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Computation of a summation formula associated with certain special

functions

M .P. Chaudharya, ∗ Salahuddinb and Sangeeta Chaudharyc

aInternational Scientific Research and Welfare Organization, New Delhi, India.

bP.D.M College of Engineering, Bahadurgarh, Haryana, India.

bFormer Faculty Member, BITS Pilani, India.

Abstract

The main aim of the present paper is to establish a summation formula involving certain special functions.

Keywords: Gauss second summation theorem, Recurrence relation, Prudnikov

2010 MSC: 33C05 , 33C20 , 33D15 , 33D50 , 33D60. c©2012 MJM. All rights reserved.

1 Introduction

Generalized Gaussian Hypergeometric function of one variable is defined by

AFB

 a1, a2, · · · , aA ;
z

b1, b2, · · · , bB ;

 =
∞

∑
k=0

(a1)k(a2)k · · · (aA)kzk

(b1)k(b2)k · · · (bB)kk!
(1)

.
where the parameters b1, b2, · · · , bB are neither zero nor negative integers and A, B are non-negative inte-

gers and | z |= 1
Contiguous Relation is defined by
[ Andrews p.363(9.16), E. D. p.51(10)]

(a − b) 2F1

[
a, b ;
c ;

z
]

= a 2F1

[
a + 1, b ;

c ;
z
]
− b 2F1

[
a, b + 1 ;
c ;

z
]

(2)

Gauss second summation theorem is defined by [Prudnikov., 491(7.3.7.5)]

2F1

[
a, b ;
a+b+1

2 ;
1
2

]
=

Γ( a+b+1
2 ) Γ( 1

2 )

Γ( a+1
2 ) Γ( b+1

2 )
(3)

=
2(b−1) Γ( b

2 ) Γ( a+b+1
2 )

Γ(b) Γ( a+1
2 )

(4)

In a monograph of Prudnikov et al., a summation theorem is given in the form [Prudnikov.,
p.491(7.3.7.8)]

2F1

[
a, b ;
a+b−1

2 ;
1
2

]
=
√

π

[
Γ( a+b+1

2 )

Γ( a+1
2 ) Γ( b+1

2 )
+

2 Γ( a+b−1
2 )

Γ(a) Γ(b)

]
(5)

∗Corresponding author.
E-mail address: mpchaudhary 2000@yahoo.com (M. P. Chaudhary), sludn@yahoo.com , vsludn@gmail.com (Salahuddin)
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Now using Legendre’s duplication formula and Recurrence relation for Gamma function,
the above theorem can be written in the form

2F1

[
a, b ;
a+b−1

2 ;
1
2

]
=

2(b−1) Γ( a+b−1
2 )

Γ(b)

[
Γ( b

2 )

Γ( a−1
2 )

+
2(a−b+1) Γ( a

2 ) Γ( a+1
2 )

{Γ(a)}2 +
Γ( b+2

2 )

Γ( a+1
2 )

]
(6)

Recurrence relation is defined by

Γ(ζ + 1) = ζ Γ(ζ) (7)

2 Main formula

2F1

[
a, b ;
a+b+46

2 ;
1
2

]
=

=
2b Γ( a+b+46

2 )
(a − b) Γ(b)

[
Γ( b

2 )
Γ( a

2 )

{
1[ 21

∏
ζ=0

{
a − b − 2ζ

}][ 22
∏

η=1

{
a − b + 2η

}]×
×

(
4194304(−107145471557284795514880000a + 195291838708627789578240000a2

−156569123088349991534592000a3 + 74473358203764465677107200a4

−23811192195736807158054912a5 + 5481259447061368207835136a6

−948292268763887952199680a7 + 126888416217818346291200a8 − 13393761871844011671552a9

+1130574271590544777216a10 − 77005895857888757760a11 + 4254539623864857600a12

−191027711898895872a13 + 6960284638689536a14 − 204763953757440a15 + 4818538806400a16

−89349365952a17 + 1275548736a18 − 13518120a19 + 100100a20 − 462a21 + a22

+107145471557284795514880000b + 544099662756275407552512000ab

−214707088455270681437798400a2b + 558803648319188167242547200a3b

−124626488196420160060391424a4b + 76589682258781485165182976a5b

−10211457792319715925295104a6b + 2878977486669978884112384a7b

−246395819137011656949760a8b + 38995817187683205431296a9b − 2221801102545787496448a10b

+216261270555291906048a11b − 8291822969736024576a12b + 517746324868286976a13b

−13186658427534592a14b + 533571656983552a15b − 8636653092672a16b + 221751421056a17b

−2057016456a18b + 31308816a19b − 125818a20b + 946a21b + 195291838708627789578240000b2

+214707088455270681437798400ab2 + 1013820737421028969037168640a2b2

−108314139708425338286505984a3b2 + 302158850748929274166640640a4b2

−29771284120854232910266368a5b2 + 19694196117372618265329664a6b2

−1388623739871132154593280a7b2 + 417983263466651432951808a8b2

−20622266111066467088384a9b2 + 3449288077905817511936a10b2 − 117885481520131060736a11b2

+11998017793499063040a12b2 − 277636257039660288a13b2 + 17919113392649216a14b2

−267151285637632a15b2 + 11020924611136a16b2 − 95167656760a17b2 + 2443673144a18b2

−9231068a19b2 + 135751a20b2 + 156569123088349991534592000b3
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+558803648319188167242547200ab3 + 108314139708425338286505984a2b3

+466153606552294291044040704a3b3 − 20900843249974028939034624a4b3

+57678665359458580243152896a5b3 − 3006622682387650474672128a6b3

+2001463868682331965947904a7b3 − 82549079270288939669504a8b3

+25068498657478566850560a9b3 − 756575731380797565952a10b3 + 127312149370480149504a11b3

−2683483632086070528a12b3 + 273162140985789440a13b3 − 3785489362783744a14b3

+242209382992896a15b3 − 1973241008024a16b3 + 79630140304a17b3 − 287404260a18b3

+7059052a19b3 + 74473358203764465677107200b4 + 124626488196420160060391424ab4

+302158850748929274166640640a2b4 + 20900843249974028939034624a3b4

+81637579765745056383762432a4b4 − 1861345312490852534714368a5b4

+4921332525029869113065472a6b4 − 148592519721237065650176a7b4

+96422465406931486231552a8b4 − 2435194656785214218752a9b4 + 724681220181884469504a10b4

−13568253239845953792a11b4 + 2236391710105439744a12b4 − 28469082137658624a13b4

+2826281258958080a14b4 − 21619108507040a15b4 + 1337751868596a16b4 − 4608048302a17b4

+177232627a18b4 + 23811192195736807158054912b5 + 76589682258781485165182976ab5

+29771284120854232910266368a2b5 + 57678665359458580243152896a3b5

+1861345312490852534714368a4b5 + 6603539161382830855192576a5b5

−84673352713297774153728a6b5 + 211310139502169635479552a7b5

−3863850704068409939456a8b5 + 2402371732497292514816a9b5 − 37522170157907452160a10b5

+10756989213658907648a11b5 − 121744987768371968a12b5 + 19331973916462592a13b5

−136278256884000a14b5 + 12978881608000a15b5 − 42181365226a16b5 + 2481256778a17b5

+5481259447061368207835136b6 + 10211457792319715925295104ab6

+19694196117372618265329664a2b6 + 3006622682387650474672128a3b6

+4921332525029869113065472a4b6 + 84673352713297774153728a5b6

+273482748886432393211904a6b6 − 2076771952214159456256a7b6 + 4854709750936670200576a8b6

−54343144439122995456a9b6 + 32045210028718222336a10b6 − 301251744439213568a11b6

+82291504751968512a12b6 − 515206630456672a13b6 + 77925205174432a14b6 − 233619868944a15b6

+21090682613a16b6 + 948292268763887952199680b7 + 2878977486669978884112384ab7

+1388623739871132154593280a2b7 + 2001463868682331965947904a3b7

+148592519721237065650176a4b7 + 211310139502169635479552a5b7

+2076771952214159456256a6b7 + 6122732220440579487744a7b7 − 27977292448047278336a8b7

+61005969350151654400a9b7 − 407431732173193728a10b7 + 226372726335788032a11b7

−1172083017545440a12b7 + 302753027024448a13b7 − 804690659696a14b7 + 114955808528a15b7

+126888416217818346291200b8 + 246395819137011656949760ab8

+417983263466651432951808a2b8 + 82549079270288939669504a3b8

+96422465406931486231552a4b8 + 3863850704068409939456a5b8 + 4854709750936670200576a6b8

+27977292448047278336a7b8 + 75475860748467415808a8b8 − 203003760763909248a9b8

+411923003650933632a10b8 − 1503961148566448a11b8 + 783779913404488a12b8
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−1715884494940a13b8 + 416714805914a14b8 + 13393761871844011671552b9

+38995817187683205431296ab9 + 20622266111066467088384a2b9

+25068498657478566850560a3b9 + 2435194656785214218752a4b9 + 2402371732497292514816a5b9

+54343144439122995456a6b9 + 61005969350151654400a7b9 + 203003760763909248a8b9

+502213805637882624a9b9 − 730579753229040a10b9 + 1377434664214752a11b9

−2113247220084a12b9 + 1029530696964a13b9 + 1130574271590544777216b10

+2221801102545787496448ab10 + 3449288077905817511936a2b10 + 756575731380797565952a3b10

+724681220181884469504a4b10 + 37522170157907452160a5b10 + 32045210028718222336a6b10

+407431732173193728a7b10 + 411923003650933632a8b10 + 730579753229040a9b10

+1660408530066000a10b10 − 1006308200040a11b10 + 1761039350070a12b10

+77005895857888757760b11 + 216261270555291906048ab11 + 117885481520131060736a2b11

+127312149370480149504a3b11 + 13568253239845953792a4b11 + 10756989213658907648a5b11

