will be done in two steps.

Step 1: Existence of solution.

By (2.5) it is clear that the solutions of the truncated problem (3.6) coincide with the fixed points of the
operator T : X → X defined by

T u (t) =

∫ +∞

0

g (t, s)F
(
s, u(s), e−msu′(s)

)
ds+

e−mt

2

+∞∫
0

e−2msp(s, u (s))ds+Bemt.

Let us see that operator T is well defined in X . Indeed, let u ∈ X , by definition of function p, α and β, we
have that e−2msp(s, u (s)) ∈ L1[0,+∞). Moreover e−msp(s, u (s)) and q(emsu′(s)) are bounded in [0,+∞).
So, we can use condition (F ) to deduce that there is R > 0 such that

|F (t, x, y)| ≤ ϕR(t), for all t ∈ [0,+∞) .

with ϕR ∈ L1 [0,+∞) .
As a direct consequence, we have that ϕR(·) g (t, ·) and ϕR(·) ∂g∂t (t, ·) are in L1[0,+∞). So, we deduce that

Tu(t) ∈ C1[0,+∞). Moreover

lim
t→+∞

{
e−mtTu (t)

}
= B

and, using Remark 2.1, that

lim
t→+∞

{
e−mt (Tu)

′
(t)
}

= mB,

That is: T u ∈ X .
Moreover, as a direct consequence, there is R̄ > 0 such that

‖T u‖1 ≤ R̄, for all u ∈ X.

Consequently, T (B) is uniformly bounded and maps the closed, bounded and convex set

B =
{
u ∈ X : ||u|| ≤ R̄

}
,
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into itself.

Furthermore, for C > 0 and t1, t2 ∈ [0, C] , t1 < t2, we have

∣∣e−mt1Tu(t1)− e−mt2Tu(t2)
∣∣ ≤ ∣∣e−2mt1 − e−2mt2

∣∣
2

+∞∫
0

e−2ms|p(s, u (s))|ds

+

∣∣e−2mt1 − e−2mt2
∣∣

2m

∫ t1

0

ems|F (s, u (s) , e−msu′ (s))|ds

+

∣∣1 + e−2mt2
∣∣

2m

∫ t2

t1

ems|F (s, u (s) , e−msu′ (s))|ds

≤
∣∣e−2mt1 − e−2mt2

∣∣
2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+

∣∣e−2mt1 − e−2mt2
∣∣

2m

∫ t1

0

emsϕR̄(s)ds

+

∣∣1 + e−2mt2
∣∣

2m

∫ t2

t1

emsϕR̄(s)ds,

which converges to 0 as t1 → t2, and it is independent of u ∈ X . (Notice that emsϕR̄(s) ∈ L1
loc[0,+∞))

Analogously, we have

∣∣e−mt1(Tu)′(t1)− e−mt2(Tu)′(t2)
∣∣ ≤ m

∣∣e−2mt1 − e−2mt2
∣∣

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+

∣∣e−2mt1 − e−2mt2
∣∣

2

∫ t1

0

emsϕR̄(s)ds

+

∣∣1 + e−2mt2
∣∣

2

∫ t2

t1

emsϕR̄(s)ds,

and converges to 0 as t1 → t2 with independence of u ∈ X .

This shows that T is equicontinuous on compact subintervals of [0,+∞).

Finally, the fact that T (B) is equiconvergent at infinity follows from the following inequalities:

∣∣∣∣e−mtTu(t)− lim
t→+∞

{
e−mtTu(t)

}∣∣∣∣ =
∣∣e−mtTu(t)−B

∣∣
≤ e−2mt

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+
e−2mt

2m

∫ t

0

emsϕR̄(s)ds

+
1

2m

∫ +∞

t

e−msϕR̄(s)ds
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≤ e−2mt

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+
e−mt

2m
‖ϕR̄‖L1[0,+∞)

+
1

2m

∫ +∞

t

e−msϕR̄(s)ds,

and

∣∣∣∣e−mt(Tu)′(t)− lim
t→+∞

{
e−mt(Tu(t))′

}∣∣∣∣ =
∣∣e−mtTu(t)−mB

∣∣
≤ me−2mt

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+
e−mt

2
‖ϕR̄‖L1[0,+∞)

+
1

2

∫ +∞

t

e−msϕR̄(s)ds,

Consequently, By lemma 2.4, the set T (B) is relatively compact. In addition T is continuous via dominated
convergence theorem. Therefore, the map T is completely continuous. Using Schauder’s Theorem, we conclude
that T has a fixed point in X , then, the BVP (3.6) has at least one solution u ∈ C2 [0,+∞) ∩X .

Step 2: If u is a solution of the truncated problem (3.6), then

α (t) ≤ u (t) ≤ β (t) ,∀t ∈ [0,+∞) .

First, notice that, since lim
t→+∞

{e−mt(α− u) (t)} < 0, we have that there is t1 ≥ 0 such that α < u on

(t1,+∞).
Assuming that there exists t0 ∈ (0,+∞) such that

inf
t∈[0,+∞)

(u (t)− α (t)) = u (t0)− α (t0) < 0,

we have two cases to consider such as the following:
Case 1: If t0 ∈ (0,+∞) , we get u′(t0) = α′(t0) and

0 ≤ u′′ (t0)− α′′ (t0) ≤ − f
(
t0, e

−mt0α (t0) , e−mt0α′ (t0)
)

+m2u (t0)

+f
(
t0, e

−mt0α (t0) , e−mt0α′ (t0)
)
−m2α (t0) < 0.

that is a contradiction, thus, the infimum of u− α is not achieved at the point t0.
Case 2: If t0 = 0, we have

min
t∈[0,+∞)

(u (t)− α (t)) = u (0)− α (0) < 0.

and
u′ (0)− α′ (0) ≥ 0,

so, since m > 0 and the fact that α is a lower solution, it yields to the following contradiction

0 > u (0)− α (0)− 1

m
(u′ (0)− α′ (0)) ≥

+∞∫
0

e−2ms

(
p(s, u(s))− α(s)

)
ds ≥ 0.

To complete the proof, we apply Lemma 3.2 to F and we deduce that ‖u′‖ ≤ b. �
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4. Example

Consider the following BVP

u′′ (t)− u (t) = f
(
t, e−tu (t) , e−tu′ (t)

)
, t ∈ [0,+∞)

u (0)− u′ (0) =

∫ +∞

0

e−2su (s) ds, lim
t→+∞

e−tu (t) = B,

where m = 1 and f (t, x, y) = e−t/3

B
3
√
x+ y − e−2t, with B < 0.

Firstly, let B1 < min {B, 4B3 − 1/6} and B2 ≥ 0.
Let us see that functions α (t) = 11+12B1

20 e−t − 1
3e
−2t +B1e

t and β (t) = 11+12B2

20 e−t − 1
3e
−2t +B2e

t are
a pair of lower and upper solutions of this BVP such that α (t) ≤ β (t) , t ∈ [0,+∞) . Indeed,

6

5
B2 +

1

10
= β (0)− β′ (0) =

∫ +∞

0

e−2tβ (t) dt, lim
t→+∞

{
e−tβ (t)

}
= B2 > B

and, using that B2 ≥ 0,

β′′ (t)− β (t) +
1

B
3
√
e−tβ(t) + e−tβ′(t) =

e−t/3 3
√

6B2 + e−3t

3
√

3B
− 2e−2t ≤ 0.

Moreover

6

5
B1 +

1

10
= α (0)− α′ (0) =

∫ +∞

0

e−2tα (t) dt, lim
t→+∞

{
e−tα (t)

}
= B1 < B

and, since B1 ≤ 4B3 − 1/6,

α′′ (t)− α (t) +
1

B
3
√
e−tα(t) + e−tα′(t) + e−2t =

e−t/3 3
√

6B1 + e−3t

3
√

3B
− 2e−2t ≥ 0

Moreover, the function f satisfy the condition (F ).

For each ρ > 0, x, y ∈ (−ρ, ρ), we have

|f (t, x, y)| ≤ e−t/3

|B|
3
√
|x|+ |y|+ e−2t

≤ e−t/3

|B|
3
√

2 ρ+ e−2t =: ϕρ(t), for all t ∈ [0,+∞) ,

with ϕρ ∈ L1 [0,+∞).
Finally, for any t ∈ [0,+∞) and e−tα (t) ≤ x ≤ e−tβ (t), we have that there is a positive constant C such

that

|f (t, x, y)| ≤ 1

|B|
3
√
C + |y|+ 1 =: h(|y|).

Clearly, h : [0,+∞)→ [0,+∞) is a continuous and nondecreasing function such that

lim
s→+∞

s

h(s)
= +∞.

As a consequence, all the assumptions of Theorem 3.3 are fulfilled and this problem admits at least one
solution lying between α and β.
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1 Département de Mathématiques, Institut Des Sciences, 01 BP 1757 Ouagadougou 01, Burkina Faso.Laboratoire d’Analyse Numérique,
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1. Introduction

The notion of almost automorphy was introduced in the early sixties by S. Bochner in [7–9] when studying a
problem in differential geometry. It turns out to be a generalization of almost periodicity in the sense of Bohr.
After the emergence of the concept of almost automorphy, many authors have produced extensive literature on the
theory of almost automorphy with usefull generalizations. Veech [34] and Zaki [36] studied almost automorphic
functions respectively on groups and the real number set. In his paper [28], N’Guérékata introduced the concept
of asymptotically almost automorphic functions. For more informations on the concept of almost automorphy and
its application to evolution equations, we refer the reader to [26, 29]. In [35], Xiao et al. introduced the notion of
pseudo almost automorphy as suggested by N’Guérékata in [29]. Later on, the notion of weighted pseudo almost
automorphy was introduced by J. Blot et al. in [6]. Recently, Blot et al. in [4] introduced the concept of µ−pseudo
almost automorphy which is more general than the class of weighted pseudo almost automorphic functions. Due
to a lot of applications, the existence of pseudo almost automorphic, weighted pseudo almost automorphic and
µ−pseudo almost automorphic solutions of various differential equations has become an interesting field. Many
authors have made important contributions on these topics [1, 2, 4, 6, 12, 16, 17, 20, 24, 35, 36].

∗Corresponding author. Email address: moumik3000@yahoo.fr (Moumini KÉRÉ), gaston.nguerekata@morgan.edu (Gaston Mandata
N’GUÉRÉKATA), oueama@yahoo.fr (Enock R. OUEAMA)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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In 1878 Clifford [15] introduced Clifford algebra which includes real numbers, complex numbers, quaternions
and Grassmann algebra. After the monographs of Chevalley [13] and Riesz [33] published in 1954 and 1958,
respectively, Clifford algebra received more and more attention. Nowadays, Clifford algebra is used in many
fields such as geometry, satellite navigation, neural network, theoretical physics, robotics, image processing and
quantium computing [18, 19, 21]. In Neural network, Pearson first proposed a Clifford-valued neural network
[32] described by Clifford-valued differential equations. In [11], Buchholz conclued tha Clifford-valued neural
network have more advantages than real-valued ones. Since these works, Clifford-valued neural networks has
become a very attractive field of research. In [22], by decomposing Clifford-valued system into real-valued
systems, Li et al. prove the existence of almost periodic solution and the global asymptotic synchronization for
a class of Clifford-valued neural networks. Recently in [23], by non-decomposing method, Li et al. studied the
existence and global exponential stability of µ−pseudo almost periodic solutions of Clifford-valued semi-linear
delay equations.

Motivated by the above papers, we would like to study the existence and uniqueness of µ−pseudo almost
automorphic mild solutions for the following Clifford-valued semi-linear delay equations:

x′ (t) = −D (t)x (t) + F (t, x (t) , x (t− τ (t))) ; t ∈ R, (1.1)

where D (·) = diag {d1 (·) , d2 (·) , ..., dn (·)} ∈ Rn×n, F ∈ C
(
R×A2n,An

)
, τ ∈ C (R,R+), A is a real

Clifford algebra.
The rest of the paper is organized as follows. In Section 2, we recall some basic definitions and results about

Clifford algebras and the notion of µ−pseudo almost automorphic functions. Section 3 is devoted to our main
results.

2. Preliminaries

In this section, we recall some basic definitions and preliminary results on Clifford algebras and µ−pseudo almost
automorphic functions.