+301251744439213568a6b11 + 226372726335788032a7b11 + 1503961148566448a8b11

+1377434664214752a9b11 + 1006308200040a10b11 + 2104098963720a11b11

+4254539623864857600b12 + 8291822969736024576ab12 + 11998017793499063040a2b12

+2683483632086070528a3b12 + 2236391710105439744a4b12 + 121744987768371968a5b12

+82291504751968512a6b12 + 1172083017545440a7b12 + 783779913404488a8b12

+2113247220084a9b12 + 1761039350070a10b12 + 191027711898895872b13

+517746324868286976ab13 + 277636257039660288a2b13 + 273162140985789440a3b13

+28469082137658624a4b13 + 19331973916462592a5b13 + 515206630456672a6b13

+302753027024448a7b13 + 1715884494940a8b13 + 1029530696964a9b13 + 6960284638689536b14

+13186658427534592ab14 + 17919113392649216a2b14 + 3785489362783744a3b14

+2826281258958080a4b14 + 136278256884000a5b14 + 77925205174432a6b14 + 804690659696a7b14

+416714805914a8b14 + 204763953757440b15 + 533571656983552ab15 + 267151285637632a2b15

+242209382992896a3b15 + 21619108507040a4b15 + 12978881608000a5b15 + 233619868944a6b15

+114955808528a7b15 + 4818538806400b16 + 8636653092672ab16 + 11020924611136a2b16

+1973241008024a3b16 + 1337751868596a4b16 + 42181365226a5b16 + 21090682613a6b16

+89349365952b17 + 221751421056ab17 + 95167656760a2b17 + 79630140304a3b17

+4608048302a4b17 + 2481256778a5b17 + 1275548736b18 + 2057016456ab18 + 2443673144a2b18

+287404260a3b18 + 177232627a4b18 + 13518120b19 + 31308816ab19 + 9231068a2b19 + 7059052a3b19

+100100b20 + 125818ab20 + 135751a2b20 + 462b21 + 946ab21 + b22)
)

+
1[ 22

∏
µ=0

{
a − b − 2µ

}][ 21
∏

ξ=1

{
a − b + 2ξ

}](
16777216b(116835417521691373338624000a

+28125699466628665914163200a2 + 58830487303312307021414400a3

+8357630381311176342503424a4 + 5414646363604754513264640a5

+498187083349892413784064a6 + 152686290382212699521024a7

+9519964161751374757888a8 + 1637773645456507142144a9
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+70525027615268548608a10 + 7408115142042620928a11

+220112291277345792a12 + 14690239437993728a13

+294659633454592a14 + 12598920966272a15 + 161915465856a16

+4327664352a17 + 31831536a18 + 491876a19 + 1540a20 + 11a21 + 116835417521691373338624000b

+226216356505054472338145280a2b + 23085853384533493388673024a3b

+42596657565712057179832320a4b + 3317057929942263958339584a5b

+2031229727871340557107200a6b + 113777261461504865337344a7b

+33718970664166741245952a8b + 1346033490226231279616a9b + 225590733333209074688a10b

+6339888946109069312a11b + 648854692726186752a12b + 12495420024887296a13b

+808459848960384a14b + 10105741289728a15b + 414427759840a16b + 3006978304a17b

+75526748a18b + 238392a19b + 3311a20b − 28125699466628665914163200b2

+226216356505054472338145280ab2 + 106315345003413006572322816a3b2

+5592201387587352898043904a4b2 + 9233971963059119562424320a5b2

+428594882247871245844480a6b2 + 245681304324011271913472a7b2

+8745761422212831318016a8b2 + 2469154658311706393600a9b2 + 64247076731195584512a10b2

+10321203147577973248a11b2 + 188375185237384704a12b2 + 18473671918179968a13b2

+222601677688064a14b2 + 13721151546112a15b2 + 97389445776a16b2 + 3756889532a17b2

+11790944a18b2 + 271502a19b2 + 58830487303312307021414400b3

−23085853384533493388673024ab3 + 106315345003413006572322816a2b3

+18881491334335208163639296a4b3 + 568562562676880138567680a5b3

+847549451293774414086144a6b3 + 24573874868858553565184a7b3

+13122966589520136414208a8b3 + 302137670596723140608a9b3 + 80539981502597540352a10b3

+1356828503183302656a11b3 + 206745582687160192a12b3 + 2360282331414784a13b3

+219242056144640a14b3 + 1502397796864a15b3 + 87086974468a16b3 + 268243976a17b3

+9580142a18b3 − 8357630381311176342503424b4 + 42596657565712057179832320ab4

−5592201387587352898043904a2b4 + 18881491334335208163639296a3b4

+1542081407404976488054784a5b4 + 28192590577296803094528a6b4

+38166600905403491682304a7b4 + 705827728752012911616a8b4 + 350235023692465902848a9b4

+5183585762653455872a10b4 + 1297007316669623936a11b4 + 13619908987053824a12b4

+1953639560494720a13b4 + 12668736904640a14b4 + 1104721948816a15b4 + 3286859628a16b4

+177232627a17b4 + 5414646363604754513264640b5 − 3317057929942263958339584ab5

+9233971963059119562424320a2b5 − 568562562676880138567680a3b5

+1542081407404976488054784a4b5 + 64311349472759628675072a6b5

+734302727002863349760a7b5 + 906641355715486806272a8b5 + 10657379160455346176a9b5

+4906070283219540864a10b5 + 44976721663933696a11b5 + 10518844238424704a12b5

+62529614167552a13b5 + 8393796705392a14b5 + 23597966560a15b5 + 1917334783a16b5

−498187083349892413784064b6 + 2031229727871340557107200ab6

−428594882247871245844480a2b6 + 847549451293774414086144a3b6
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−28192590577296803094528a4b6 + 64311349472759628675072a5b6 + 1447339812912113376256a7b6

+10336382585586337280a8b6 + 11676188556897248384a9b6 + 84237361688480000a10b6

+35936621746305280a11b6 + 185491443545408a12b6 + 40413183472816a13b6 + 103831052864a14b6

+12978881608a15b6 + 152686290382212699521024b7 − 113777261461504865337344ab7

+245681304324011271913472a2b7 − 24573874868858553565184a3b7

+38166600905403491682304a4b7 − 734302727002863349760a5b7 + 1447339812912113376256a6b7

+17913221110198860160a8b7 + 77535200126182656a9b7 + 80316848819494144a10b7

+323795278490112a11b7 + 127895988844624a12b7 + 284008468128a13b7 + 57477904264a14b7

−9519964161751374757888b8 + 33718970664166741245952ab8 − 8745761422212831318016a2b8

+13122966589520136414208a3b8 − 705827728752012911616a4b8 + 906641355715486806272a5b8

−10336382585586337280a6b8 + 17913221110198860160a7b8 + 119567125189072704a9b8

+286328226518048a10b8 + 272441173357496a11b8 + 469610493352a12b8 + 171588449494a13b8

+1637773645456507142144b9 − 1346033490226231279616ab9 + 2469154658311706393600a2b9

−302137670596723140608a3b9 + 350235023692465902848a4b9 − 10657379160455346176a5b9

+11676188556897248384a6b9 − 77535200126182656a7b9 + 119567125189072704a8b9

+396284169175752a10b9 + 402523280016a11b9 + 352207870014a12b9 − 70525027615268548608b10

+225590733333209074688ab10 − 64247076731195584512a2b10 + 80539981502597540352a3b10

−5183585762653455872a4b10 + 4906070283219540864a5b10 − 84237361688480000a6b10

+80316848819494144a7b10 − 286328226518048a8b10 + 396284169175752a9b10

+503154100020a11b10 + 7408115142042620928b11 − 6339888946109069312ab11

+10321203147577973248a2b11 − 1356828503183302656a3b11 + 1297007316669623936a4b11

−44976721663933696a5b11 + 35936621746305280a6b11 − 323795278490112a7b11

+272441173357496a8b11 − 402523280016a9b11 + 503154100020a10b11 − 220112291277345792b12

+648854692726186752ab12 − 188375185237384704a2b12 + 206745582687160192a3b12

−13619908987053824a4b12 + 10518844238424704a5b12 − 185491443545408a6b12

+127895988844624a7b12 − 469610493352a8b12 + 352207870014a9b12 + 14690239437993728b13

−12495420024887296ab13 + 18473671918179968a2b13 − 2360282331414784a3b13

+1953639560494720a4b13 − 62529614167552a5b13 + 40413183472816a6b13 − 284008468128a7b13

+171588449494a8b13 − 294659633454592b14 + 808459848960384ab14 − 222601677688064a2b14

+219242056144640a3b14− 12668736904640a4b14 + 8393796705392a5b14 − 103831052864a6b14

+57477904264a7b14 + 12598920966272b15 − 10105741289728ab15 + 13721151546112a2b15

−1502397796864a3b15 + 1104721948816a4b15 − 23597966560a5b15 + 12978881608a6b15

−161915465856b16 + 414427759840ab16 − 97389445776a2b16 + 87086974468a3b16

−3286859628a4b16 + 1917334783a5b16 + 4327664352b17 − 3006978304ab17 + 3756889532a2b17

−268243976a3b17 + 177232627a4b17 − 31831536b18 + 75526748ab18 − 11790944a2b18

+9580142a3b18 + 491876b19 − 238392ab19 + 271502a2b19 − 1540b20 + 3311ab20 + 11b21)
)}

−
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−
Γ( b+1

2 )

Γ( a+1
2 )

{
16777216a[ 21

∏
ζ=0

{
a − b − 2ζ

}][ 22
∏

η=1

{
a − b + 2η

}](
116835417521691373338624000a

−28125699466628665914163200a2 + 58830487303312307021414400a3

−8357630381311176342503424a4 + 5414646363604754513264640a5

−498187083349892413784064a6 + 152686290382212699521024a7 − 9519964161751374757888a8

+1637773645456507142144a9 − 70525027615268548608a10 + 7408115142042620928a11

−220112291277345792a12 + 14690239437993728a13 − 294659633454592a14 + 12598920966272a15

−161915465856a16 + 4327664352a17 − 31831536a18 + 491876a19 − 1540a20 + 11a21

+116835417521691373338624000b + 226216356505054472338145280a2b

−23085853384533493388673024a3b + 42596657565712057179832320a4b

−3317057929942263958339584a5b + 2031229727871340557107200a6b

−113777261461504865337344a7b + 33718970664166741245952a8b − 1346033490226231279616a9b

+225590733333209074688a10b − 6339888946109069312a11b + 648854692726186752a12b

−12495420024887296a13b + 808459848960384a14b − 10105741289728a15b + 414427759840a16b