Definition 2.1. Let m be a natural number. The real Clifford algebra over Rm is defined as

A =

 ∑
A⊆{1,2,...,m}

aAeA, aA ∈ R

 ,

where eA = eh1
eh2

...ehν with A = {h1, h2, ..., hν}, 1 ≤ h1 < h2 < ... < hν ≤ m. Moreover, e∅ = e0 = 1

and ei, i = 1, 2, ...,m are Clifford generators and satisfy e2
i = −1, i = 1, 2, ...,m and eiej + ejei = 0,

∀i, j = 1, 2, ...,m, i 6= j.

In the sequel, we will denote by eh1h2...hν the product of Clifford generators eh1
, eh2

, ..., ehν . Let E =

{1, 2, ...,m} and Π = P (E), then it is obvious that A =

{ ∑
A∈Π

aAeA, aA ∈ R
}

and dim (A) = 2m.

Definition 2.2. For x =
∑
A∈Π

xAeA ∈ A, the involution of x is defined as

x =
∑
A∈Π

xAeA

where eA = (−1)
n(A)(n(A)+1)

2 eA, if A = ∅, then n (A) = 0 and if A = {h1, h2, ..., hν} ∈ Π, then n (A) = ν.

It’s clear that eAeA = 1 and easy to verify that the involution has the property xy = yx, ∀x, y ∈ A. For
x, y ∈ A, we define the inner product of x and y by

(x, y)0 = 2m [xy]0 = 2m
∑
A∈Π

xAyA,
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where [xy]0 is the coefficient of e0 conpoment of xy. Then A with this inner product is a real Hilbert space and
with the norm defined by ‖x‖A =

√
(x, x)0 is a Banach algebra since for all x, y ∈ A

‖xy‖A ≤ ‖x‖A ‖y‖A .

The derivative of x (t) =
∑
A∈Π

xA (t) eA is given by
dx (t)

dt
=
∑
A∈Π

dxA (t)

dt
eA. We refer the reader to [10] for

more informations about Clifford algebra.
Now, let us recall some definitions and results on almost automorphic functions.
Let B be the Lebesgue σ-field of R andM the set of all positive mesures µ on B satisfying µ (R) = +∞ and

µ ([a, b]) < +∞, for all a, b ∈ R (a ≤ b). Throughout the rest of this paper, (X, ‖·‖X) and (Y, ‖·‖Y) will stand
for Banach spaces and

‖x‖∞ = sup
t∈R
‖x (t)‖Z ,

where Z = X, or Y. We also denote by B (R,Z), C (R,Z) and BC (R,Z) the collections of all bounded functions,
all continuous functions and all continuous and bounded functions from R to Z, respectively.

Definition 2.3. ([27]) A function f ∈ C (R,X) is said to be almost automorphic if for every sequence of real
numbers (τ ′n)n there exists a subsequence (τn)n such that

g (t) = lim
n→+∞

f (t+ τn) exists for each t ∈ R

and
lim

n→+∞
g (t− τn) = f (t) for each t ∈ R.

We denote by AA (R,X) the space of the almost automorphic X-valued functions.

Remark 2.4. Note that in the above limit the function g is just mesurable. If the convergence in both limits is
uniform in t ∈ R, then f is almost periodic in the sense of Bohr. The concept of almost automorphy is then larger
than almost periodicity. If f is almost automorphic, then its range is relatively compact, thus bounded in norm.

Example 2.5. ([27]) Let f : R −→ R be such that

f (t) = sin

(
1

2 + cos t+ cos
√

2t

)
for t ∈ R.

Then f is almost automorphic, but it is not uniformly continuous on R. Therefore, it is not almost periodic.

Proposition 2.6. ([27]) (AA (R,X) , ‖.‖∞) is a Banach space.

Definition 2.7. A function f ∈ C (R× X,Y) is said to be almost automorphic in t ∈ R uniformly with respect to
x ∈ X, if the following two conditions hold:

i) for all x ∈ X, f (·, x) ∈ AA (R,Y),

ii) f is uniformly continuous on each compact set K in X with respect to the second variable x, namely, for
each compact set K in X, for all ε > 0, there exists δ > 0 such that for all x1, x2 ∈ K, one has

‖x1 − x2‖ ≤ δ =⇒ sup
t∈R
‖f (t, x1)− f (t, x2)‖ ≤ ε

We denote by AAU (R× X,Y) the set of all such functions.

Theorem 2.8. ([5]) Let f ∈ AAU (R× X,Y) and x ∈ AA (R,X). Then [t 7−→ f (t, x (t))] ∈ AA (R,Y).
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Definition 2.9. ([4]) Let µ ∈M. A bounded continuous function f : R −→ X is said to be µ-ergodic if

lim
r→+∞

1

µ ([−r, r])

∫
[−r,r]

‖f (t)‖ dµ (t) = 0.

We denote the space of all such functions by E (R,X, µ).

Proposition 2.10. ([4]) Let µ ∈M. Then (E (R,X, µ) , ‖.‖∞) is a Banach space.

Definition 2.11. ([4]) Let µ ∈M. A continuous function f : R −→ X is said to be µ-pseudo almost automorphic
if f is written in the form:

f = φ+ ψ

where φ ∈ AA (R,X) and ψ ∈ E (R,X, µ). We denote the space of all such functions by PAA (R,X, µ).
Then, we have

AA (R,X) ⊂ PAA (R,X, µ) ⊂ BC (R,X) .

Remark 2.12. Without assumption on the measure µ, the decomposition in the above definition of the
corresponding µ-pseudo almost automorphic function is not unique.

Remark 2.13. A pseudo almost automorphic function is µ-pseudo almost automorphic function in the particular
case where the measure µ is the Lebesgue measure. For more details on pseudo almost automorphic functions,
we refer to [24, 25].

Remark 2.14. The notion of µ-pseudo almost automorphic functions is a generalization of the weighted pseudo
almost automorphic functions which is due to Blot et al. [6]. Following [6], a function f is so-called weighted
pseudo almost automorphic if f is a µ-pseudo almost automorphic function in the particular case where the
measure µ is defined by µ (A) =

∫
A
ρ (t) dt for A ∈ B with ρ (t) > 0 a.e on R for the Lebesgue measure and∫ +∞

−∞ ρ (t) dt = +∞.

Proposition 2.15. ([4]) Let µ ∈M. Then PAA (R,X, µ) is a vector space.

Definition 2.16. ([4]) Let µ1 and µ2 ∈ M. µ1 is said to be equivalent to µ2 (µ1 ∼ µ2) if there exist constants
α, β > 0 and a bounded interval I (eventually I = ∅) such that

αµ1 (A) ≤ µ2 (A) ≤ βµ1 (A) , for A ∈ B satisfying A ∩ I = ∅.

Remark 2.17. The relation ∼ is an equivalence relation onM.

Theorem 2.18. ([4]) Let µ1, µ2 ∈ M. If µ1 and µ2 are equivalent, then E (R,X, µ1) = E (R,X, µ2) and
PAA (R,X, µ1) = PAA (R,X, µ2).

For µ ∈M, τ ∈ R and A ∈ B, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ ({a+ τ, a ∈ A}) .

From µ ∈M, we formulate the following hypothesis:

(H0)
{

For all τ ∈ R, there exist β > 0 and a bounded interval I such that
µτ (A) ≤ βµ (A) , when A ∈ B satisfies A ∩ I = ∅.

Lemma 2.19. ([4]) Let µ ∈M. Then µ satisfies (H0) if and only if the measures µ and µτ are equivalent for all
τ ∈ R.
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Lemma 2.20. ([4]) Hypothesis (H0) implies

for all σ > 0, lim sup
r→+∞

µ ([−r − σ, r + σ])

µ ([−r, r])
< +∞.

Theorem 2.21. ([4]) Let µ ∈ M satisfying (H0). Then E (R,X, µ) is translation invariant, therefore
PAA (R,X, µ) is also translation invariant.

Theorem 2.22. ([4, Theorem 3.9]) Let µ ∈ M satisfy (H0). If f ∈ PAA (R,X, µ) and g ∈ L1 (R,L (X)),
then the convolution product f ∗ g is also µ-pseudo almost automorphic. In fact, if f ∈ AA (R,X), then
f ∗ g ∈ AA (R,X) and if f ∈ E (R,X, µ), then f ∗ g ∈ E (R,X, µ).

Theorem 2.23. ([4]) Let µ ∈ M. Assume that PAA (R,X, µ) is translation invariant. Then the decomposition
of a µ-pseudo almost automorphic function in the form f = φ + ψ where φ ∈ AA (R,X) and ψ ∈ E (R,X, µ),
is unique.

Theorem 2.24. ([4]) Let µ ∈ M. Assume that PAA (R,X, µ) is translation invariant. Then
(PAA (R,X, µ) , ‖.‖∞) is a Banach space.

Definition 2.25. ([4]) Let µ ∈ M. A continuous function f : R × X −→Y is said to be almost automorphic in
t ∈ R uniformly with respect to x ∈ X if the following two conditions are hold:

i) for all x ∈ X, f (., x) ∈ AA (R,Y)

ii) f is uniformly continuous on each compact set K in X with respect to the second variable x, namely, for
each compact set K in X, for all ε > 0, there exists δ > 0 such that for all x1, x2 ∈ K, one has

‖x1 − x2‖ ≤ δ =⇒ sup
t∈R
‖f (t, x1)− f (t, x2)‖ ≤ ε.

Denote by AAU (R× X,Y, µ) the set of all such functions.

Definition 2.26. ([4]) Let µ ∈ M. A continuous function f : R × X −→Y is said to be µ-ergodic in t ∈ R
uniformly with respect to x ∈ X if the following two conditions are true:

i) for all x ∈ X, f (., x) ∈ E (R,Y, µ)

ii) f is uniformly continuous on each compact set K in X with respect to the second variable x.

Denote by EU (R× X,Y, µ) the set of all such functions.

Definition 2.27. ([4]) Let µ ∈ M. A continuous function f : R × X −→Y is said to be µ-pseudo almost
automorphic in t ∈ R uniformly with respect to x ∈ X if f is written in the form f = φ + ψ where φ ∈
AAU (R× X,Y) and ψ ∈ EU (R× X,Y, µ).

PAAU (R× X,Y, µ) denote the set of all such functions.

Remark 2.28. We have AAU (R× X,Y) ⊂ PAAU (R× X,Y, µ).

Theorem 2.29. ([4, Theorem 5.7]) Let µ ∈ M, f ∈ PAAU (R× X,Y, µ) and x ∈ PAA (R,X, µ). Assume
that for all bounded subset B of X, f is bounded on R×B. Then [t 7−→ f (t, x (t))] ∈ PAA (R,Y, µ).

In the sequel we assume that
(H1) F = F1 + F2 ∈ PAAU

(
R×A2n,An, µ

)
is bounded function on R×Ω for any bounded subset Ω of

A2n, and there exist real numbers L1, L
′
1 > 0 and L2, L

′
2 > 0 such that

‖F1 (t, x1, y1)− F1 (t, x2, y2)‖An ≤ L1 ‖x1 − y1‖+ L′1 ‖x2 − y2‖ , ∀t ∈ R, ∀x1, x2, y1, y2 ∈ An,
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‖F2 (t, x1, y1)− F2 (t, x2, y2)‖An ≤ L2 ‖x1 − y1‖+ L′2 ‖x2 − y2‖ , ∀t ∈ R, ∀x1, x2, y1, y2 ∈ An.

(H2) For i = 1, 2, ..., n; di ∈ AA (R,R) with min
1≤i≤n

{
inf
t∈R

di (t)

}
= d∗ > 0, and τ ∈ AA (R,R+) with

τ∗ = sup
t∈R
|τ (t)|.

(H3) There exists λ ∈ C (R,R+) such that dµ (γ (t)) = λ (t) dµ (t) for all t ∈ R and

lim sup
r→+∞

M (r)µ ([−K (r) ,K (r)])

µ ([−r, r])
<∞,

where γ (t) is the inverse function of t 7→ t−τ (t),K (r) = sup
t∈[−r,r]

|t− τ (t)| andM (r) = sup
t∈[−K(r),K(r)]

|λ (t)|.

(H4) L1+L2+L′1+L′2
d∗ < 1, where L1, L2, L

′
1, L

′
2 and d∗ are defined in (H1) and (H2).

3. Main results

From now on X =A2n and Y =An.

Lemma 3.1. [23, Lemma 3.1] Function x solves the equation (1.1) if and only if x solves the following equation:

x (t) =

∫ t

−∞
e−

∫ t
s
D(u)duF (s, x (s) , x (s− τ (s))) ds, ∀t ∈ R. (3.1)

We need the following lemma.

Lemma 3.2. Suppose that (H3) holds and let u = u1 + u2 ∈ PAA (R,An, µ) with u2 ∈ EAA (R,An, µ) and
u1 ∈ AA (R,An). Then t 7→ u (t− τ (t)) ∈ PAA (R,An, µ).