−3006978304a17b + 75526748a18b − 238392a19b + 3311a20b + 28125699466628665914163200b2

+226216356505054472338145280ab2 + 106315345003413006572322816a3b2

−5592201387587352898043904a4b2 + 9233971963059119562424320a5b2

−428594882247871245844480a6b2 + 245681304324011271913472a7b2

−8745761422212831318016a8b2 + 2469154658311706393600a9b2 − 64247076731195584512a10b2

+10321203147577973248a11b2 − 188375185237384704a12b2 + 18473671918179968a13b2

−222601677688064a14b2 + 13721151546112a15b2 − 97389445776a16b2 + 3756889532a17b2

−11790944a18b2 + 271502a19b2 + 58830487303312307021414400b3

+23085853384533493388673024ab3 + 106315345003413006572322816a2b3

+18881491334335208163639296a4b3 − 568562562676880138567680a5b3

+847549451293774414086144a6b3 − 24573874868858553565184a7b3

+13122966589520136414208a8b3 − 302137670596723140608a9b3 + 80539981502597540352a10b3

−1356828503183302656a11b3 + 206745582687160192a12b3 − 2360282331414784a13b3

+219242056144640a14b3 − 1502397796864a15b3 + 87086974468a16b3 − 268243976a17b3

+9580142a18b3 + 8357630381311176342503424b4 + 42596657565712057179832320ab4

+5592201387587352898043904a2b4 + 18881491334335208163639296a3b4

+1542081407404976488054784a5b4 − 28192590577296803094528a6b4

+38166600905403491682304a7b4 − 705827728752012911616a8b4 + 350235023692465902848a9b4

−5183585762653455872a10b4 + 1297007316669623936a11b4 − 13619908987053824a12b4

+1953639560494720a13b4 − 12668736904640a14b4 + 1104721948816a15b4 − 3286859628a16b4

+177232627a17b4 + 5414646363604754513264640b5 + 3317057929942263958339584ab5

+9233971963059119562424320a2b5 + 568562562676880138567680a3b5

+1542081407404976488054784a4b5 + 64311349472759628675072a6b5
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−734302727002863349760a7b5 + 906641355715486806272a8b5 − 10657379160455346176a9b5

+4906070283219540864a10b5 − 44976721663933696a11b5 + 10518844238424704a12b5

−62529614167552a13b5 + 8393796705392a14b5 − 23597966560a15b5 + 1917334783a16b5

+498187083349892413784064b6 + 2031229727871340557107200ab6

+428594882247871245844480a2b6 + 847549451293774414086144a3b6

+28192590577296803094528a4b6 + 64311349472759628675072a5b6

+1447339812912113376256a7b6 − 10336382585586337280a8b6 + 11676188556897248384a9b6

−84237361688480000a10b6 + 35936621746305280a11b6 − 185491443545408a12b6

+40413183472816a13b6 − 103831052864a14b6 + 12978881608a15b6 + 152686290382212699521024b7

+113777261461504865337344ab7 + 245681304324011271913472a2b7

+24573874868858553565184a3b7 + 38166600905403491682304a4b7 + 734302727002863349760a5b7

+1447339812912113376256a6b7 + 17913221110198860160a8b7 − 77535200126182656a9b7

+80316848819494144a10b7 − 323795278490112a11b7 + 127895988844624a12b7 − 284008468128a13b7

+57477904264a14b7 + 9519964161751374757888b8 + 33718970664166741245952ab8

+8745761422212831318016a2b8 + 13122966589520136414208a3b8 + 705827728752012911616a4b8

+906641355715486806272a5b8 + 10336382585586337280a6b8 + 17913221110198860160a7b8

+119567125189072704a9b8 − 286328226518048a10b8 + 272441173357496a11b8 − 469610493352a12b8

+171588449494a13b8 + 1637773645456507142144b9 + 1346033490226231279616ab9

+2469154658311706393600a2b9 + 302137670596723140608a3b9 + 350235023692465902848a4b9

+10657379160455346176a5b9 + 11676188556897248384a6b9 + 77535200126182656a7b9

+119567125189072704a8b9 + 396284169175752a10b9 − 402523280016a11b9 + 352207870014a12b9

+70525027615268548608b10 + 225590733333209074688ab10 + 64247076731195584512a2b10

+80539981502597540352a3b10 + 5183585762653455872a4b10 + 4906070283219540864a5b10

+84237361688480000a6b10 + 80316848819494144a7b10 + 286328226518048a8b10

+396284169175752a9b10 + 503154100020a11b10 + 7408115142042620928b11

+6339888946109069312ab11 + 10321203147577973248a2b11 + 1356828503183302656a3b11

+1297007316669623936a4b11 + 44976721663933696a5b11 + 35936621746305280a6b11

+323795278490112a7b11 + 272441173357496a8b11 + 402523280016a9b11 + 503154100020a10b11

+220112291277345792b12 + 648854692726186752ab12 + 188375185237384704a2b12

+206745582687160192a3b12 + 13619908987053824a4b12 + 10518844238424704a5b12

+185491443545408a6b12 + 127895988844624a7b12 + 469610493352a8b12 + 352207870014a9b12

+14690239437993728b13 + 12495420024887296ab13 + 18473671918179968a2b13

+2360282331414784a3b13 + 1953639560494720a4b13 + 62529614167552a5b13 + 40413183472816a6b13

+284008468128a7b13 + 171588449494a8b13 + 294659633454592b14 + 808459848960384ab14

+222601677688064a2b14 + 219242056144640a3b14 + 12668736904640a4b14 + 8393796705392a5b14

+103831052864a6b14 + 57477904264a7b14 + 12598920966272b15 + 10105741289728ab15

+13721151546112a2b15 + 1502397796864a3b15 + 1104721948816a4b15 + 23597966560a5b15

+12978881608a6b15 + 161915465856b16 + 414427759840ab16 + 97389445776a2b16
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+87086974468a3b16 + 3286859628a4b16 + 1917334783a5b16 + 4327664352b17 + 3006978304ab17

+3756889532a2b17 + 268243976a3b17 + 177232627a4b17 + 31831536b18 + 75526748ab18

+11790944a2b18 + 9580142a3b18 + 491876b19 + 238392ab19 + 271502a2b19 + 1540b20 + 3311ab20 + 11b21
)

+
4194304[ 22

∏
µ=0

{
a − b − 2µ

}][ 21
∏

ξ=1

{
a − b + 2ξ

}](
107145471557284795514880000a

+195291838708627789578240000a2 + 156569123088349991534592000a3

+74473358203764465677107200a4 + 23811192195736807158054912a5

+5481259447061368207835136a6 + 948292268763887952199680a7

+126888416217818346291200a8 + 13393761871844011671552a9 + 1130574271590544777216a10

+77005895857888757760a11 + 4254539623864857600a12 + 191027711898895872a13

+6960284638689536a14 + 204763953757440a15 + 4818538806400a16 + 89349365952a17

+1275548736a18 + 13518120a19 + 100100a20 + 462a21 + a22 − 107145471557284795514880000b

+544099662756275407552512000ab + 214707088455270681437798400a2b

+558803648319188167242547200a3b + 124626488196420160060391424a4b

+76589682258781485165182976a5b + 10211457792319715925295104a6b

+2878977486669978884112384a7b + 246395819137011656949760a8b

+38995817187683205431296a9b + 2221801102545787496448a10b + 216261270555291906048a11b

+8291822969736024576a12b + 517746324868286976a13b + 13186658427534592a14b

+533571656983552a15b + 8636653092672a16b + 221751421056a17b + 2057016456a18b + 31308816a19b

+125818a20b + 946a21b + 195291838708627789578240000b2 − 214707088455270681437798400ab2

+1013820737421028969037168640a2b2 + 108314139708425338286505984a3b2

+302158850748929274166640640a4b2 + 29771284120854232910266368a5b2

+19694196117372618265329664a6b2 + 1388623739871132154593280a7b2

+417983263466651432951808a8b2 + 20622266111066467088384a9b2 + 3449288077905817511936a10b2

+117885481520131060736a11b2 + 11998017793499063040a12b2 + 277636257039660288a13b2

+17919113392649216a14b2 + 267151285637632a15b2 + 11020924611136a16b2 + 95167656760a17b2

+2443673144a18b2 + 9231068a19b2 + 135751a20b2 − 156569123088349991534592000b3

+558803648319188167242547200ab3 − 108314139708425338286505984a2b3

+466153606552294291044040704a3b3 + 20900843249974028939034624a4b3

+57678665359458580243152896a5b3 + 3006622682387650474672128a6b3

+2001463868682331965947904a7b3 + 82549079270288939669504a8b3

+25068498657478566850560a9b3 + 756575731380797565952a10b3 + 127312149370480149504a11b3

+2683483632086070528a12b3 + 273162140985789440a13b3 + 3785489362783744a14b3

+242209382992896a15b3 + 1973241008024a16b3 + 79630140304a17b3 + 287404260a18b3 + 7059052a19b3

+74473358203764465677107200b4 − 124626488196420160060391424ab4

+302158850748929274166640640a2b4 − 20900843249974028939034624a3b4

+81637579765745056383762432a4b4 + 1861345312490852534714368a5b4
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+4921332525029869113065472a6b4 + 148592519721237065650176a7b4

+96422465406931486231552a8b4 + 2435194656785214218752a9b4 + 724681220181884469504a10b4

+13568253239845953792a11b4 + 2236391710105439744a12b4 + 28469082137658624a13b4

+2826281258958080a14b4 + 21619108507040a15b4 + 1337751868596a16b4 + 4608048302a17b4

+177232627a18b4 − 23811192195736807158054912b5 + 76589682258781485165182976ab5

−29771284120854232910266368a2b5 + 57678665359458580243152896a3b5

−1861345312490852534714368a4b5 + 6603539161382830855192576a5b5

+84673352713297774153728a6b5 + 211310139502169635479552a7b5

+3863850704068409939456a8b5 + 2402371732497292514816a9b5 + 37522170157907452160a10b5

+10756989213658907648a11b5 + 121744987768371968a12b5 + 19331973916462592a13b5

+136278256884000a14b5 + 12978881608000a15b5 + 42181365226a16b5 + 2481256778a17b5

+5481259447061368207835136b6 − 10211457792319715925295104ab6

+19694196117372618265329664a2b6 − 3006622682387650474672128a3b6

+4921332525029869113065472a4b6 − 84673352713297774153728a5b6

+273482748886432393211904a6b6 + 2076771952214159456256a7b6 + 4854709750936670200576a8b6

+54343144439122995456a9b6 + 32045210028718222336a10b6 + 301251744439213568a11b6

+82291504751968512a12b6 + 515206630456672a13b6 + 77925205174432a14b6 + 233619868944a15b6

+21090682613a16b6 − 948292268763887952199680b7 + 2878977486669978884112384ab7

−1388623739871132154593280a2b7 + 2001463868682331965947904a3b7

−148592519721237065650176a4b7 + 211310139502169635479552a5b7

−2076771952214159456256a6b7 + 6122732220440579487744a7b7 + 27977292448047278336a8b7

+61005969350151654400a9b7 + 407431732173193728a10b7 + 226372726335788032a11b7

+1172083017545440a12b7 + 302753027024448a13b7 + 804690659696a14b7 + 114955808528a15b7

+126888416217818346291200b8 − 246395819137011656949760ab8 + 417983263466651432951808a2b8

−82549079270288939669504a3b8 + 96422465406931486231552a4b8 − 3863850704068409939456a5b8

+4854709750936670200576a6b8 − 27977292448047278336a7b8 + 75475860748467415808a8b8

+203003760763909248a9b8 + 411923003650933632a10b8 + 1503961148566448a11b8

+783779913404488a12b8 + 1715884494940a13b8 + 416714805914a14b8 − 13393761871844011671552b9

+38995817187683205431296ab9 − 20622266111066467088384a2b9 + 25068498657478566850560a3b9

−2435194656785214218752a4b9 + 2402371732497292514816a5b9 − 54343144439122995456a6b9

+61005969350151654400a7b9 − 203003760763909248a8b9 + 502213805637882624a9b9

+730579753229040a10b9 + 1377434664214752a11b9 + 2113247220084a12b9 + 1029530696964a13b9

+1130574271590544777216b10 − 2221801102545787496448ab10 + 3449288077905817511936a2b10

−756575731380797565952a3b10 + 724681220181884469504a4b10 − 37522170157907452160a5b10

+32045210028718222336a6b10 − 407431732173193728a7b10 + 411923003650933632a8b10

−730579753229040a9b10 + 1660408530066000a10b10 + 1006308200040a11b10 + 1761039350070a12b10

−77005895857888757760b11 + 216261270555291906048ab11 − 117885481520131060736a2b11

+127312149370480149504a3b11 − 13568253239845953792a4b11 + 10756989213658907648a5b11
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−301251744439213568a6b11 + 226372726335788032a7b11 − 1503961148566448a8b11

+1377434664214752a9b11 − 1006308200040a10b11 + 2104098963720a11b11

+4254539623864857600b12 − 8291822969736024576ab12 + 11998017793499063040a2b12

−2683483632086070528a3b12 + 2236391710105439744a4b12 − 121744987768371968a5b12

+82291504751968512a6b12 − 1172083017545440a7b12 + 783779913404488a8b12

−2113247220084a9b12 + 1761039350070a10b12 − 191027711898895872b13

+517746324868286976ab13 − 277636257039660288a2b13 + 273162140985789440a3b13

−28469082137658624a4b13 + 19331973916462592a5b13 − 515206630456672a6b13

+302753027024448a7b13 − 1715884494940a8b13 + 1029530696964a9b13 + 6960284638689536b14

−13186658427534592ab14 + 17919113392649216a2b14 − 3785489362783744a3b14

+2826281258958080a4b14 − 136278256884000a5b14 + 77925205174432a6b14 − 804690659696a7b14

+416714805914a8b14 − 204763953757440b15 + 533571656983552ab15 − 267151285637632a2b15

+242209382992896a3b15 − 21619108507040a4b15 + 12978881608000a5b15 − 233619868944a6b15

+114955808528a7b15 + 4818538806400b16 − 8636653092672ab16 + 11020924611136a2b16

−1973241008024a3b16 + 1337751868596a4b16 − 42181365226a5b16 + 21090682613a6b16

−89349365952b17 + 221751421056ab17 − 95167656760a2b17 + 79630140304a3b17 − 4608048302a4b17

+2481256778a5b17 + 1275548736b18 − 2057016456ab18 + 2443673144a2b18 − 287404260a3b18

+177232627a4b18 − 13518120b19 + 31308816ab19 − 9231068a2b19 + 7059052a3b19 + 100100b20

−125818ab20 + 135751a2b20 − 462b21 + 946ab21 + b22
)}]

(8)

3 Derivation of the Main Formula

Putting c = a+b+46
2 and z = 1

2 in equation (2), we get

(a − b) 2F1

[
a, b ;
a+b+46

2 ;
1
2

]
= a 2F1

[
a + 1, b ;
a+b+46

2 ;
1
2

]
− b 2F1

[
a, b + 1 ;
a+b+46

2 ;
1
2

]

Now involving the derived formula [Salahuddin et. al. p.12-41(8)], the summation formula is obtained.

References

[1] Andrews, L.C.(1992) ; Special Function of Mathematics for Engineers,second Edition, McGraw-Hill Co Inc.,
New York.

[2] Arora, Asish, Singh, Rahul , Salahuddin. ; Development of a family of summation formulae of half argu-
ment using Gauss and Bailey theorems , Journal of Rajasthan Academy of Physical Sciences., 7(2008), 335-342.

[3] Bells, Richard. Wong, Roderick; Special Functions, A Graduate Text,Cambridge Studies in Advanced Math-
ematics, 2010.

[4] Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions.
Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publish-
ers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.

[5] Rainville, E. D.; The contiguous function relations for pFq with applications to Bateman’s Ju,v
n and Rice’s

Hn (ζ, p, ν), Bull. Amer. Math. Soc., 51(1945), 714-723.



142 M.P. Chaudhary et al. /Computation of a Summation...

[6] Salahuddin ,Chaudhary, M. P.,Kumar,Vinesh ; A summation formula of half argument collocated with
contiguous relation , Global Journal of Science Frontier Research, 1(2012),11-41.

Received: October 12, 2014; Accepted: December 16, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/



Malaya J. Mat. 3(2)(2015) 143–152

General energy decay for nonlinear wave equation of φ−Laplacian type

with a delay term in the internal feedback

Khaled ZENNIR∗

Laboratory of LAMAHIS, Department of Mathematics, Faculty of Sciences, University 20 Août 1955 of Skikda, ALGERIA.

Abstract

Under conditions on the delay term, using the multiplier method and general weighted integral inequali-
ties, we study the question of asymptotic behavior of solutions for a nonlinear wave equation with φ−Laplacian
operator and a delay term in the internal feedback.
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1 Introduction

It is well known that the φ−Laplacian operator degenerates equations in divergence form. It has been
much studied during the last years and their results is by now rather developed, especially with delay. In
the classical theory of the wave equations several main parts of mathematics are joined in a fruitful way, it is
very remarkable that the φ−Laplace wave equation occupies a similar position, when it comes to nonlinear
problems. In recent years, the PDEs with time delay effects have become an active area of research and arise
in many applied problems.

In this paper we investigate the decay properties of solutions for the initial boundary value problem of a
nonlinear wave equation

(
|u′|l−2u′

)′
− ∆φu + µ1g(u′(x, t)) + µ2g(u′(x, t− τ)) = 0 in Ω×]0, +∞[,

u(x, t) = 0 on Γ×]0, +∞[,
u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,
u′(x, t− τ) = f0(x, t− τ) in Ω×]0, τ(0)[,

(1.1)

where Ω is a bounded domain in Rn, n ∈ N∗, with a smooth boundary ∂Ω = Γ, τ > 0 is a time delay, µ1
and µ2 are positive real numbers and the initial data (u0, u1, f0) belong to a suitable space. The operator ∆φ is
defined by

∆φ =
n

∑
i=1

∂xi (φ(|∂xi |
2)∂xi ). (1.2)

For φ ∼ 1, when g is linear, it is well known that if µ2 = 0, that is, in the absence of a delay, the energy of
problem (1.1) exponentially decays to zero (see for instance [5, 6, 12, 18]). On the contrary, if µ1 = 0, that is,
there exists only the delay part in the interior, the system (1.1) becomes unstable (see for instance [8]). In [8],
the authors showed that a small delay in a boundary control can turn such a well-behaved hyperbolic system
into a wild one and therefore, delay becomes a source of instability. To stabilize a hyperbolic system involving
input delay terms, additional control terms will be necessary (see [19, 20, 21]). In [19] the authors examined

∗Corresponding author.
E-mail address: khaledzennir2@yahoo.com
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the problem (P) with φ ∼ 1 and determined suitable relations between µ1 and µ2, for which stability or,
alternatively, instability takes place. More precisely, they showed that the energy is exponentially stable if
µ2 < µ1 and they found a sequence of delays for which the corresponding solution will be unstable if µ2 ≥ µ1.
The main approach used in [19], is an observability inequality obtained by means of a Carleman estimate. The
same results were shown if both the damping and the delay act in the boundary domain. We also recall the
result by Xu, Yung and Li in [21], where the authors proved the same result as in [19] for the one-dimension
space by adopting the spectral analysis approach.

When g is nonlinear and in the case µ2 = 0, φ ∼ 1, the problem of existence and energy decay have been
previously studied by several authors (see [1, 3, 11, 12, 13]) and many energy estimates have been derived
for arbitrary growing feedbacks (polynomial, exponential or logarithmic decay). The decay rate of a global
solution depends on the growth near zero of g(s) as it was proved in [11, 12, 13, 17].

In this article, we use some technique from [3] to give energy decay estimates of solutions to the problem
(1.1) for a nonlinear damping and a delay term in the φ−Laplace type. We use the multiplier method and
some properties of convex functions. These arguments of convexity were introduced and developed in [4, 7,
13, 14, 15], and used by Liu and Zuazua [16], Eller et al. [9] and Alabau-Boussouira [1].

2 Preliminaries and Notations

We omit the space variable x of u(x, t), u′(x, t) and for simplicity reason denote u(x, t) = u and u′(x, t) = u′,
when no confusion arises. The constants c used throughout this paper are positive generic constants which
may be different in various occurrences also the functions considered are all real valued, here u′ = du(t)/dt
and u′′ = d2u(t)/dt2. We use familiar function spaces Wm,Φ

0 , where the function Φ : R+ → R+ si colled an
N-function, in the sense of Definition 2.1 given in [3, pp 6-8].