Proof. Let (α′n)n be a sequence of real numbers. For a fixed t ∈ R we set β′n = α′n − τ (t+ α′n) for all n ∈ N.
Since (β′n)n is a sequence of real numbers and u1 ∈ AA (R,An), there exists a subsequence (βn)n of (β′n)n
such that

lim
n−→+∞

u1 (t+ βn) = u1 (t) exists for all t ∈ R,

and
lim

n−→+∞
u1 (t− βn) = u1 (t) exists for all t ∈ R.

That is there exists a subsequence (αn)n of (α′n)n such that βn = αn − τ (t+ αn) for all n ∈ N, and

lim
n−→+∞

u1 (t+ αn − τ (t+ αn)) = u1 (t) exists for all t ∈ R,

lim
n−→+∞

u1 (t+ αn − τ (t+ αn)) = u1 (t) exists for all t ∈ R.

So, t 7−→ u1 (t− τ (t)) ∈ AA(R,An). On the other hand, from assumption (H3) we have

1

µ ([−r, r])

∫ r

−r
‖u2 (t− τ (t))‖An dµ (t)

=
µ ([−K (r) ,K (r)])

µ ([−r, r])
1

µ ([−K (r) ,K (r)])

∫ K(r)

−K(r)

‖u2 (t)‖An λ (t) dµ (t)

≤ M (r) .µ ([−K (r) ,K (r)])

µ ([−r, r])
1

µ ([−K (r) ,K (r)])

∫ K(r)

−K(r)

‖u2 (t)‖An dµ (t)
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Since u2 ∈ EAA (R,An, µ), we obtain from Assumption (H3) and the above inequality that

lim
r−→+∞

1

µ ([−r, r])

∫ r

−r
‖u2 (t− τ (t))‖An dµ (t) = 0,

thus t 7−→ u2 (t− τ (t)) ∈ EAA (R,An, µ). The proof is complet. �

Lemma 3.3. Assume that assumptions (H1), (H3) hold and u ∈ PAA(R,An, µ). Then
t 7−→ F (t, u (t) , u (t− τ (t))) ∈ PAA(R,An, µ).

Proof. Apply Lemma 3.2 and Theorem 2.29 with X =A2n, Y =An, f = F and x (t) = (u (t) , u (t− τ (t))).
�

Lemma 3.4. Let u, v ∈ PAA(R,An, µ). Then uv ∈ PAA(R,An, µ).

Proof. Since u, v ∈ PAA(R,An, µ) then there exist u1, v1 ∈ AA(R,An) and u2, v2 ∈ EAA(R,An, µ) such
that u = u1 + u2 and v = v1 + v2. So, uv = u1v1 + u1v2 + u2v1 + u2v2. It obvious that u1v1 ∈ AA(R,An).
We have

‖u1 (t) v2 (t) + u2 (t) v1 (t) + u2 (t) v2 (t)‖An
≤ ‖u1 (t)‖An ‖v2 (t)‖An + ‖u2 (t)‖An ‖v1 (t)‖An + ‖u2 (t)‖An ‖v2 (t)‖An
≤ ‖u1‖0 ‖v2 (t)‖An + ‖v1‖0 ‖u2 (t)‖An + ‖u2‖0 ‖v2 (t)‖An

and

lim
r−→+∞

1

µ ([−r, r])

∫ r

−r
‖u1 (t) v2 (t) + u2 (t) v1 (t) + u2 (t) v2 (t)‖An dµ (t)

≤ lim
r−→+∞

1

µ ([−r, r])

∫ r

−r
(‖u1‖0 ‖v2 (t)‖An + ‖v1‖0 ‖u2 (t)‖An

+ ‖u2‖0 ‖v2 (t)‖An) dµ (t)

≤ lim
r−→+∞

‖u1‖0
µ ([−r, r])

∫ r

−r
‖v2 (t)‖An dµ (t) + lim

r−→+∞

‖v1‖0
µ ([−r, r])

∫ r

−r
‖u2 (t)‖An dµ (t)

+ lim
r−→+∞

‖u2‖0
µ ([−r, r])

∫ r

−r
‖v2 (t)‖An dµ (t)

= 0.

Hence,

lim
r−→+∞

1

µ ([−r, r])

∫ r

−r
‖u1 (t) v2 (t) + u2 (t) v1 (t) + u2 (t) v2 (t)‖An dµ (t) = 0.

Therefore, (u1v2 + u2v1 + u2v2) ∈ EAA(R,An, µ). This complet the proof. �

Theorem 3.5. Assume that the assumptions (H0)-(H4) hold. Then system (1.1) has a unique µ−pseudo almost
automorphic solution.
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Proof. We define an operator Λ : PAA(R,An, µ) −→ PAA(R,An, µ) as follows

Λx (t) =

∫ t

−∞
e−

∫ t
s
D(u)duF (s, x (s) , x (s− τ (s))) ds, ∀x ∈ PAA(R,An, µ).

Since F ∈ PAA(R×A2n,An, µ) and x ∈ PAA(R,An, µ), by Lemma 3.3,

s 7−→ f (s) = F (s, x (s) , x (s− τ (s))) ∈ PAA(R,An, µ).

So, there exist f1 ∈ AA(R,An) and f2 ∈ E(R,An, µ) such that f = f1 + f2 and for any sequence of real
numbers (α′n)n, there exists a subsequence (αn)n sucht that

lim
n−→+∞

f1 (t+ αn) = f1 (t) exists for all t ∈ R, (3.2)

lim
n−→+∞

D (t+ αn) = D (t) exists for all t ∈ R. (3.3)

Fisrt step: We will prove that Λx (t) exists
We have

Λx (t) =

∫ t

−∞
e−

∫ t
s
D(u)duf (s) ds =

∫ 0

−∞
e−

∫ 0
s
D(t+u)duf (t+ s) ds.

So, by assumption (H2)

‖Λx (t)‖An =

∥∥∥∥∫ 0

−∞
e−

∫ 0
s
D(t+u)duf (t+ s) ds

∥∥∥∥
An

≤
∫ 0

−∞

(∥∥∥e− ∫ 0
s
D(t+u)du

∥∥∥
Mn(R)

‖f (t+ s)‖An
)
ds

≤ ‖f‖0
∫ 0

−∞
e−

∫ 0
s
d∗duds

≤
‖f‖0
d∗

.

Hence, Λx (t) exists.
Step 2: We will prove that Λx ∈ PAA(R,An, µ).
For a fixed t ∈ R, we have Λx (t) = Λf1 (t) + Λf2 (t) = g1 (t) + g2 (t) where

g1 (t) =

∫ t

−∞
e−

∫ t
s
D(u)duf1 (s) ds =

∫ 0

−∞
e−

∫ 0
s
D(t+u)duf1 (t+ s) ds

and

g2 (t) =

∫ t

−∞
e−

∫ t
s
D(u)duf2 (s) ds =

∫ 0

−∞
e−

∫ 0
s
D(t+u)duf2 (t+ s) ds.

We have

g1 (t+ αn) =

∫ t+αn

−∞
e−

∫ t+αn
s

D(u)duf1 (s) ds

=

∫ 0

−∞
e−

∫ 0
s
D(t+αn+u)duf1 (t+ s+ αn) ds.

Using (3.2) and (3.3) it is easy to check that

lim
n−→+∞

e−
∫ 0
s
D(t+αn+u)duf1 (t+ s+ αn) = e−

∫ 0
s
D(t+u)duf1 (t+ s) .
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On the over hand, we have∥∥∥e− ∫ 0
s
D(t+αn+u)duf1 (t+ s+ αn)

∥∥∥
An
≤
∥∥∥e− ∫ 0

s
D(t+αn+u)du

∥∥∥
Mn(R)

‖f1 (t+ s+ αn)‖An

≤ ‖f1‖0 e
d∗s

and
∫ 0

−∞ ‖f1‖0 ed
∗sds =

‖f1‖0
d∗

< +∞, it follows from Lebesgue dominated convergence theorem that

lim
n−→+∞

g1 (t+ αn) = g1 (t) =

∫ 0

−∞
e−

∫ 0
s
D(t+u)duf1 (t+ s) ds exists.

Using the same argument one can prove that lim
n−→+∞

g1 (t− αn) = g1 (t). So, t 7−→ g1 (t) = Λf1 (t) ∈
AA(R,An).

By assumption (H2) we have

1

µ ([−r, r])

∫ r

−r

∥∥∥∥∫ t

−∞
e−

∫ t
s
D(u)duf2 (s) ds

∥∥∥∥
An

dµ (t)

=
1

µ ([−r, r])

∫ r

−r

∥∥∥∥∫ 0

−∞
e−

∫ 0
s
D(t+u)duf2 (t+ s) ds

∥∥∥∥
An

dµ (t)

≤ 1

µ ([−r, r])

∫ r

−r

{∫ 0

−∞

∥∥∥e− ∫ 0
s
D(t+u)du

∥∥∥
Mn(R)

‖f2 (t+ s)‖An ds
}
dµ (t)

≤
∫ 0

−∞

{
e−d

∗s 1

µ ([−r, r])

∫ r

−r
‖f2 (t+ s)‖An dµ (t)

}
ds.

We also have

1

µ ([−r, r])

∫ r

−r
‖f2 (t+ s)‖An dµ (t)

=
1

µ ([−r, r])

∫ r+s

−r+s
‖f2 (t)‖An dµ−s (t)

≤ µ ([−r − s, r + s])

µ ([−r, r])
1

µ ([−r − s, r + s])

∫ r+s

−r−s
‖f2 (t)‖An dµ−s (t) .

By Lemma 2.20, Lemma 2.19 and Theorem 2.18 we deduce that

lim
r−→+∞

1

µ ([−r, r])

∫ r

−r
‖f2 (t+ s)‖An dµ (t) = 0,

therefore, the dominated convergence theorem allows us to say that

lim
r−→+∞

1

µ ([−r, r])

∫ r

−r
‖g2 (t)‖An dµ (t)

= lim
r−→+∞

1

µ ([−r, r])

∫ r

−r

∥∥∥∥∫ t

−∞
e−

∫ t
s
D(u)duf2 (s) ds

∥∥∥∥
An

dµ (t) = 0.

Hence, t 7−→ g2 (t) = Λf2 (t) ∈ E(R,An, µ) and so Λx ∈ PAA(R,An, µ).
Third step: We will prove that Λ is a contraction:
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By assumption (H1) we have

‖Λx (t)− Λy (t)‖0

=

∥∥∥∥∫ t

−∞
e−

∫ t
s
D(u)duF (s, x (s) , x (s− τ (s))) ds−

∫ t

−∞
e−

∫ t
s
D(u)duF (s, y (s) , y (s− τ (s))) ds

∥∥∥∥
0

≤ sup
t∈R

{∫ t

−∞
e−d

∗(t−s) ‖F1 (s, x (s) , x (s− τ (s))) ds− F1 (s, y (s) , y (s− τ (s)))‖An ds

+

∫ t

−∞
e−d

∗(t−s) ‖F2 (s, x (s) , x (s− τ (s))) ds− F2 (s, y (s) , y (s− τ (s)))‖An ds
}

≤ sup
t∈R

{∫ t

−∞

[
e−d

∗(t−s) (L1 + L2) ‖x (s)− y (s)‖An + (L′1 + L′2) ‖x (s− τ (s))− y (s− τ (s))‖An
]
ds

}
≤ (L1 + L2 + L′1 + L′2) ‖x− y‖0 sup

t∈R

{∫ t

−∞
e−d

∗(t−s)ds

}
≤ (L1 + L2 + L′1 + L′2)

d∗
‖x− y‖0 .

From assumption (H4) and the above inequality we can conclude that Λ is a contraction operator. Thus, by
Banach fixed point theorem, system (1.1) has a unique µ-pseudo almost automorphic solution. The proof is
complete. �
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1. Introduction

In 1963, Kelly [4], initiated the definition of a bitopological space as a triple (X, τ1, τ2), where X is a nonempty set
and τ1 and τ2 are topologies on X. In 1981, Bose [2], introduced the concept of ij-semi open sets in bitopological
spaces. In 1987, Banerjee [1], gave the notion of ij − δ−open sets in such spaces.Also, investigations of ij −
δ−open sets were found in [5, 6]. In this paper, we introduce and study ij−δ−semi closed and ij−δ−semi open
sets in bitopological spaces. Also, we introduce and study the notions of δ − s

∧
ij-sets and gδ − s

∧
ij −sets

in bitopological spaces by generalizing the results obtained in [3]. Furthermore, we define a closure operator

Cl
s
∧

ij

δ and associated topology τ
s
∧

ij

δ on the bitopological space (X, τ1, τ2).
Throughout this paper (X, τ1, τ2) ( or briefly X ) always mean a bitopological space on which no separation

axioms are assumed unless explicitly stated. Let A be a subset of X, by i− Cl(A) and i− Int(A) we denote the
closure and the interior of A in the topological space (X, τi). By i-open (or τi−open) and i-closed (or τi−closed)
we mean open and closed in the topological space (X, τi). X\A = Ac will be denote the complement of A and
I denote for an index set. Also i, j = 1, 2 and i 6= j. Let A be a subset of a bitopological space (X, τ1, τ2) . A
point x ∈ X is called an ij − δ−cluster point [1] of A if i − Int(j − Cl(U)) ∩ A 6= φ for every τi-open set
U containing x. The set of all ij − δ−cluster points of A is called the ij − δ−closure of A and is denoted by
ij −Clδ(A) . A subset A is said to be ij − δ−closed if ij −Clδ(A) = A. The complement of an ij − δ−closed
set is called ij − δ−open. A subset A of X is called ij−semi open [2] if A ⊂ j − Cl(i− Int(A)).

∗Corresponding author. Email address: khedrf@aun.edu.eg (Khedr), o sayed@aun.edu.eg (Sayed)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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2. ij-δ-semi open sets

Definition 2.1. A subsetA of bitopological space (X, τ1, τ2) is called ij−δ−semi open if there exists ij−δ-open
set U such that U ⊂ A ⊂ j − Cl(U). The complement of an ij − δ−semi open set is called ij − δ-semi closed.

A point x ∈ X is called an ij − δ-semi cluster point of A if A∩U 6= φ for every ij − δ-semi open set U of X
containing x. The set of all ij − δ−semi cluster points of A is called the ij − δ−semi closure of A and is denoted
by ij − δsCl(A). The collection of all ij − δ-semi open (resp. ij − δ-semi closed) sets of X will be denoted by
ij − δSO(X) (resp. ij − δSC(X)).

A subset U of X is called ij − δ-semi neighborhood (briefly, ij − δ-semi nbd ) of a point x if there exists an
ij − δ-semi open set V such that x ∈ V ⊆ U .

Lemma 2.2. The union of arbitrary collection of ij − δ−semi open sets in (X, τ1, τ2) is ij − δ-semi open.

Proof. Since arbitrary union of ij − δ−open sets is ij − δ-open [4, Lemma 2.2], the result follows. �

Lemma 2.3. The intersection of arbitrary collection of ij−δ-semi closed sets in (X, τ1, τ2) is ij−δ-semi closed.

Proof. Follows from Lemma 2.1. �

Corollary 2.4. Let A ⊂ X , ij − δsCl(A) =
⋂
{F : A ⊆ F, F ∈ ij − δSC(X)}.

Corollary 2.5. ij − δsCl(A) is ij − δ-semi closed, that is ij − δsCl(ij − δsCl(A)) =ij − δsCl(A).

Lemma 2.6. Let (X, τ1, τ2) be a bitopological space. For subsets A, B and Ak(k ∈ Λ) of X, we have
(1) A ⊆ ij − δsCl(A).
(2) A ⊆ B ⇒ ij − δsCl(A) ⊆ ij − δsCl(B).
(3) ij − δsCl(

⋂
k

Ak) ⊆
⋂
k

ij − δsCl(Ak) .

(4) ij − δsCl(
⋃
k

Ak) = ∪
k
{ij − δsCl(Ak)} .

(5) A is ij − δ-semi closed if and only if A = ij − δsCl(A)

3. δ − s
∧
ij -sets and gδ − s

∧
ij-sets.

Definition 3.1. For a subset B of a bitopological space (X, τ1, τ2), we define

B
s
∧

ij

δ =
⋂
{O ∈ ij − δSO(X), B ⊆ O}

B
s
∨

ij

δ =
⋃
{F ∈ ij − δSC(X), F ⊆ B} .

Definition 3.2. A subset B of a bitopological space (X, τ1, τ2) is called δ − s
∧
ij-set (resp. δ − s

∨
ij-set) if

B = B
s
∧

ij

δ (resp. B = B
s
∨

ij

δ ).

Definition 3.3. A subset B of a bitopological space (X, τ1, τ2) is called

(1) generalized δ− s
∧
ij-set (briefly, gδ− s

∧
ij-set) if B

s
∧

ij

δ ⊆ F whenever B ⊆ F and F ∈ ji− δSC(X).

(2) generalized δ − s
∨
ij-set (briefly, gδ − s

∨
ij-set ) if Bc is gδ − s

∧
ij .

By G
s
∧

ij

δ ( resp. G
s
∨

ij

δ ) we will denote the family of all gδ − s
∧
ij-sets (resp. gδ − s

∨
ij-sets).
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Theorem 3.4. Let A, B and Bk, k ∈ I be subsets of a bitopological space (X, τ1, τ2). The following properties
hold:

(1) B ⊆ Bs
∧

ij

δ .

(2) If A ⊆ B, then A
s
∧

ij

δ ⊆ Bs
∧

ij

δ .

(3)
((
B
s
∧

ij

δ

)
δ

)s∧ij

= B
s
∧

ij

δ .

(4) (
⋃
k∈I Bλ)

s
∧

ij

δ =
⋃
k∈I(Bk)

s
∧

ij

δ .

(5) If A ∈ ij − δSO(X), then A = A
s
∧

ij

δ .

(6) (Bc)
s
∧

ij

δ =
(
B
s
∨

ij

δ

)c
.

(7) B
s
∨

ij

δ ⊆ B.

(8) If B ∈ ij − δSC(X), then B = B
s
∨

ij

δ .

(9) (
⋂
k∈I Bk)

s
∧

ij

δ ⊆
⋂
k∈I (Bk)

s
∧

ij

δ .

(10) (
⋃
k∈I Bk)

s
∨

ij

δ ⊇
⋃
k∈I (Bk)

s
∨

ij

δ .

Proof. (1) Clear.

(2) Suppose x /∈ Bs
∧

ij

δ . Then there exists an ij − δ-semi open set U such that B ⊆ U and x /∈ U . Since

A ⊆ B, then x /∈ As
∧

ij

δ and therefore A
s
∧

ij

δ ⊆ Bs
∧

ij

δ .
(3) Follows from (2).
(4) Let x /∈

(⋃
k∈I Bk

)s∧ij

δ
. Then there exists an ij − δ−semi open set U such that

⋃
k∈I Bk ⊆ U and

x /∈ U . Thus for each k ∈ I we have x /∈ (Bk)
s
∧

ij

δ . So, x /∈
⋃
k∈I (Bk)

s
∧

ij

δ .

Conversely, suppose that x /∈
⋃
k∈I (Bk)

s
∧

ij

δ . Then there exists an ij− δ-semi open set Uk ( for each k ∈ I)
such that x /∈ Uk, Bk ⊆ Uk. Let U =

⋃
k∈I Uk. Then, x /∈ U =

⋃
k∈I Uk,

⋃
k∈I Bk ⊆ U and U is ij − δ-semi

open. So, x /∈
(⋃

k∈I Bk
)s∧ij

δ
. This completes the proof of (4).

(5) Since A is an ij − δ−semi open set, then A
s
∧

ij

δ ⊆ A. By (1) , we have A
s
∧

ij

δ = A.

(6) (B
s
∨

ij

δ )c =
⋂
F c : F c ⊇ Bc, F c ∈ ij − δSO(X) = (Bc)

s
∧

ij

δ .
(7) Clear.

(8) If B ∈ ij − δSC(X), Bc ∈ ij − δSO(X). By (5) and (6) Bc = (Bc)
s
∧

ij

δ =
(
B
s
∨

ij

δ

)c
. Hence

B = B
s
∨

ij

δ .

(9) Let x /∈
⋂
k∈I (Bk)

s
∧

ij

δ . Then there exists k ∈ I such that x /∈ (Bk)
s
∧

ij

δ . Hence there exists U ∈
ij − δSO(X) such that Bk ⊆ U and x /∈ U . Therefore x /∈

(⋂
k∈I Bk

)s∧ij

δ
.

(10)(
⋃
k∈I Bk)

s
∨

ij

δ =
(((⋃

k∈I Bk
)c)s∨ij

δ

)c
=
((⋂

k∈I B
c
k

)s∨ij

δ

)c
⊇
(⋂

k∈I

(
(Bk)

s
∨

ij

δ

)c)c
=⋃

k∈I (Bk)
s
∨

ij

δ . �

Theorem 3.5. Let B be a subset of a bitopological space (X, τ1, τ2). Then

(1) φ and X are δ − s
∧
ij-sets and δ − s

∨
ij-sets.

(2) Every union of δ − s
∧
ij-sets (resp. δ − s

∨
ij-sets) is δ − s

∧
ij-sets (resp. δ − s

∨
ij-sets).

(3) Every intersection of δ − s
∧
ij-sets (resp. δ − s

∨
ij-sets) is δ − s

∧
ij-sets (resp. δ − s

∨
ij-sets).

(4) B is a δ − s
∧
ij −set if and only if Bc is a δ − s

∨
ij-set.
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Proof. (1) and (4) are obvious.
(2) Let {Bk : k ∈ I} be a family of δ−s

∧
ij-sets in (X, τ1, τ2). Then by Theorem 3.1(4) we have

⋃
k∈I Bk =⋃

k∈I (Bk)
s
∧

ij

δ =
(⋃

k∈I Bk
)s∧ij

δ
.

(3) Let {Bk : k ∈ I} be a family of δ − s
∧
ij −sets in (X, τ1, τ2). Then, by Theorem 3.1(9), we have(⋂

k∈I Bk
)s∧ij

δ
⊆
⋂
k∈I (Bk)

s
∧

ij

δ =
⋂
k∈I Bk. Hence, by Theorem 3.1,

⋂
k∈I Bk =

(⋂
k∈I Bk

)s∧ij

δ
. �

Remark 3.6. By Theorem 3.2, the family of all δ − s
∧
ij-sets (resp. δ − s

∨
ij −sets), denoted by λ

s
∧

ij

δ (resp.

λ
s
∨

ij

δ ) in (X, τ1, τ2) is a topology on X containing all ij − δ-semi open (resp. ij − δ-semi closed) sets. Clearly

(X,λ
s
∧

ij

δ ) and (X,λ
s
∨

ij

δ ) are Alexandroff spaces.

Theorem 3.7. Let (X, τ1, τ2) be a bitopological space. Then

(1) Every δ − s
∧
ij-set is a gδ − s

∧
ij-set.

(2) Every δ − s
∨
ij-set is a gδ − s

∨
ij-set.

(3) If Bk is a gδ − s
∧
ij −set for all k ∈ I then

⋃
k∈I Bk is a gδ − s

∧
ij-set.

(4) If Bk is a gδ − s
∨
ij-set for all k ∈ I then

⋂
k∈I Bk is a gδ − s

∨
ij-set.

Proof. (1) Obvious.

(2)Let B be a δ − s
∨
ij-subset of X. Then B = B

s
∨

ij

δ . By Theorem 3.1(6), (Bc)
s
∧

ij

δ =
(
B
s
∨

ij

δ

)c
= Bc.

Therefore, by (1), B is a gδ − s
∨
ij-set.

(3)Let Bk is a gδ − s
∧
ij-subset of X for all k ∈ I . Then by Theorem 3.1 (4),

(⋃
k∈I Bk

)s∧ij

δ
=⋃

k∈I (Bk)
s
∧

ij

δ . Hence, by hypothesis,
⋃
k∈I Bk is a gδ − s

∧
ij-set.

(4)Follows from (3). �

Theorem 3.8. A subset B of a bitopological space (X, τ1, τ2)is a gδ − s
∨
ij-set if and only if U ⊆ B

s
∨

ij

δ ,
whenever U ⊆ B and U is an ij − δ-semi open subset of X.