We use the following hypotheses:
(hyp1) g : R → R is an odd non-decreasing function of the class C0(R) such that there exist ε1 (sufficiently
small), c1, c2, c3, α1, α2 > 0 and a convex and increasing function H : R+ → R+ of the class C1(R+)∩C2(]0, ∞[)
satisfying H(0) = 0, and H linear on [0, ε1] or (H′ > 0 and H′ = 0 on ]0, ε1]), such that

c1|s|l−1 ≤ |g(s)| ≤ c2|s|p if |s| ≥ ε1, (2.3)

|s|l + |g|(p+1)/p(s) ≤ H−1(sg(s)) if |s| ≤ ε1, (2.4)

with p satisfying

l − 1 ≤ p ≤ n + 2
n− 2

, if n > 2

l − 1 ≤ p < ∞, if n ≤ 2

|g′(s)| ≤ c3, (2.5)

α1 sg(s) ≤ G(s) ≤ α2 sg(s), (2.6)

where

G(s) =
∫ s

0
g(r) dr

(hyp2) φ : R+ → R+ is of class C1(]0, +∞[) ∩ C(]0, +∞[) satisfying φ(s) > 0 on ]0, +∞[ and φ is non decreas-
ing.
(hyp3)

α2µ2 < α1µ1. (2.7)

We first state some lemmas which will be needed later.

Lemma 2.1 (Sobolev–Poincaré’s inequality). Let q be a number with 2 ≤ q < +∞ (n = 1, 2, ..., p) or 2 ≤ q ≤
pn/(n− p) (n ≥ p + 1). Then there is a constant c∗ = c∗(Ω, q, p) such that

‖u‖q ≤ c∗‖∇u‖p for u ∈ W1,p
0 (Ω).

The case p = q = 2 gives the known Poincare’s inequality.
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Lemma 2.2 ([9, 10]). Let E : R+ → R+ be a non-increasing differentiable function and Ψ : R+ → R+ a convex and
increasing function such that Ψ(0) = 0. Assume that∫ T

s
Ψ(E(t)) dt ≤ E(s) ∀0 ≤ s ≤ T.

Then E satisfies the following estimate:

E(t) ≤ ψ−1 (h(t) + ψ(E(0))) ∀t ≥ 0, (2.8)

where ψ(t) =
∫ 1

t
1

Ψ(s) ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)
Ψ(E(0)) , and

h−1(t) = t +
ψ−1 (t + ψ(E(0)))

Ψ
(
ψ−1 (t + ψ(E(0)))

) ∀t ≥ E(0)
Ψ(E(0))

.

We introduce as in [19] the new variable

z(x, ρ, t) = ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (2.9)

Then we have
τz′(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0, +∞). (2.10)

Therefore problem (1.1) is equivalent to:

(
|u′|l−2u′

)′
− ∆φu(x, t) + µ1g(u′(x, t)) + µ2g(z(x, 1, t)) = 0 in Ω×]0, +∞[,

τz′(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω×]0, 1[×]0, +∞[,
u(x, t) = 0 on ∂Ω× [0, +∞[,
z(x, 0, t) = u′(x, t) on Ω× [0, +∞[,
u(x, 0) = u0(x) u′(x, 0) = u1(x) in Ω
z(x, ρ, 0) = f0(x,−ρτ) in Ω×]0, 1[.

(2.11)

Let ξ be a positive constant such that

τ
µ2(1− α1)

α1
< ξ < τ

µ1 − α2µ2

α2
. (2.12)

The energy of u at time t of the problem (2.11) is defined by

E(t) =
l − 1

l
‖u′(t)‖l

l +
∫

Ω

n

∑
i=1

φ̃(|∂xi u|
2)dx + ξ

∫
Ω

∫ 1

0
G(z(x, ρ, t)) dρ dx. (2.13)

where φ̃(s) = 1
2
∫ s

0 φ(t)dt. We give an explicit formula for the derivative of the energy.

Lemma 2.3. Let (u, z) be a solution of the problem (2.11). Then, the energy functional defined by (2.13) satisfies

E′(t) ≤ −
(

µ1 −
ξα2

τ
− µ2α2

)∫
Ω

u′g(u′) dx

−
(

ξ

τ
α1 − µ2(1− α1)

)∫
Ω

z(x, 1, t)g(z(x, 1, t)) dx

≤ 0. (2.14)

Proof. Multiplying the first equation in (2.11) by u′, integrating over Ω, we get

0 =
d
dt

(
(l − 1)

l
‖u′‖l

l +
∫

Ω

n

∑
i=1

φ̃(|∂xi u|
2)

)
dx

+ µ1

∫
Ω

u′g(u′) dx + µ2

∫
Ω

u′g(z(x, 1, t))dx. (2.15)
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We multiply the second equation in (2.11) by ξg(z) and integrate the result over Ω× (0, 1) to obtain

ξ

∫
Ω

∫ 1

0
z′g(z(x, ρ, t)) dρ dx = − ξ

τ

∫
Ω

∫ 1

0

∂

∂ρ
G(z(x, ρ, t)) dρ dx

= − ξ

τ

∫
Ω

(G(z(x, 1, t))− G(z(x, 0, t))) dx. (2.16)

Then

ξ
d
dt

∫
Ω

∫ 1

0
G(z(x, ρ, t)) dρ dx = − ξ

τ

∫
Ω

G(z(x, 1, t)) dx +
ξ

τ

∫
Ω

G(u′) dx. (2.17)

From (2.15), (2.17) and using the Young inequality we get

E′(t) = −
(

µ1 −
ξα2

τ

)∫
Ω

u′g(u′) dx

− ξ

τ

∫
Ω

G(z(x, 1, t)) dx − µ2

∫
Ω

u′(t)g(z(x, 1, t)) dx. (2.18)

Let us denote G∗ to be the conjugate function of the convex function G, i.e., G∗(s) = supt∈R+ (st − G(t)).
Then G∗ is the Legendre transform of G which is given by (see [2], [4], [7], [14], [15], [17])

G∗(s) = s(G′)−1(s)− G[(G′)−1(s)] ∀s ≥ 0, (2.19)

and satisfies the following inequality

st ≤ G∗(s) + G(t) ∀s, t ≥ 0. (2.20)

Then by the definition of G we get
G∗(s) = sg−1(s)− G(g−1(s)).

Hence

G∗(g(z(x, 1, t))) = z(x, 1, t)g(z(x, 1, t))− G(z(x, 1, t))

≤ (1− α1)z(x, 1, t)g(z(x, 1, t)). (2.21)

Making use of (2.18), (2.20) and (2.21), we have

E′(t) ≤ −
(

µ1 −
ξα2

τ

)∫
Ω

u′g(u′) dx − ξ

τ

∫
Ω

G(z(x, 1, t)) dx

+ µ2

∫
Ω

(
G(u′) + G∗(g(z(x, 1, t)))

)
dx

≤ −
(

µ1 −
ξα2

τ
− µ2α2

)∫
Ω

u′g(u′) dx − ξ

τ

∫
Ω

G(z(x, 1, t)) dx

+ µ2

∫
Ω

G∗(g(z(x, 1, t))) dx. (2.22)

Using (2.6) and (2.12), we obtain

E′(t) ≤ −
(

µ1 −
ξα2

τ
− µ2α2

)∫
Ω

u′g(u′) dx

−
(

ξ

τ
α1 − µ2(1− α1)

)∫
Ω

z(x, 1, t)g(z(x, 1, t)) dx

≤ 0.

3 Main result

Our main result reads as.
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Theorem 3.1. Let (u0, u1, f0) ∈ W2,Φ ∩ W1,Φ
0 × W1,l

0 (Ω) × W1,l
0 (Ω; W1,l(0, 1)) and assume that the hypotheses

(hyp1)–(hyp3) hold. Then, for some constants ω, ε0 we have

E(t) ≤ ψ−1 (h(t) + ψ(E(0))) ∀t > 0, (3.23)

where ψ(t) =
∫ 1

t
1

ωϕ(τ) dτ for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)
ωϕ(E(0)) ,

h−1(t) = t +
ψ−1 (t + ψ(E(0)))

ωϕ
(
ψ−1 (t + ψ(E(0)))

) ∀t > 0,

ϕ(s) = {s if H is linear on [0, ε1], sH′(ε0s) if H′(0) = 0 and H′′ > 0 on ]0, ε1].}

Proof. Multiplying the first equation of (2.11) by ϕ(E)
E u, we obtain for all 0 ≤ S ≤ T,

0 =
∫ T

S

ϕ(E)
E

∫
Ω

u
((

|u′|l−2u′
)′
− ∆φu + µ1g(u′(x, t)) + µ2g(z(x, 1, t))

)
dx dt

=
[

ϕ(E)
E

∫
Ω

u|u′|l−2u′dx
]T

S
−
∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

u|u′|l−2u′dxdt

−
∫ T

S

ϕ(E)
E

∫
Ω

u′ldxdt +
∫ T

S

ϕ(E)
E

∫
Ω

(
n

∑
i=1

φ(|∂xi u|
2)|∂xi u|

2dxdt

+ µ1

∫ T

S

ϕ(E)
E

∫
Ω

ug(u′) dx dt + µ2

∫ T

S

ϕ(E)
E

∫
Ω

ug(z(x, 1, t)) dxdt

Similarly, we multiply the second equation of (2.11) by ϕ(E)
E e−2τρg(z(x, ρ, t)), we have

0 =
∫ T

S

ϕ(E)
E

∫
Ω

∫ 1

0
e−2τρg(z)(τz′ + zρ) dxdρdt

=

[
ϕ(E)

E

∫
Ω

∫ 1

0
τe−2τρG(z) dxdρ

]T

S

− τ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

∫ 1

0
e−2τρG(z) dxdρdt

+
∫ T

S

ϕ(E)
E

∫
Ω

∫ 1

0

(
∂

∂ρ
(e−2τρG(z)) + 2τe−2τρG(z)

)
dxdρdt

=

[
ϕ(E)

E

∫
Ω

∫ 1

0
τe−2τρG(z) dxdρ

]T

S

− τ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

∫ 1

0
e−2τρG(z) dxdρdt

+
∫ T

S

ϕ(E)
E

∫
Ω

(e−2τG(z(x, 1, t))− G(z(x, 0, t))) dxdt

+ 2τ

∫ T

S

ϕ(E)
E

∫ 1

0

∫
Ω

e−2τρG(z) dxdρdt.