Proof. Let U be an ij − δ-semi open subset of X such that U ⊆ B. Then, since U c is ij − δ-semi closed and

Bc ⊆ U c, we have (Bc)
s
∧

ij

δ ⊆ U c. Hence, by Theorem 3.1(6),
(
B
s
∨

ij

δ

)c
⊆ U c. Thus U ⊆ B

s
∨

ij

δ . On the
other hand, let F be an ij − δ-semi closed subset of X such that Bc ⊆ F . Since F c is ij − δ-semi open and

F c ⊆ B, by assumption we have F c ⊆ Bs
∨

ij

δ . Then F ⊇
(
B
s
∨

ij

δ

)c
= (Bc)

s
∨

ij

δ . Thus Bc is a gδ − s
∧
ij-set,

i.e., B is a gδ − s
∨
ij-set. �

4. Cls
∧
ij

δ closure operator and associated τ s
∧
ij

δ

In this section, we define a closure operator Cl
s
∧

ij

δ and the associated topology τ
s
∧

ij

δ on the bitopological space
(X, τ1, τ2) using the family of gδ − s

∧
ij-sets.

Definition 4.1. For any subset B of a bitopological space (X, τ1, τ2), define Cl
s
∧

ij

δ (B) =
⋂
{U : B ⊆ U,U ∈

G
s
∧

ij

δ } and Int
s
∧

ij

δ (B) =
⋃
{F : B ⊇ F, F c ∈ Gs

∧
ij

δ }.

Theorem 4.2. Let A, B and Bk : kεI be subsets of a bitopological space (X, τ1, τ2). Then the following
statements are true:

(1) B ⊆ Cls
∧

ij

δ (B).
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(2) Cl
s
∧

ij

δ (Bc) =
(
Int

s
∧

ij

δ (B)
)c

.

(3) Cl
s
∧

ij

δ (φ) = φ.

(4)
⋃
k∈I Cl

s
∧

ij

δ (Bk) = Cl
s
∧

ij

δ (
⋃
k∈I Bk) .

(5) Cl
s
∧

ij

δ

(
Cl

s
∧

ij

δ (B)
)

= Cl
s
∧

ij

δ (B).

(6) If A ⊆ B, then Cl
s
∧

ij

δ (A) ⊆ Cls
∧

ij

δ (B).

(7) If B is gδ − s
∧
ij −set, then Cl

s
∧

ij

δ (B) = B.

(8) If B is gδ − s
∨
ij-set, then Int

s
∧

ij

δ (B) = B.

Proof. (1), (2) and (3) are clear.
(4) Let x /∈ Cls

∧
ij

δ (
⋃
k∈I Bk). Then, there exists U ∈ Gs

∧
ij

δ such that
⋃
k∈I Bk ⊆ U and x /∈ U . Thus

for each k ∈ I we have x /∈ Cl
s
∧

ij

δ (Bk). This implies that x /∈
⋃
k∈I Cl

s
∧

ij

δ (Bk). Conversely, suppose

x /∈
⋃
k∈I Cl

s
∧

ij

δ (Bk). Then there exist subsets Uk ∈ G
s
∧

ij

δ for all k ∈ I such that x /∈ Uk and Bk ⊆ Uk. Let

U =
⋃
k∈I Uk. Then x /∈ U ,

⋃
k∈I Bk ⊆ U and U ∈ Gs

∧
ij

δ . Thus, x /∈ Cls
∧

ij

δ (
⋃
k∈I Bk).

(5) Suppose that x /∈ Cl
s
∧

ij

δ (B). Then there exists a subset U ∈ G
s
∧

ij

δ such that x /∈ U and B ⊆
U . Since U ∈ G

s
∧

ij

δ we have Cl
s
∧

ij

δ (B) ⊆ U . Thus we have x /∈ Cl
s
∧

ij

δ (Cl
s
∧

ij

δ (B)). Therefore

Cl
s
∧

ij

δ

(
Cl

s
∧

ij

δ (B)
)
⊆ Cls

∧
ij

δ (B). But by (6) Cl
s
∧

ij

δ (B) ⊆ Cls
∧

ij

δ

(
Cl

s
∧

ij

δ (B)
)

. Then the result follows.
(6) It is clear.
(7) Follows from (1).
(8) Follows from (7) and (2). �

Theorem 4.3. Cl
s
∧

ij

δ is a Kuratowski closure operator on X.

Definition 4.4. Let τ
s
∧

ij

δ be the topology on X generated by Cl
s
∧

ij

δ in the usual manner, i.e., τ
s
∧

ij

δ = {B ⊆
X, Cl

s
∧

ij

δ (Bc) = Bc}.
We define a family ρ

s
∧

ij

δ by ρ
s
∧

ij

δ = {B ⊆ X, Cl
s
∧

ij

δ (B) = B}, equivalently ρ
s
∧

ij

δ = {B ⊆ X, Bc ∈
τ
s
∧

ij

δ }.

Theorem 4.5. Let (X, τ1, τ2) be a bitopological space. Then

(1) τ
s
∧

ij

δ = {B ⊆ X, Ints
∧

ij

δ (B) = B} .

(2) ij − δSO(X) ⊆ Gs
∧

ij

δ ⊆ ρs
∧

ij

δ .

(3) ij − δSC(X) ⊆ Gs
∧

ij

δ ⊆ τs
∧

ij

δ .

(4) If ij − δSC(X) = τ
s
∧

ij

δ , then every gδ − s
∧
ij-set of X is ij − δ-semi open.

(5) If every gδ − s
∧
ij-set of X is ij − δ-semi open (i.e., if G

s
∧

ij

δ ⊆ ij − δSO(X)), then τ
s
∧

ij

δ = {B ⊆

X, B = B
s
∧

ij

δ }.

(6) If every gδ−s
∧
ij-set of X is ij−δ-semi closed (i.e., ifG

s
∧

ij

δ ⊆ ij−δSC(X)), then ij−δSO(X) = τ
s
∧

ij

δ .
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Proof. (1) By Theorem 4.1 (2), we have: If A ⊆ X , then A ∈ τs
∧

ij

δ if and only if Cl
s
∧

ij

δ (Ac) = Ac if and only

if
(
Int

s
∨

ij

δ (A)
)c

= Ac if and only if Int
s
∨

ij

δ (A) = A. Thus, τ
s
∧

ij

δ = {B ⊆ X, Ints
∨

ij

δ (B) = B}.
(2) Let B ∈ ij − δSO(X). By Theorem 3.1(5) B is a δ− s

∧
ij-set. By Theorem 3.3, B is a gδ− s

∧
ij −set,

i.e., B ∈ G
s
∧

ij

δ . Suppose B any element of G
s
∧

ij

δ . By Theorem 3.1, B = Cl
s
∧

ij

δ (B), i.e., B ∈ ρ
s
∧

ij

δ .

Therefore ij − δSO(X) ⊆ Gs
∧

ij

δ ⊆ ρs
∧

ij

δ .

(3) Let B ∈ ij − δSC(X). By Theorem 3.3, B = B
s
∨

ij

δ . Thus B is a δ − s
∨
ij −set. By Theorem 3.1, B is

a gδ − s
∨
ij −set. Hence B ∈ Gs

∨
ij

δ . Now, if B ∈ Gs
∨

ij

δ , then by (1) and Theorem 3.4(8), B ∈ τs
∧

ij

δ .

(4) Let B be any gδ − s
∧
ij-set, i.e., B ∈ Gs

∧
ij

δ . By (2), B ∈ ρs
∧

ij

δ . Thus, Bc ∈ τs
∧

ij

δ . From assumption,
we have Bc ∈ ij − δSC(X). Hence B ∈ ij − δSO(X).

(5) Let A ⊆ X and A ∈ τs
∧

ij

δ . Then, Ac = Cl
s
∧

ij

δ (Ac) =
⋂
{U : U ⊇ A,U ∈ Gs

∧
ij

δ } =
⋂
{U : U ⊇

Ac, U ∈ ij − δSO(X)} = (Ac)
s
∧

ij

δ . Using Theorem 3.1, we have A = A
s
∨

ij

δ , i.e., A ∈ {B ⊆ X : B =

B
s
∨

ij

δ }.
Conversely, if A ∈ {B ⊆ X : B = B

s
∨

ij

δ }, then by Theorem 3.3, A is a gδ − s
∨
ij −set. Thus A ∈ Gs

∨
ij

δ .

By using (3), A ∈ τs
∧

ij

δ .

(6) Let A ⊆ X and A ∈ τs
∧

ij

δ . Then A =
(
Cl

s
∧

ij

δ (Ac)
)c

=
(⋂
{U : Ac ⊆ U,U ∈ Gs

∧
ij

δ }
)c

=
⋃
{U c :

U c ∈ ij − δSO(X)}∈ ij − δSO(X).

Conversely, if A ∈ ij − δSO(X), then by Theorems 3.1 and 3.3, A ∈ G
s
∧

ij

δ . By assumption A ∈ ij −
δSC(X). Using (3), A ∈ τs

∧
ij

δ . �

Lemma 4.6. Let (X, τ1, τ2) be a bitopological space.
(1)For each x ∈ X , {x} is an ij − δ−semi open set or {x}c is a gδ − s

∧
ij −set of X.

(2)For each x ∈ X , {x} is an ij − δ−semi open set or {x} is a gδ − s
∨
ij −set of X.

Proof. (1) Suppose that {x} is not ij − δ−semi open. Then the only ij − δ-semi closed set F containing {x}c

is X. Thus ({x}c)s
∧

ij

δ ⊆ F = X and {x}c is a gδ − s
∧
ij −set of X.

(2) Follows from (1). �

Theorem 4.7. If ij − δSO(X) = τ
s
∧

ij

δ , then every singleton {x} is τ
s
∧

ij

δ -open.

Proof. Suppose that {x} is not ij − δ-semi open. Then by Lemma 4.1, {x}c is a gδ − s
∧
ij-set. Thus {x} ∈

τ
s
∧

ij

δ . Suppose that {x} is ij − δ-semi open. Then {x} ∈ ij − δSO(X) = τ
s
∧

ij

δ . Therefore, every singleton

{x} is τ
s
∧

ij

δ -open. �
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1. Introduction

Let (Y, ρ) be a complete metric space and Γ : Y −→ Y a selfmap of Y . Suppose that FΓ = {q ∈ Y : Γq = q} is
the set of fixed points of Γ.

Over the years, different iterative schemes have been succesfully employed in approximating fixed points
(or common fixed point) of different contractive operators in different spaces (see for example, [1], [4] , [12]
and [16] -[44] and the references therein for more details). In 1971, Kirk [20] introduced the following iterative
scheme:

Let X be a normed linear space and Γ : X −→ X be a self-map on X . For arbitrarily chosen y0 ∈ X , define
the sequence {yn}∞n=0 iteratively as follows:

yn+1 =
∑̀
j=0

αjΓ
jyn,

∑̀
j=0

αj = 1, n ≥ 0. (1.1)

∗Corresponding author. Email address: agwuimo@gmail.com (Imo Kalu Agwu), igbokwedi@yahoo.com (Donatus Ikechi Igbokwe)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.
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Since its emergence, different researchers have modified and generalised (1.1) in different spaces, see for
example, [11],[15] and [29] and the reference therein.

In [29], Olatinwo introduced the iterative schemes below: Let Y be a Banach space and Γ : Y −→ Y be a
selfmap of Y.

(i) For an arbitrary point y0 ∈ Y , αn,t ≥ 0, αn,0 6= 0, αn,t ∈ [0, 1] and ` as a fixed integer, define the
sequence {yn}∞n=0 by

yn+1 =
∑̀
t=0

αn,tΓ
tyn,

∑̀
t=0

αn,t = 1, n ≥ 0 (1.2)

(ii) For an arbitrary point y0 ∈ Y , ` ≥ m,αn,t, βn,t ≥ 0 with αn,0, βn,0 6= 0, αn,t, βn,t ∈ [0, 1] and `,m as
fixed integers, define the sequence {yn}∞n=0 by

yn+1 = αn,0yn +
∑̀
t=0

αn,tΓ
jzn,

∑̀
t=0

αn,t = 1;

zn =

m∑
t=0

βn,tΓ
tyn,

∑̀
t=0

βn,t = 1, n ≥ 0, (1.3)

and called them Kirk-Mann and Kirk-Ishikawa algorithms, respectively.