We have by (hyp2), sφ(s) ≥ 2φ̃(s), (note that φ̃ is convex and defines a bijection from R+ to R+), summing to
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obtain, for A = 2 min{1, τe−2τ/2ξ}

A
∫ T

S
ϕ(E) dt ≤ −

[
ϕ(E)

E

∫
Ω

u|u′|l−2u′dx
]T

S
+
∫ T

S
(

ϕ(E)
E

)′
∫

Ω
u|u′|l−2u′dxdt

+
3l − 2

l

∫ T

S

ϕ(E)
E

∫
Ω

u′l dxdt− µ1

∫ T

S

ϕ(E)
E

∫
Ω

ug(u′) dx dt

− µ2

∫ T

S

ϕ(E)
E

∫
Ω

ug(z(x, 1, t)) dxdt−

[
ϕ(E)

E

∫
Ω

∫ 1

0
τe−2τρG(z)dxdρ

]T

S

+ τ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

∫ 1

0
e−2τρG(z)dxdρdt

−
∫ T

S

ϕ(E)
E

∫
Ω

(e−2τG(z(x, 1, t))− G(z(x, 0, t))) dxdt. (3.24)

Using Lemma 2.1, since E is non-increasing, using the Holder, Cauchy–Schwartz, Poincare and Young’s in-
equalities with exponents l

l−1 , l, to get

|
∫

Ω
u|u′|l−2u′dx| ≤ (

∫
Ω
|u|ldx)1/l(

∫
Ω
|u′|ldx)(l−1)/l

≤ c(
∫

Ω
|∇u|2dx)1/2E(l−1)/l(t)

≤ cE(l−1)/l(t)(
n

∑
i=1

φ̃−1(
∫

Ω

n

∑
i=1

φ̃(|∂xi |
2)dx))1/2

≤ cE(l−1)/l(t)(φ̃−1(E(t)))1/2 (3.25)

For l ≥ 2, φ̃−1 is non decreasing and ϕ is convex, increasing and of class C1(]0, +∞[) such that ϕ(0) = 0 (then
s → s(l−1)/l , s → φ̃−1(s) and s → ϕ(s)

s are non decreasing), we deduce that

−
[

ϕ(E)
E

∫
Ω

u|u′|l−2u′dx
]T

S
=

ϕ(E(S))
E(S)

∫
Ω

u(S)|u′(S)|l−2u′(S)dx

− ϕ(E(T))
E(T)

∫
Ω

u(T)|u′(T)|l−2u′(T)dx

≤ Cϕ(E(S)),

∣∣∣∣∣
∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

u|u′|l−2u′ dxdt

∣∣∣∣∣ ≤ c
∫ T

S

∣∣∣∣( ϕ(E)
E

)′∣∣∣∣E dt

≤ cϕ(E(S)),

−

[
ϕ(E)

E

∫
Ω

∫ 1

0
e−2τρG(z) dxdρ

]T

S

=
ϕ(E(S))

E(S)

∫
Ω

∫ 1

0
e−2τρG(z(x, ρ, S)) dxdρ,

− ϕ(E(T))
E(T)

∫
Ω

∫ 1

0
e−2τρG(z(x, ρ, T)) dxdρ

≤ Cϕ(E(S)),

∫ T

S

((
ϕ(E)

E

)′)∫
Ω

∫ 1

0
e−2τρG(z) dxdρdt ≤ c

∫ T

S

(
−
(

ϕ(E)
E

)′)
Edt

≤ cϕ(E(S)),

∫ T

S

ϕ(E)
E

∫
Ω

e−2τG((x, 1, t)) dxdt ≤ c
∫ T

S

ϕ(E)
E

(−E′) dt

≤ cϕ(E(S)),
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∫ T

S

ϕ(E)
E

∫
Ω

G(z(x, 0, t))dxdt =
∫ T

S

ϕ(E)
E

∫
Ω

G(u′(x, t)) dxdt

≤ c
∫ T

S

ϕ(E)
E

(−E′) dt

≤ cϕ(E(S)),

We conclude

A
∫ T

S
ϕ(E)dt ≤ cϕ(E(S)) + µ1

∫ T

S

ϕ(E)
E

∫
Ω
|u||g(u′)| dx dt

+
3l − 2

l

∫ T

S

ϕ(E)
E

∫
Ω

u′ldxdt + µ2

∫ T

S

ϕ(E)
E

∫
Ω
|u||g(z(x, 1, t))| dxdt. (3.26)

In order to apply the results of Lemma 2.2, we estimate the terms of the right-hand side of (3.26) .
We distinguish two cases.

1. H is linear on [0, ε1]. We have c1|s|l−1 ≤ |g(s)| ≤ c2|s|p for all s ∈ R, and then, using (2.6) and noting that
s 7→ ϕ(E(s))

E(s) is non-increasing,

3l − 2
l

∫ T

S

ϕ(E)
E

∫
Ω
|u′|ldxdt ≤ c

∫ T

S

ϕ(E)
E

∫
Ω

u′g(u′)dxdt ≤ cϕ(E(S)),

Using the Poincaré, Young inequalities and the energy inequality from Lemma 2.3, we obtain, for all ε > 0,∫ T

S

ϕ(E)
E

∫
Ω
|ug(u′)|dxdt ≤ ε

∫ T

S

ϕ(E)
E

∫
Ω

up+1dxdt + cε

∫ T

S

ϕ(E)
E

∫
Ω

g1+ 1
p (u′)dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε

∫ T

S

ϕ(E)
E

∫
Ω

u′g(u′)dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε ϕ(E(S)),

∫ T

S

ϕ(E)
E

∫
Ω
|ug(z(x, 1, t))|dxdt ≤ ε

∫ T

S

ϕ(E)
E

∫
Ω

up+1dxdt + cε

∫ T

S

ϕ(E)
E

∫
Ω

g1+ 1
p (z(x, 1, t))dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε

∫ T

S

ϕ(E)
E

∫
Ω

z(x, 1, t)g(z(x, 1, t))dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε ϕ(E(S)).

Inserting these two inequalities into (3.26), choosing ε > 0 small enough, we deduce that∫ T

S
ϕ(E(t))dt ≤ cϕ(E(S)).

Using Lemma 2.2 for E in the particular case where ϕ(s) = s, we deduce from (2.8) that

E(t) ≤ ce−ωt.

2. H′(0) = 0 and H′′ > 0 on ]0, ε1]. For all t ≥ 0, we consider the following partition of Ω

Ω1
t = {x ∈ Ω : |u′| ≥ ε1}, Ω2

t = {x ∈ Ω : |u′| ≤ ε1},

Ω̃1
t = {x ∈ Ω : |z(x, 1, t)| ≥ ε1}, Ω̃2

t = {x ∈ Ω : |z(x, 1, t)| ≤ ε1}.

Using (2.3), (2.6) and the fact that s 7→ ϕ(s)
s is non-decreasing, we obtain

c
∫ T

S

ϕ(E)
E

∫
Ω1

t

(|u′|l + g(p+1)/p(u′))dxdt ≤ c
∫ T

S

ϕ(E)
E

∫
Ω

u′g(u′)dxdt ≤ cϕ(E(S)).
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On the other hand, since H is convex and increasing, H−1 is concave and increasing. Therefore (2.4) and the
reversed Jensen’s inequality for a concave function imply that∫ T

S

ϕ(E)
E

∫
Ω2

t

(|u′|l + g(p+1)/p(u′)) dxdt ≤
∫ T

S

ϕ(E)
E

∫
Ω2

t

H−1(u′g(u′)) dxdt

≤
∫ T

S

ϕ(E)
E

|Ω|H−1
( 1
|Ω|

∫
Ω

u′g(u′)dx
)

dt. (3.27)

Let us assume H∗ to be the conjugate function of the convex function H, i.e., H∗(s) = supt∈R+ (st− H(t)).
Then H∗ is the Legendre transform of H, which is given by (see Arnold [2, pp. 61–64] and [4, 7, 14, 15])

H∗(s) = s(H′)−1(s)− H[(H′)−1(s)] ∀s ≥ 0 (3.28)

and satisfies the following inequality

st ≤ H∗(s) + H(t) ∀s, t ≥ 0. (3.29)

Due to our choice ϕ(s) = sH′(ε0s), we have

H∗
(

ϕ(s)
s

)
= ε0sH′(ε0s)− H(ε0s) ≤ ε0 ϕ(s). (3.30)

Making use of (3.27), (3.29) and (3.30), we have∫ T

S

ϕ(E)
E

∫
Ω2

t

(|u′|l + g(p+1)/p(u′)) dxdt ≤ c
∫ T

S
H∗
(

ϕ(E)
E

)
dt + c

∫ T

S

∫
Ω

u′g(u′)dt

≤ ε0

∫ T

S
ϕ(E)dt + cE(S),

∫ T

S

ϕ(E)
E

∫
Ω̃2

t

g(p+1)/p(z(x, 1, t)) dxdt ≤
∫ T

S

ϕ(E)
E

∫
Ω̃2

t

H−1(z(x, 1, t)g(z(x, 1, t))) dxdt

≤
∫ T

S

ϕ(E)
E

|Ω|H−1
( 1
|Ω|

∫
Ω

z(x, 1, t)g(z(x, 1, t))dx
)

dt

≤ c
∫ T

S
H∗
(

ϕ(E)
E

)
dt + c

∫ T

S

∫
Ω

z(x, 1, t)g(z(x, 1, t))dt

≤ ε0

∫ T

S
ϕ(E)dt + cE(S). (3.31)

Then, choosing ε0 > 0 small enough and using (3.26), we obtain in both cases∫ +∞

S
ϕ(E(t))dt ≤ c

(
E(S) + ϕ(E(S))

)
≤ c

(
1 +

ϕ(E(S)
E(S)

)
E(S)

≤ cE(S) ∀S ≥ 0. (3.32)

Using Lemma 2.2 in the particular case where Ψ(s) = ωϕ(s), we deduce from (2.8) our estimate (3.23). The
proof of Theorem 3.1 is now complete.