Chugh and Kumar [12] introduced and studied the iterative scheme below: Let Y be a Banach space and
Γ : Y −→ Y be a selfmap of Y . For an arbitrary point y0 ∈ Y and for ` ≥ m ≥ p, αn,s, γn,r, βn,t ≥
0, γn,0, αn,0, βn,0 6= 0, αn,s, γn,r, βn,t ∈ [0, 1] and `,m, p as fixed integers, define the sequence {yn}∞n=0 by

yn+1 = γn,0yn +
∑̀
r=1

γn,rΓrzn,
∑̀
r=0

γn,r = 1;

zn = αn,0yn +

m∑
s=1

αn,sΓ
szn,

m∑
s=0

αn,s = 1; (1.4)

zn =

p∑
t=0

βn,tΓ
tyn,

p∑
t=0

βn,t = 1, n ≥ 0,

In 1976, Jungck[19] introduced and studied the iterative scheme below: Let Z be a Banach space, Y an
arbitrary set and S,Γ : Y −→ Z such that Γ(Y ) ⊆ S(Y ). For arbitrary x0 ∈ Y, define the sequence {Sxn}∞n=0

as follows

Sxn+1 = Γxn, n = 1, 2, · · · (1.5)

The iterative sequence defined by (1.5) is called Jungck iterative scheme and becomes Picard iterative scheme
if S = Id (identity mapping) and Y = Z. It is worthy to note that (1.5) has been studied and generalised by
different authors in different nonlinear spaces. Interested readers should see [2], [23], [24], [27] and [41] for more
details.

In [12], the following iterative scheme was introduced and studied as a generalisation of (1.4): Let Z be a
Banach space, Y an arbitrary set and S,Γ : Y −→ Z a nonself operator such that Γ(Y ) ⊆ S(Y ). For arbitrary
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y0 ∈ Y, define the sequence {Syn}∞n=0 by

Syn+1 = γn,0Syn +
∑̀
r=1

γn,rΓrzn,
∑̀
r=0

γn,r = 1;

Szn = αn,0Syn +

m∑
s=1

αn,sΓ
szn,

m∑
s=0

αn,s = 1; (1.6)

Szn = βn,0Syn +

p∑
t=1

βn,tΓ
tyn,

p∑
t=0

βn,t = 1, n ≥ 0,

where ` ≥ m ≥ p, αn,s, γn,r, βn,t ≥ 0, γn,0, αn,0, βn,0 6= 0, αn,s, γn,r, βn,t ∈ [0, 1] and `,m, p as fixed
integers.

Remark 1.1. Notably, (1.6) reduces to (1.4) if S = Id (identity).

Following the introduction of random fixed point theorems by Prague school of probability in 1950,
considerable efforts have been devoted toward developing this theory. This unwavering interest stem from the
priceless stance of fixed point theorems in probabilistic functional analysis and probabilistic model along with
their diverse applications. It is worthwhile mentioning that problems relating to measurability of solutions,
probabilistic and statistical aspect of random solutions found their way in the current literature due to the
introduction of randomness. Also, it is of interest to note that random fixed point theorems are stochastic
generalization of classical fixed point theorems and are usually needed in the theory of random equations,
random matrices, random differential equations, and different classes of random operators emanating in physical
systems (see, for example, [10] for details). In 1976, a paper by Bharucha-Reid [6], which provided sufficient
conditions for a stochastic analogue of Schauder’s fixed point theorem for random operators, prompted various
mathematicians to construct varying degree of fixed point iteration procedures for approximating fixed point of
nonlinear random operators. In [14] and [42], Hans and Spacek initiated the idea of random fixed point theorems
for contraction self mappings, Subsequently, Itoh [7] extended the result to multivalued random operators. In
[43], using mappings that satisfied inward or the Leray Schauder condition, Xu [43] generalised the results in [7]
to the case of nonself random operators. Further results in this direction could be found in [10] and the refrence
therein

Definition 1.2. Let (Ω,Σ) be a measurable space (Ω− a set and Σ− sigma algebra), D a nonempty closed
and convex subset of a real separable Banach space E and Γ : Ω −→ D a given mapping. Then,

1. Γ is said to be measurable if Γ−1(B ∩D) ∈ Σ for each Borel subset B of H;

2. Γ : Ω×D −→ D is called random operator if Γ(., ω) : Ω −→ D is measurable for every ω ∈ D and

3. Γ is siad to be continuous if for any given ξ ∈ Ω,Γ(ξ, .) : Ω×D −→ D is continuous.

Definition 1.3. Let (Ω,Σ) be a measurable space (Ω− a set and Σ− sigma algebra), D a nonempty closed
and convex subset of a real separable Banach spaceE and Γ : Ω −→ D a given mapping. A measurable function
g : Ω −→ D is called a fixed point for the operator Γ : Ω × D −→ D if Γ(ξ, g(ξ)) = g(ξ) and it is referred
to as a coincidence point for two random operators S,Γ : Ω × D −→ D if Γ(ξ, g(ξ)) = S(ξ, g(ξ)),∀ξ ∈ Ω.
The operators S,Γ are called random weakly compatible if they commute at the random coincidence point;
i.e., if Γ(ξ, g(ξ)) = S(ξ, g(ξ)) for every ξ ∈ Ω, then Γ(S(ξ, g(ξ))) = S(Γ((ξ, g(ξ)))) or Γ(ξ, S(ξ, g(ξ))) =

S(ξ,Γ(ξ, g(ξ))). The set of random common fixed points of the random mappings S,Γ : Ω×D −→ D shall be
denoted by F (S,Γ) = {g(ξ) ∈ D : S(ξ, g(ξ)) = Γ(ξ, g(ξ)) = g(ξ), ξ ∈ Ω}.
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To approximate the fixed point of random mappings, different fixed point iterative schemes have been used
by different authors (see, for example, [14], [40], [42], [43] and the reference therein).

Recently, Rashwan and Hammad [40] introduced the following random version of Jungck-Kirk-Noor iterative
scheme defined in [24]: Let Γ, S : Ω × Z −→ Y be two random mappings defined on a nonempty closed and
convex subset D of a separable Banach space Y . Let x0 : Ω −→ D be an arbitrary measurable mapping. For
ξ ∈ Ω, n = 0, 1, 2, · · · , with Γ(ξ, Z) ⊆ S(ξ, Z), then

S(ξ, yn+1(ξ)) = αn,0S(ξ, yn(ξ)) +
∑`1

i=1 αn,iΓ
i(ξ, zn(ξ)),

∑`1
i=1 αn,i = 1;

S(ξ, zn(ξ)) = δn,0S(ξ, yn(ξ)) +
∑`2

j=1 δn,jΓ
j(ξ, tn(ξ)),

∑`2
j=1 δn,j = 1;

S(ξ, tn(ξ)) =
∑`3

k=0 γn,kΓk(ξ, yn(ξ)),
∑`3

k=1 γn,k = 1,

(1.7)

where `1, `2 and `3 are fixed integers with `1 ≥ `2 ≥ `3, αn,i ≥ 0, αn,0 6= 0, δn,j ≥ 0, δn,0 6= 0 and γn,k ≥
0, γn,0 6= 0 are measurable sequences in [0, 1]. They called (1.7) Jungck-Kirk-Noor random iterative scheme.

Remark 1.4. If `3 = 0 and `2 = `3 = 0 in (1.7), then we have the following random iterative schemes:{
S(ξ, yn+1(ξ)) = αn,0S(ξ, yn(ξ)) +

∑`1
i=1 αn,iΓ

i(ξ, zn(ξ)),
∑`1

i=1 αn,i = 1;

S(ξ, zn(ξ)) = δn,0S(ξ, yn(ξ)) +
∑`2

j=1 δn,jΓ
j(ξ, yn(ξ))

(1.8)

and

S(ξ, yn+1(ξ)) = αn,0S(ξ, yn(ξ)) +

`1∑
i=1

αn,iΓ
i(ξ, yn(ξ)),

`1∑
i=1

αn,i = 1, (1.9)

respectively. (1.8) and (1.9) are called Jungk-Kirk-Ishikawa and Jungck-Kirk-Man iterative schemes respectively.

In real life applications, the workability of the various iterative schemes studied in this paper would be
questionable if their stability is not guaranteed. In [32], Ostrowski initiated the notion of stability of iterative
schemes and started investigation on this using Banach contractive conditions. Subsequently, different
researchers have continued this investigation using more general contractive-type mappings than the one studied
in [32]. Some recent works in this direction could be seen in [33], [34],[30],[28],[13],[32],[8],[31], [17],[11],[4]
and the references therein.

Remark 1.5. To obtain stability and convergence results in the papers studied using (1.1), (1.4), (1.6), (1.7),
(1.8), (1.9) and their variants required that the finite sum of the countably finite sequences of the measurable
control parameters be unity (i.e.,

∑`
k=0 γn,k = 1,

∑m
i=0 αn,i = 1,

∑p
i=0 δn,j = 1 , etc.). However, in real life

applications, if `,m and p are very large, it would be very difficult or almost impossible to generate a family of
such measurable control parameters. Again, the computational cost of generating such a family of measurable
control parameters (if possible) is quite enormous and also takes a very long process.

In an attempt to overcome these challenges mentioned in Remark 1.3 for the case of a nonrandom operators,
Agwu and Igbokwe introduced alternative iterative schemes in [1]. To the best of our knowledge, the problem
of ’sum conditions’ is still unresolved for the case of random iterative schemes. Consequently, the following
question becomes necessary:

Question 1.1. Is it possible to construct alternative random iterative schemes that would address the problems
generated by the sum conditions

(∑`3
k=0 γn,k = 1,

∑`2
j=0 δn,j = 1 and

∑`1
i=0 αn,i = 1

)
imposed on the control

parameters {{γn,k}∞n=1}
`3
k=1, {{αn,i}∞n=1}

`1
i=1

and {{δn,j}∞n=1}
`2
j=1, respectively while maintaining the convergence and stability results in [40]?

Following the same argument as in [18] regarding the linear combination of the products of countably finite
family of control parameters and the problems identified in each of the iterative schemes studied, the aim of this
paper is to provide an affirmative answer to Question 1.1.
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2. Preliminary

The following definitions, lemmas and propositions will be needed to prove our main results.

Definition 2.1. (see [32]) Let (Y, d) be a metric space and let Γ : Y −→ Y be a self-map of Y . Let {xn}∞n=0 ⊆ Y
be a sequence generated by an iteration scheme

xn+1 = g(Γ, xn), (2.1)

where x0 ∈ Y is the initial approximation and g is some function. Suppeose {xn}∞n=0 converges to a fixed point
q of Γ. Let {tn}∞n=0 ⊆ Y be an arbitrary sequence and set εn = d(tn, g(Γ, tn)), n = 1, 2, · · · Then, the iteration
scheme (2.1) is called Γ-stable if and only if limn→∞ εn = 0 implies limn→∞ yn = q.

Note that in practice, the sequence {tn}∞n=0 could be obtained in the following manner: let x0 ∈ Y . Set
xn+1 = g(Γ, xn) and let t0 = x0. Now, x1 = g(Γ, x0) because of rounding in the function Γ, and a new value
t1 (approximately equal to x1) might be calculated to give t2, an approximate value of g(Γ, t1). The procedure is
continued to yield the sequence {tn}∞n=0, an approximate sequence of {xn}∞n=0.

Definition 2.2. (see, e.g., [40]) For two random operators S,Γ : Ω×D −→ E with Γ(ξ,D) ⊆ S(ξ,D) and C
is a nonempty closed and convex subset of a separable Banach space E, there exist real numbers η ∈ [0, 1], δ ∈
[0, 1) and a monotone increasing function φ : R+ −→ R+ with φ(0) = 0 and ∀x, y ∈ C, we get

‖Γ(ξ, x)− Γ(ξ, y)‖ ≤ φ(‖S(ξ, x)− Γ(ξ, x)‖) + δ‖S(ξ, x)− S(ξ, y)‖
1 + η‖S(ξ, x)− Γ(ξ, x)‖

(2.2)

Lemma 2.3. Let {τn}∞n=0 be a sequence of positive numbers such that τn → 0 as n → ∞. For 0 ≤ δ < 1, let
{wn}∞n=0 be a sequence of positive numbers satisfying wn+1 ≤ δwn+τn, n = 0, 1, 2, · · · Then, wn → 0 as n→
∞.