Acknowledgments

The author would like to thank the referee for his/her careful reading of the proofs.



Kh. ZENNIR. / Nonlinear wave equation of φ−Laplacian type with a delay term. 151

References

[1] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear
dissipative hyperbolic systems, Appl. Math. Optim. 51:1 (2005), 61–105.

[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Translated from the Russian by K. Vogtmann
and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.

[3] A. Benaissa and A. Guesmia, Energy decay for wave equations of φ-Laplacian type with weakly nonlin-
ear dissipation, Electron. J. Differential Equations 2008, No. 109, 22.

[4] M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave
equation with nonlinear boundary damping – source interaction, J. Differential Equations 236:2 (2007),
407–459.

[5] G. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control Optim.
17:1 (1979), 66–81.

[6] G. Chen, Control and stabilization for the wave equation in a bounded domain. II, SIAM J. Control Optim.
19:1 (1981), 114–122.

[7] M. Daoulatli, I. Lasiecka, and D. Toundykov, Uniform energy decay for a wave equation with partially
supported nonlinear boundary dissipation without growth restrictions, Discrete Contin. Dyn. Syst. Ser. S
2:1 (2009), .67–94.

[8] R. Datko, J. Lagnese, and M. P. Polis, An example on the effect of time delays in boundary feedback
stabilization of wave equations, SIAM J. Control Optim. 24:1 (1986), 152–156.

[9] M. Eller, J. E. Lagnese, and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear
boundary damping, Comput. Appl. Math. 21:1 (2002), 135–165.
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Abstract

In this paper, mixed dominating set, mixed domination number , mixed strong domination number and
mixed weak domination number of an M-strong fuzzy graph G = (σ, µ) are defined. Also these numbers
are determined for various standard fuzzy graphs. The relationship between these numbers and other well
known numbers are derived.

Keywords: Fuzzy graph, M-strong fuzzy graph, mixed domination number, mixed strong domination number,
mixed weak domination number.
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1 Introduction

Zadeh [13] introduced the concept of Fuzzy sets in the year 1965. In 1975, Fuzzy graph was introduced
by Rosenfeld [7]. Rosenfeld has obtained the fuzzy analogues of several basic graph-theoretic concepts like
bridges, paths, cycles, trees, connectedness and established some of their properties. Fuzzy trees were char-
acterized by Sunitha and Vijayakumar [11]. They have obtained a characterization for blocks in fuzzy graphs
using the concept of strongest paths [12]. Bhutani and Rosenfeld have introduced the concepts of strong
arcs , fuzzy end nodes and geodesics in fuzzy graphs [2]. Mordeson and Peng [6] introduced strong fuzzy
graph using effective edges. Bhutani and Battou [1] consider the strong fuzzy graph of Mordeson and Peng
as M-strong fuzzy graph.

The concept of domination in fuzzy graphs was defined by Somasundaram and Somasundaram [9]. The
vertex neighbourhood number and edge neighbourhood number of an M-strong fuzzy graphs are introduced
by S. Ismail Mohideen and A. Mohamed Ismayil [3, 4].

Mixed domination in crisp graph was introduced by E. Sampathkumar and S.S. Kamath [8]. In this paper,
Mixed dominating set and mixed domination number in an M-strong fuzzy graph are defined. Mixed strong
domination number and mixed weak domination number in an M-strong fuzzy graph are also defined. The-
orems related to these mixed dominating sets and mixed domination numbers are stated and proved. The
relation between these numbers and other well known parameters are derived.

2 Preliminaries

Definition 2.1. Let V be a finite non empty set and E be the collection of two element subsets of V. A fuzzy graph
G = (σ, µ) is a set with two functions σ : V → [0, 1] and µ : E → [0, 1] such that µ(u, v) ≤ σ(u) ∧ σ(v)for all
u, v ∈ V.

Definition 2.2. Let G = (σ, µ) be a fuzzy graph defined on V and S ⊆ V. Then the scalar cardinality of S is defined
by ∑u∈S σ(u). The order (denoted by p) and size (denoted by q) of a fuzzy graph G = (σ, µ) are the scalar cardinality
of σ and µ respectively.

∗Corresponding author.
E-mail address: amismayil1973@yahoo.co.in (A. Mohamed Ismayil), simohideen@yahoo.co.in(S. Ismail Mohideen).
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Definition 2.3. A fuzzy graph G1 = (σ1, µ1) is called the fuzzy sub graph induced by V1 if σ1(u) ≤ σ(u) for all
u ∈ V1 and µ1(u, v) ≤ σ1(u) ∧ σ1(v) ∧ µ(u, v) for all u, v ∈ V1 and is denoted by 〈V1〉. A fuzzy graph G1 = (σ1, µ1)
is called the full fuzzy sub graph induced by V1 if σ1(u) = σ(u) for all u ∈ V1 and µ1(u, v) = µ(u, v) for all u, v ∈ V1
and is denoted by 〈〈V1〉〉.

Definition 2.4. An edge e = (u, v) of a fuzzy graph is called an effective edge if µ(u, v) = σ(u) ∧ σ(v). If e = (u, v)
is an effective edge, then u and v are adjacent vertices and e is incident with u and v. A fuzzy graph G = (σ, µ) is said
to be M-strong fuzzy graph [1] if µ(u, v) = σ(u) ∧ σ(v) for all (u, v) ∈ E. That is, In an M-strong fuzzy graph every
edge is an effective edge.

Definition 2.5. A fuzzy graph G = (σ, µ) is said to be complete fuzzy graph if µ(u, v) = σ(u) ∧ σ(v) for all
u, v ∈ V. That is, In a complete fuzzy graph every pair of verices should have an effective edge.

Definition 2.6. Let u, v ∈ V and e = (u, v) ∈ E then N(u) = {v ∈ V : µ(u, v) = σ(u) ∧ σ(v)} is called open
neighbourhood of u and N[u] = N(u) ∪ {u} is called closed neighbourhood of u. N[e] = N(u) ∪ N(v) is called
closed neighbourhood of e. If N(u) = φ then u is said to be isolated vertex.

Definition 2.7. The neighbourhood degree of a vertex u is defined to be the sum of the weights of the vertices
adjacent to u and is denoted by dN(u), the minimum neighbourhood degree is δN(u) = min{dN(u) : u ∈ V} and
the maximum neighbourhood degree is ∆N(G) = max{dN(u) : u ∈ V}.

Definition 2.8. A fuzzy graph G = (σ, µ) is said to be bipartite if the vertex set V can be partitioned into two sets V1
defined on σ1 and V2 defined on σ2 such that µ(v1, v2) = 0 if (v1, v2) ∈ V1 ×V1 or (v1, v2) ∈ V2XV2.

Definition 2.9. A bipatite fuzzy graph G = (σ, µ) is said to be complete bipartite if µ(u, v) = σ(u) ∧ σ(v) for all
u ∈ V1 defined on σ1 and v ∈ V2 defined on σ2 and is denoted by Kσ1,σ2 .

Definition 2.10. A path in a fuzzy graph G is a sequence of distinct vertices u0, u1, u2, . . . , un such that µ(ui−1, ui) =
σ(ui−1) ∧ σ(ui), 1 ≤ i ≤ n, n > 0 is called the length of the path. The path in a fuzzy graph is called a fuzzy cycle if
u0 = un, n ≥ 3.

Definition 2.11. A fuzzy graph is said to be cyclic if it contains at least one cycle, otherwise it is called acyclic.

Definition 2.12. A fuzzy graph is said to be connected if there exists at least one path between every pair of vertices.

Definition 2.13. A connected acyclic fuzzy graph is said to be a tree.

Definition 2.14. A vertex in a fuzzy graph having only one neighbour is called a pendent vertex. Otherwise it is
called non-pendent vertex.

Definition 2.15. An edge in a fuzzy graph incident with a pendent vertex is called a pendent edge. Otherwise it is
called non-pendent edge.

Definition 2.16. A vertex in a fuzzy graph adjacent to the pendent vertices is called a support of the pendent edges.

Definition 2.17. [10] A vertex covering of fuzzy graph G is a subset K of V such that every effective edge of G has
at least one end in K. The minimum scalar cardinality of vertices in K is called a vertex covering number of G and
is denoted by α0. α0-set is a vertex cover with minimum scalar cardinality. Similarly edge cover number(α1), vertex
independence number(β0) and edge independence number (β1) can be defined.

Theorem 2.1. [10] For any fuzzy graph G, α0 + β0 = p.

Definition 2.18. Let G = (σ, µ) be a fuzzy graph and let u, v ∈ V. If µ(u, v) = σ(u) ∧ σ(v) then u dominates v (or
v is dominated by u) in G. A subset D of V is called a dominating set in G if for every v /∈ D there exist u ∈ D such
that u dominates v. The minimum scalar cardinality taken over all dominating set is called domination number and
is denoted by the symbol γ.

Definition 2.19. A set S ⊆ V in an M-strong fuzzy graph G(σ, µ) is a vertex neighbourhood set of G if G =
∪u∈S 〈〈N[u]〉〉 , where 〈〈N[u]〉〉 is the full fuzzy sub graph of G induced by N[u] and is denoted by n-set. The minimum
scalar cardinality taken over all n-set of G is called vertex neighbourhood number and is denoted by n0.

Theorem 2.2. [3] For any M-strong fuzzy graph G without isolated vertices. Then
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1. γ(G) ≤ n0(G) ≤ α0(G)

2. n0(G) ≤ α1(G)

Corollary 2.1. [3] If G is a M-strong fuzzy graph without isolated vertices and having no triangles, then n0(G) =
α0(G).

Definition 2.20. Let e = (u, v) be an edge in an M-strong fuzzy graph G(σ, µ). A set M ⊆ E in G is an edge
neighbourhood set of G if G = ∪u∈S 〈〈N[e]〉〉 , where 〈〈N[e]〉〉 is a full induced fuzzy sub graph of G and is denoted
by en-set. The minimum scalar cardinality taken over all en-set of G is called edge neighbourhood number and is
denoted by n0.

Theorem 2.3. [4] For any M-strong fuzzy graph G

1. γ−m ≤ n1 ≤ n0 , where m is the number of edges in minimum en-set.