Lemma 2.4. (see, e.g., [40]) Let (E, ‖, ‖) be a normed linear space and S,Γ random commuting mappings on
an arbitrary set D with values in E satisfying (2.2) such that ∀x, y ∈ D, ξ ∈ Ω,

Γ(ξ,D) ⊆ S(ξ,D);

‖S(ξ, S(ξ, x))− Γ(ξ, S(ξ, x))‖ ≤ ‖S(ξ, x)− Γ(ξ, x)‖
‖S(ξ, S(ξ, x))− S(ξ, S(ξ, x))‖ ≤ ‖S(ξ, x)− S(ξ, y)‖

(2.3)

Consider φ : R+ −→ R+, a sublinear monotone increasing function such that φ(0 = 0) and φ(u) = (1 −
δ)u,∀δ ∈ [0, 1), u ∈ R+. Then, ∀i ∈ N and ∀x, y ∈ D, we get

‖Γi(ξ, x)− Γi(ξ, y)‖ ≤
∑i

j=1

(
i
j

)
νi−1φj(‖S(ξ, x)− Γ(ξ, x)‖) + νi‖S(ξ, x)− S(ξ, y)‖

1 + ηi‖S(ξ, x)− Γ(ξ, x)‖
(2.4)

Proposition 2.5. (see,e.g., [18]) Let {αi}∞i=1 ⊆ N be a countable subset of the set of real numbers R, where k is
a fixed nonnegative integer and N is any integer with k + 1 ≤ N. Then, the following holds:

αk +

N∑
i=k+1

αi

i−1∏
j=k

(1− αj) +

N∏
j=k

(1− αj) = 1. (2.5)

Proposition 2.6. (see,e.g., [18]) Let t, u and v be arbitrary elements of a real Hilbert space H . Let k be any
fixed nonnegetive integer and N ∈ N be such that k + 1 ≤ N. Let {vi}N−1

i=1 ⊆ H and {αi}Ni=1 ⊆ [0, 1] be a
countable finite subset of H and R, respectively. Define

y = αkt+

N∑
i=k+1

αi

i−1∏
j=k

(1− αj)vi−1 +

N∏
j=k

(1− αj)v.
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Then,

‖y − u‖2 = αk‖t− u‖2 +

N∑
i=k+1

αi

i−1∏
j=k

(1− αj)‖vi−1 − u‖2 +

N∏
j=k

(1− αj)‖v − u‖2

−αk

[ N∑
i=k+1

αi

i−1∏
j=k

(1− αj)‖t− vi−1‖2 +

i−1∏
j=k

(1− αj)‖t− v‖2
]

−(1− αk)
[ N∑
i=k+1

αi

i−1∏
j=k

(1− αj)‖vi−1 − (αi+1 + wi+1)‖2

+αN

i−1∏
j=k

(1− αj)‖v − vN−1‖2
]
,

where wk =
∑N

i=k+1 αi

∏i−1
j=k(1− αj)vi−1 +

∏i−1
j=k(1− αj)v, k = 1, 2, · · · , N and wn = (1− cn)v.

3. Main Results I

Let Γ, S : Ω ×D −→ H be two random mappings defined on a nonempty closed convex subset of a separable
Hilbert space, H. Let x0 : Ω −→ C be an arbitrary measurable mapping. For ξ ∈ Ω, n = 1, 2, · · · , with
Γ(ξ,D) ⊆ S(xi,D), then

S(ξ, xn+1(ξ)) = αn,1S(ξ, xn(ξ)) +
∑`1

i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

S(ξ, yn(ξ)) = γn,1S(ξ, xn(ξ)) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

S(ξ, zn(ξ)) = δn,1S(ξ, xn(ξ)) +
∑`3

s=2 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C, n ≥ 0, 1, 2, ..,

(3.1)

and 
S(ξ, xn+1(ξ)) = αn,1S(ξ, yn(ξ)) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

S(ξ, yn(ξ)) = γn,1S(ξ, zn(ξ)) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

S(ξ, zn(ξ)) = δn,1S(ξ, xn(ξ)) +
∑`3

s=2 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C, n ≥ 0, 1, 2, ..,

(3.2)

where A =
∏`1

a=1(1 − αn,a)Γ`1(ξ, yn(ξ)), B =
∏`2

b=1(1 − γn,b)Γ
`2(ξ, zn(ξ)), C =∏`3

c=1(1− δn,s)Γ`3(ξ, xn(ξ)), {{δn,s}∞n=0}as=1, {{γn,t}∞n=0}bt=1, {{αn,i}∞n=0}ci=1 are countable finite family of
measurable real sequences in [0, 1] and `1, `2, `3 ∈ N. We shall call the iterative schemes defined by (3.1) and
(3.2) the Jungck-DI-Noor random iterative scheme and Jungck-DI-SP random iterative scheme, respectively.

Remark 3.1. 1(a) If `3 = 0 in (3.1), we obtain the following remarkable iterative schemes:{
S(ξ, xn+1(ξ)) = αn,1S(ξ, xn(ξ)) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

S(ξ, yn(ξ)) = γn,1S(ξ, xn(ξ)) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B,n ≥ 0, 1, 2, ..,

(3.3)

(b) if `2 = `3 = 0 in (3.1), we have the following important algorithm:

S(ξ, xn+1(ξ)) = αn,1S(ξ, xn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, yn(ξ)) +A,

(3.4)

where A and B are as defined above. The iterative schemes defined by (3.3) and (3.4) are called Jungck-
DI-ishikawa and Jungck-DI-Mann random iterative schemes respectively.
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2. If Ω is a singleton in (3.1) and (3.2), we obtain the nonrandom version of (3.1) and (3.2), respectively.

3. If S is an identity mapping in (3.1) and (3.2), we get the following iterative algorithms:
xn+1(ξ) = αn,1xn(ξ) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

yn(ξ) = γn,1xn(ξ) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

zn(ξ) =
∑`3

s=1 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C

, n ≥ 0, 1, 2, ..,

(3.5)

and 
xn+1(ξ) = αn,1yn(ξ) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

yn(ξ) = γn,1zn(ξ) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

zn(ξ) =
∑`3

s=1 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C

, n ≥ 0, 1, 2, ..,

(3.6)

where A,B,C, {{δn,s}∞n=0}as=1, {{γn,t}∞n=0}bt=1, {{αn,i}∞n=0}ci=1 are and `1, `2, `3 are as defined in
(3.1). We shall call the iterative schemes defined by (3.5) and (3.6) the the modified DI-Noor random
iterative scheme and the modified DI-SP random iterative scheme, respectively.

4(a). If `3 = 0 in (3.5), we obtain the following remarkable iterative schemes:{
xn+1(ξ) = αn,1xn(ξ) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

yn(ξ) = γn,1xn(ξ) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B,n ≥ 0, 1, 2, ..,

(3.7)

(b) if `2 = `3 = 0 in (3.5), we have the following important algorithm:

xn+1(ξ) = αn,1xn(ξ) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, yn(ξ)) +A, (3.8)

Theorem 3.2. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.1) converges to q(ξ), then the random
Jungck-DI-Noor iterative scheme is S,Γ-stable.

Proof. Let q(ξ) : Ω −→ D be a measurable mapping and z(ξ) : Ω −→ D a random coincidence point of
the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). Let
{S(ξ, tn(ξ))}∞n=0 ⊂ H and

εn = ‖S(ξ, tn+1(ξ))− αn,1S(ξ, tn(ξ))−
`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

−
`1∏

a=1

(1− αn,a)Γ`1(ξ, gn(ξ))‖, (3.9)
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where, for every ξ ∈ Ω,

S(ξ, gn(ξ)) = γn,1S(ξ, tn(ξ)) +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)Γt−1(ξ, fn(ξ))

+

`2∏
b=1

(1− γn,b)Γ`2(ξ, fn(ξ)), (3.10)

and

S(ξ, fn(ξ)) = δn,1S(ξ, tn(ξ)) +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)Γs−1(ξ, tn(ξ))

+

`3∏
c=1

(1− δn,c)Γ`3(ξ, tn(ξ)). (3.11)

Let εn → 0 as n → ∞, then by lemma 2.2 and Proposition 2.4, with S(ξ, tn(ξ)) = t,Γi−1(ξ, gn(ξ)) =

vj−1,Γ
`1(ξ, gn(ξ)) = v and k = 1, we get the following estimates:

‖S(ξ, tn+1(ξ))− q(ξ)‖2 = ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)−
[
αn,1S(ξ, tn(ξ))

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ)) +

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))

−S(ξ, tn(ξ))
]
‖2

≤ ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)‖2 + ‖ −
[
αn,1S(ξ, tn(ξ))

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ)) +

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))

−S(ξ, tn(ξ))
]
‖2

= ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)‖2 + εn

155



Imo Kalu Agwu and Donatus Ikechi Igbokwe

≤ εn

+αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)‖Γi−1(ξ, gn(ξ))− q(ξ)‖2

+

`1∏
a=1

(1− αn,a)‖Γ`1(ξ, gn(ξ))− q(ξ)‖2 (3.12)

But,

‖Γi−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤ H, (3.13)

where

H =

∑i
j=1

(
i
j

)
νi−1φj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νi‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖

1 + ηi‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
(3.13) implies

‖Γi−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤
∑i

j=1

(
i
j

)
νi−1φj(0) + νi‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖

1 + ηi‖0‖
Since φi(0) = 0, it follows from the last inequality above that

‖Γi−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤ νi‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖ (3.14)

(3.12) and (3.14)

‖S(ξ, tn+1(ξ))− q(ξ)‖2 ≤ εn

+αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖2

+

`1∏
a=1

(1− αn,a)(νi)2‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖2 (3.15)

Also, using (3.10) and Proposition 2.4, with S(ξ, tn(ξ)) = t,Γi−1(ξ, fn(ξ)) = vj−1,Γ
`2(ξ, fn(ξ)) = v and k =

1, we obtain the following estimaes:

‖S(ξ, gn(ξ))− q(ξ)‖
= ‖γn,1S(ξ, tn(ξ))

+

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)Γt−1(ξ, fn(ξ))

+

`2∏
b=1

(1− γn,b)Γ`2(ξ, fn(ξ))− q(ξ)‖2

≤ ‖γn,1S(ξ, tn(ξ))− q(ξ)‖2

+

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)‖Γt−1(ξ, fn(ξ))− q(ξ)‖2

+

`2∏
b=1

(1− γn,b)‖Γ`2(ξ, fn(ξ))− q(ξ)‖2 (3.16)
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Since φ(0) = 0, it follows from Lemma 2.2 that

‖Γt−1(ξ, gn(ξ))− Γt−1(ξ, z(ξ))‖ ≤ H?, (3.17)

where

H? =

∑t
j=1

(
t
j

)
νt−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νt‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖

1 + ηt‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
(3.17) implies

‖Γt−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤
∑t

j=1

(
t
j

)
νt−jφj(0) + νt‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖

1 + ηt‖0‖
= νt‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖ (3.18)

Again, using (3.11) and Proposition 2.4, with

S(ξ, tn(ξ)) = t,Γi−1(ξ, tn(ξ)) = vj−1,Γ
`2(ξ, tn(ξ)) = v and k = 1,

we obtain the following estimaes:

‖S(ξ, fn(ξ))− q(ξ)‖2 = ‖δn,1S(ξ, tn(ξ)) +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)Γs−1(ξ, tn(ξ))

+

`3∏
c=1

(1− δn,c)Γ`3(ξ, tn(ξ))− q(ξ)‖2

≤ δn,1‖S(ξ, tn(ξ))− q(ξ)‖2 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)‖Γs−1(ξ, tn(ξ))− q(ξ)‖2

+

`3∏
c=1

(1− δn,c)‖Γ`3(ξ, tn(ξ))− q(ξ)‖2 (3.19)

Since z(ξ) is the coincidence point of S,Γ, φ(0) = 0 and

‖Γs−1(ξ, gn(ξ))− Γs−1(ξ, z(ξ))‖ ≤W ?,

where

W ? =

∑s
j=1

(
s
j

)
νs−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νs‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖

1 + ηs‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
,

it follows that

‖Γs−1(ξ, tn(ξ))− Γs−1(ξ, z(ξ))‖ ≤
∑s

j=1

(
s
j

)
νs−jφj(0) + νs‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖

1 + ηs‖0‖
= νs‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖. (3.20)

Since (3.16) and (3.18) imply

‖S(ξ, gn(ξ))− q(ξ)‖ ≤ γn,1‖S(ξ, tn(ξ))− q(ξ)‖2 (3.21)

+
( `2∑

t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖2
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and (3.19) and (3.20) imply

‖S(ξ, fn(ξ))− q(ξ)‖2 ≤
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)

×‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖2,

we have (using (3.15)) that

‖S(ξ, tn+1(ξ))− q(ξ)‖2 ≤

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}

×‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖2 + εn (3.22)

Let

δn =

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}

,

so that from Proposition 2.3 and the fact that νi ∈ [0, 1), we obtain

δn =

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}

,

<

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a) +

`1∏
a=1

(1− αn,a)
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b) +

`2∏
b=1

(1− γn,b)
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c) +

`3∏
c=1

(1− δn,c)
)]}

= 1 (3.23)

Using Lemma 2.1, we obtain from (3.22) and (3.23) that S(ξ, tn(ξ))→ q(ξ) as n→∞.
Conversely, let S(ξ, tn(ξ)) → 0 as n → ∞. Then, we show that εn → 0 as n → ∞. Now, by using (3.9),
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(3.22), Proposition 2.4 and Lemma 2.2, we estimate as follows:

εn = ‖S(ξ, tn+1(ξ))− q(ξ)−
[
αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)
]
‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 + ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 + αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)‖Γi−1(ξ, gn(ξ))− q(ξ)‖2 +

`1∏
a=1

(1− αn,a)‖Γ`1(ξ, gn(ξ))− q(ξ)‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 + αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+
( `1∑

i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)
‖S(ξ, gn(ξ))− q(ξ)‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 +

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}
‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖2

Observe that the right hand side of the last inequality tends to 0 as n → ∞, hence εn → 0 as n → ∞. The
completes the proof.

If `3 = 0 and `2 = `3 = 0, then Theorem 3.1 yields the following corollaries: �

Corollary 3.3. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.3) converges to q(ξ), then the random
Jungck-DI-Ishikawa iterative scheme is S,Γ-stable.

Corollary 3.4. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.4) converges to q(ξ), then the random
Jungck-DI-Mann iterative scheme is S,Γ-stable.

If S is an identity in (3.1), (3.3) and (3.4), we obtain the following corollaries:
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Corollary 3.5. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, if the sequence {xn(ξ)}∞n=0 generated by (3.5) converges to q(ξ), then the random DI-Noor iterative
scheme is S,Γ-stable.

Corollary 3.6. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.7) converges to q(ξ), then the random
DI-Ishikawa iterative scheme is S,Γ-stable.

Corollary 3.7. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.8) converges to q(ξ), then the random DI-Mann
iterative scheme is S,Γ-stable.

Theorem 3.8. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.2) converges to q(ξ), then the random
Jungck-DI-SP iterative scheme is S,Γ-stable.

Proof. Using similar argument as in Theorem 3.1, the proof of Theorem 3.4 follows immediately. �

Again, if S is an identity in (3.2), we obtain the following corollary from Theorem 3.7:

Corollary 3.9. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.6) converges to q(ξ), then the random
DI-SP iterative scheme is S,Γ-stable.

4. Main Result II

Theorem 4.1. Let H be a real separable Hilbert space, Γ, S : D −→ H random commuting operators for
an arbitrary set D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where
φ : R+ −→ R+ is a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the
random coincidence point of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) =

Γi(ξ, z(ξ)) = q(ξ)). For arbitrary x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random Jungck-DI-SP iterative
scheme generated by (3.2). Then,

(i) q is the unique common fixed point of Γi−1 and Si−1(i = 2, 3, · · · ) if D = H and Γ, S commute at q
(i.e., Γ, S are weakly comprtible);

(ii) the Jungck-DI-SP iteration scheme converges strongly to q(ξ) ∈ Γ(ξ).
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Proof. Assume that {S(ξ, xn(ξ))}∞n=0 has a pointwise limit (i.e., limn→∞ S(ξ, xn(ξ)) = q(ξ),∀ξ ∈ Ω). Since
H is a separable Hilbert space, it follows that S(ξ, g(ξ)) = q(ξ) is a measurable mapping for any random
operator S : Ω ×K −→ K and any measurable mapping g : Ω −→ K. Thus, the sequence {S(ξ, xn(ξ))}∞n=0

generated by the random Jungck-DI-SP iterative scheme (3.2) is a sequence of measurable mappings. Also,
since K is convex and q(ξ) is measurable, then q : ω −→ K (being limit of measurable mapping) is as well
measurable.

Now, we show that S,Γ, Si and Γi have a unique coincidence point z(ξ). Let K(S,Γ, Si,Γi) be the set of
all coincidence points of S,Γ, Si and Γi; and suppose there exists another coincidence point
q′ ∈ K(S,Γ, Si,Γi) with q′ 6= q. Then, we can find z?(ξ) 6= z(ξ) such that
S(ξ, z?(ξ)) = Γ(ξ, z?(ξ)) = Si(ξ, z?(ξ)) = Si(ξ, z?(ξ)) = q′(ξ). Using (2.4) and the fact that φ(0) = 0, we
get

‖q(ξ)− q′(ξ)‖ = ‖Γi−1(ξ, z(ξ))− Γi−1(ξ, z?(ξ))‖ ≤ Q?, (4.1)

where

Q? =

∑i
j=1

(
s
j

)
νi−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νi‖S(ξ, z(ξ))− S(ξ, z?(ξ))‖

1 + ηi‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
.

From (4.1), we obtain

‖q(ξ)− q′(ξ)‖ ≤
∑i

j=1

(
i
j

)
νi−jφj(0) + νi‖S(ξ, z1(ξ))− S(ξ, z2(ξ))‖

1 + ηi‖0‖
= νs‖S(ξ, z(ξ))− S(ξ, z?(ξ))‖ = νi‖q(ξ)− q′(ξ)‖.,

which yields (1 − νi)‖q(ξ) − q′(ξ)‖ ≤ 0. Since νi ∈ [0, 1) and the norm is a nonnegative function, it follows
that q(ξ) = q′(ξ), which is a contradiction to our earlier assumption that q(ξ) 6= q′(ξ). Hence,
S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Si(ξ, z(ξ)) = q(ξ). Therefore, q(ξ) is unique. Further, since
Γ(ξ) and S(ξ) are weakly compartible, we have
Γ(ξ, S(ξ, z(ξ))) = S(ξ,Γ(ξ, z(ξ))) and Γi(ξ, S(ξ, z(ξ))) = Si(ξ,Γi(ξ, z(ξ))). Hence,
Γ(ξ, q(ξ)) = S(ξ, q(ξ)) = Γi(ξ, q(ξ)) = Si(ξ, q(ξ)) so that q(ξ) is the coimcidence point of Γ, S,Γi and Si.
Also, since the coincidence point is unique, we get q(ξ) = z(ξ). Thus,
Γ(ξ, z(ξ)) = S(ξ, z(ξ)) = Γi(ξ, z(ξ)) = Si(ξ, z(ξ)) = q(ξ).

Next, we show that {S(ξ, xn(ξ))}∞n=0 converges to q(ξ). Using (3.2), lemma 2.2 and Proposition 2.4, with
S(ξ, yn(ξ)) = t,Γi−1(ξ, yn(ξ)) = vj−1,Γ

`1(ξ, yn(ξ)) = v and k = 1, we get the following estimates:

‖S(ξ, xn+1(ξ))− q(ξ)‖2 = ‖αn,1S(ξ, yn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, yn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, yn(ξ))− q(ξ)‖2

≤ αn,1‖S(ξ, yn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)‖Γi−1(ξ, yn(ξ))− q(ξ)‖2

+

`1∏
a=1

(1− αn,a)‖Γ`1(ξ, yn(ξ))− q(ξ)‖2. (4.2)

Since z(ξ) is the coincidence point of S,Γ, φ(0) = 0 and

‖Γi−1(ξ, yn(ξ))− Γi−1(ξ, z(ξ))‖ ≤ P ?,

161



Imo Kalu Agwu and Donatus Ikechi Igbokwe

where

P ? =

∑s
j=1

(
i
j

)
νi−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νi‖S(ξ, z(ξ))− S(ξ, yn(ξ))‖

1 + ηi‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
,

it follows that

‖Γi−1(ξ, yn(ξ))− Γi−1(ξ, z(ξ))‖ ≤
∑i

j=1

(
i
j

)
νs−jφj(0) + νs‖S(ξ, z(ξ))− S(ξ, yn(ξ))‖

1 + ηi‖0‖
= νi‖S(ξ, z(ξ))− S(ξ, yn(ξ))‖. (4.3)

(4.2) and (4.3) imply

‖S(ξ, xn+1(ξ))− q(ξ)‖2 ≤
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×‖S(ξ, yn(ξ))− q(ξ)‖2. (4.4)

Again, from (3.2), lemma 2.2 and Proposition 2.4, with S(ξ, zn(ξ)) = t,Γi−1(ξ, zn(ξ)) = vj−1,Γ
`1(ξ, zn(ξ)) =

v and k = 1, we get the following estimates:

‖S(ξ, yn(ξ))− q(ξ)‖2 = ‖γn,1S(ξ, zn(ξ)) +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)Γt−1(ξ, zn(ξ))

+

`2∏
b=1

(1− γn,b)Γ`2(ξ, zn(ξ))− q(ξ)‖2

≤ γn,1‖S(ξ, zn(ξ))− q(ξ)‖2

+

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)‖Γi−1(ξ, zn(ξ))− q(ξ)‖2

+

`2∏
b=1

(1− γn,b)‖Γ`2(ξ, zn(ξ))− q(ξ)‖2. (4.5)

Since z(ξ) is the coincidence point of S,Γ, φ(0) = 0 and

‖Γt−1(ξ, zn(ξ))− Γt−1(ξ, z(ξ))‖ ≤ P ??,

where

P ?? =

∑t
j=1

(
t
j

)
νt−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νt‖S(ξ, z(ξ))− S(ξ, zn(ξ))‖

1 + ηt‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
,

it follows that

‖Γt−1(ξ, zn(ξ))− Γt−1(ξ, z(ξ))‖ ≤
∑i

j=1

(
i
j

)
νt−jφj(0) + νt‖S(ξ, z(ξ))− S(ξ, zn(ξ))‖

1 + ηt‖0‖
= νt‖S(ξ, z(ξ))− S(ξ, zn(ξ))‖. (4.6)

(4.5) and (4.6) imply that

‖S(ξ, yn(ξ))− q(ξ)‖2 ≤
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×‖S(ξ, zn(ξ))− q(ξ)‖2. (4.7)
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Further, using (3.2) and similar argument as above, we obtain

‖S(ξ, zn(ξ))− q(ξ)‖2 ≤
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

×‖S(ξ, xn(ξ))− q(ξ)‖2. (4.8)

(4.4), (4.7) and (4.9) imply

‖S(ξ, xn+1(ξ))− q(ξ)‖2 ≤
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

×‖S(ξ, xn(ξ))− q(ξ)‖2. (4.9)

Let

δ?n =
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

(4.10)

Since νi ∈ [0, 1), w obtain from (4.10) and Proposition 2.3 that

δ?n =
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

<
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a) +

`1∏
a=1

(1− αn,a)
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b) +

`2∏
b=1

(1− γn,b)
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c) +

`3∏
b=1

(1− δn,c)
)

= 1 (4.11)

From (4.9), (4.11) and Lemma 2.1, we get that S(ξ, xn(ξ))→ q(ξ) as n→∞. The proof is completed. �
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If s is an identity in (3.1), then the following corollary from Theorem 4.1:

Corollary 4.2. Let H be a real separable Hilbert space, Γ, S : D −→ H random commuting operators for
an arbitrary set D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where
φ : R+ −→ R+ is a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the
random coincidence point of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) =

Γi(ξ, z(ξ)) = q(ξ)). For arbitrary x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random DI-SP iterative scheme
generated by (3.6). Then,

(i) q is the unique common fixed point of Γi−1 and Si−1(i = 2, 3, · · · ) if D = H and Γ, S commute at q
(i.e., Γ, S are weakly comprtible);

(ii) the DI-SP iteration scheme converges strongly to q(ξ) ∈ Γ(ξ).

Theorem 4.3. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random Jungck-DI-Noor iterative scheme generated by (3.1). Then,

(i) Γ(ξ) defined by (2.4) has a unique fixed point q;

(ii) the Jungck-DI-SP iteration scheme converges strongly to qξ ∈ Γ(ξ).

Proof. Using similar argument as in Theorem 4.1, the proof of Theorem 4.2 follows immediately. �

Also, if S is an identity in (3.1), we obtain the following corollary from Theorem 4.3:

Corollary 4.4. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random DI-Noor iterative scheme generated by (3.5). Then,

(i) Γ(ξ) defined by (2.4) has a unique fixed point q;

(ii) the DI-SP iteration scheme converges strongly to qξ ∈ Γ(ξ).

Remark 4.5. The following areas are still open:

(i) to reconstruct, approximate the fixed points and the stability results of some existing random iterative
schemes in the current literature, other than the ones under study, for finite family of certain class of
contractive-type map;

(ii) to compare convergent rates of the iterative schemes defined by (3.1) and (3.2) with those of (1.7);

(iii) to prove Proposition [2.3 and 2.4] in more general spaces so as to extend the results in this paper to such
spaces.

5. Conclusion

An affirmative answer has been provided for Question 1.1. The results obtained in this paper improve the
corresponding results in [10], [19], [40] and several others currrently announced in literature.
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