2. n1 ≤ γ1 ≤ min(α0, α1, β1).

3. n1 ≤ β0.

4. n1 ≤ p/2, where p is the order of G.

3 Mixed Domination in an M-strong fuzzy graph

Definition 3.21. Let G = (σ, µ) be an M−strong fuzzy graph defined on V. A vertex v ∈ V dominates an edge e ∈ E
if e ∈ 〈〈N[v]〉〉 Where 〈〈N[v]〉〉 is a full induced fuzzy sub graph of G. An edge e = (u, v) ∈ E dominates v ∈ V if
v ∈ N[e], where N[e] = N(u) ∪ N(v).

Note 1. If v dominates e, then e dominates v but the converse is not true.

Example 3.1. In the fuzzy graph given in Figure 1, Here e1 dominates v3 but v3 does not dominate e1 .

v1(0.5) e1(0.2) v2(0.2) e2(0.2) v3(0.4)

Figure 1:

Now, using this concept the vertex-edge dominating set , edge-vertex dominating set and mixed dominat-
ing sets in an M-strong fuzzy graphs are defined.

Definition 3.22. A set S ⊂ V in an M-strong fuzzy graph G is a vertex-edge dominating set (ved − set) if every
edge of G is dominated by a vertex in S. The minimum scalar cardinality taken over all ved-set is called ve-domination
number and is denoted by the symbol γve. A ved-set with minimum scalar cardinality is called γve-set. The Γve is called
the maximum scalar cardinality of a minimal ved-set of G.

Remark 3.1. Every n0 − set in an M-strong fuzzy graph without isolated vertices is an γve − set and converse also
true. That is γve = n0.

Definition 3.23. A set M ⊆ E in an M-strong fuzzy graph G is an edge-vertex dominating set (evd− set) if every
vertex of G is dominated by an edge in M. The scalar cardinality taken over all evd-set is called ev-domination number
and is denoted by the symbol γev. An evd-set with minimum scalar cardinality is called γev-set. The Γev is called the
maximum scalar cardinality of a minimal ved-set of G.

Remark 3.2. Every n1 − set in an M-strong fuzzy graph without isolated vertices is an evd− set but converse not true.
That is γev ≤ n1.

Definition 3.24. A set D ⊆ V ∪ E in an M-strong fuzzy graph G is a mixed dominating set (md-set) if

1. every vertex v /∈ D is dominated by at least an edge e ∈ D and
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2. every edge e /∈ D is dominated by at least one vertex in v ∈ D.

The minimum scalar cardinality taken over all md-set is called mixed domination number and is denoted by the
symbol γm. Γm is called the maximum scalar cardinality of a minimal md-set of G.

Note 2. A ved-set with minimum scalar cardinality is called γve-set, similarly γev-set and γm-set.

Observation 1. Let Kσ be a complete fuzzy graph with more than two vertices defined on V, γve = γev = minu∈Vσ(u)
and γm = 2minu∈Vσ(u).

Observation 2. Let Kσ be a complete fuzzy graph with two vertices defined on V, γve = γev = γm = minu∈Vσ(u).

Observation 3. Let Kσ1,σ2 be a complete bipartite fuzzy graph, σ1 defined on V1 and σ2 defined on V2 respectively and
V = V1 ∪V2. Then γve = min{|σ1| , |σ2|}, γev = minu∈Vσ(u) and γm = γve + γev.

Theorem 3.4. For any M-strong fuzzy graph without isolated vertices G
γev ≤ γve ≤ γm ≤ γev + γve.
proof: The first inequality follows from the fact that an evd-set is obtained by choosing one edge incident at each vertex
v in γve − set. The second inequality follows from the fact that by replacing each of the edges in γm-set by one of its end
vertices with minimum membership grade, we get a ved-set. The last inequality follows from the fact that the union of
ved-set and an evd-set is an md-set.

Note 3. Let α0, α1, β0 and β1 are the vertex cover, edge cover, vertex independent and edge independent numbers of a
fuzzy graph G.

Theorem 3.5. For any M-strong fuzzy graph G without isolated vertices , The following results are true:

1. γve ≤ α0, where α0 is a vertex cover number of G.

2. γev ≤ β0 where β0 is a vertex independent number of G.

3. γm ≤ p, where p is the order of G.

proof: (1)From the remark 3.1, γve = n0 and from the theorem 2.2(1), n0 ≤ α0. Hence γve ≤ α0.
(2)From the remark 3.2, γev = n1 and from the theorem 2.3(3), n1 ≤ β0. Hence γev ≤ β0.
(3) By theorem 3.4, γm ≤ γev + γve ≤ α0 + β0 and theorem 2.1 α0 + β0 = p. Hence γm ≤ p.

Theorem 3.6. If G is an M-strong fuzzy graph without isolated vertices and no triangles. Then

1. γve = α0

2. γev ≤ γ ≤ γve

3. γm ≤ γve + p
2

4. γm ≤ γ + α0.

proof:(1)From the remark 3.1, γve = n0 and from the corrolery 2.1, n0 = α0. Hence α0 = γve.
(2) Every dominating set is an evd-set, because a vertex v in a dominating set dominates only adjacent vertices but
en edge e in γev − set dominates adjacent vertices of both the end vertices of e. Hence γev ≤ γ. Every ved-set is a
dominating set, since G has no triangles. Hence γ ≤ γve.
(3) An edge will definitely dominate at least two vertices in an evd-set, therefore γev ≤ p

2 ⇒ γev ≤ p
2 + γve + γev − γm

by theorem 3.4. Hence γm ≤ γve + p
2 .

(4) From theorem 3.4, γm ≤ γev + γve ≤ γ + α0

Theorem 3.7. For any M-strong fuzzy graph G without isolated vertices, γm ≤ min{p, q}. Where p and q be the order
and size of G respectively.
proof: Let G be an M-strong fuzzy graph without isolated vertices and let p and q be the order and size of G.
The vertex set V = {v1, v2, v3, . . . , vn} is an md− set, since very edge of E is incident with at least two vertices in V.
Hence γm ≤ p−−−−(i).
The edge set E = {e1, e2, e3, . . . , em} is also an md− set, since every vertex of V is incident with at least one edge in E.
Hence γm ≤ q−−−−(ii).
From (i) and (ii) we obtain γm ≤ min{p, q}.
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Theorem 3.8. Let Tσ be a tree in an M-strong fuzzy graph G. If r and s are the scalar cardinality of the pendent vetices
and supports of the pendent edges of Tσ respectively. Then γm(Tσ) ≤ p + s− r− σ0, where σ0 = minu∈Vσ(u).
proof: Let Tσ be a tree in an M-strong fuzzy graph. Given r and s are the scalar cardinalitry of the pendent vertices and
supports of the pendent edges of Tσ respectively.

Let M, N and R be the set of all non-pendent edges, supports of the pendent edges and non-pendent vertices in Tσ

respectively. Then the Union of M and N form an md-set. Therefore γm ≤ |M|+ |N| —–(1)
The set of non-pendent edges of Tσ also form a tree. Therefore |M| ≤ |R| − σ0, where σ0 = minu∈Vσ(u). From (1)
γm(Tσ) ≤ |R| − σ0 + |N| ≤ p− r + s− σ0.

Theorem 3.9. Let G be an M-strong fuzzy graph without isolated vertices and |N(v)| = ∆N , if ei = (v, vi), 1 ≤ i ≤ n,
r = ∑n

i=1 µ(ei) and s = min{µ(ei)}, i = 1 to n. Then γm ≤ p + q− ∆N − r + s.
proof: Let v be a vertex of an M-strong fuzzy graph G and {v1, v2, . . . , vn} open neighbourhood set of v. Let ∆N be
the maximum neighbourhood degree of G. That is |N(v)| = ∆N . If ei = (v, vi), 1 ≤ i ≤ k, r = ∑k

i=1 µ(ei) and
s = min{µ(ei)}, i = 1 to k . Then the set {V − {v1, v2, . . . , vk}} ∪ {E − {e1, e2, . . . , ek}} ∪ {ei} such that ei is the
minimum of µ(ei), ∀i, is an md-set. Therefore γm ≤ p + q− ∆N − r + s.

4 Mixed strong(Weak) Domination in an M-strong fuzzy graph

Definition 4.25. Let v ∈ V and e = (u, v) ∈ E in an M-strong fuzzy graph G. Then

1. v and e strongly dominates each other if e ∈ 〈〈N[v]〉〉 and

2. v and e weakly dominates each other if v ∈ N[e].

Definition 4.26. A set D ⊆ V in an M-strong fuzzy graph G is a vertex-edge strong dominating set of G, if every
edge in G is strongly dominated by at least one vertex in D. It is denoted by vesd− set. The minimum scalar cardinality
taken over all vesd-set is called vertex-edge strong domination number and it is denoted by the symbol γves.
Similarly edge-vertex strong domination number (γevs), vertex-edge weak domination number (γvew) and
edge-vertex weak domination number (γevw) can be defined.

Observation 4. For any M-strong fuzzy graph G without isolated vertices:

1. a vertex v dominates an edge e ⇔ a vertex v strongly dominates an edge e. Therefore γves = γve.

2. an edge e dominates a vertex v ⇔ an edge e weakly dominates a vertex v. Therefore γevw = γev.

3. a vertex v dominates an edge e ⇒ a vertex v weakly dominates an edge e. Therefore γvew ≤ γve.

4. an edge e strongly dominates a vertex v ⇒ an edge e dominates a vertex v. Therefore γev ≤ γevs.

Remark 4.3. For some of the M-strong fuzzy graph G that we considered, there is no relation exist between γvew and
γevw.

Example 4.2. Consider the M-strong fuzzy graphs given in Figures 2 and Figure 3.

v1(0.6)

e2(0.5)

e1(0.2) v3(0.5) e4(0.1) v4(0.1)

e3(0.2)

v2(0.2) 

Figure 2:

From the Figure. 2γvew − set = {v2} ⇒ γvew = 0.2 and
γevw = {e4} ⇒ γevw = 0.1
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v1(0.6) e1(0.2) v2(0.2)

e2(0.1)

v3(0.1) e4(0.1) v5(0.6) e5(0.1) v6(0.1)

e3(0.2)

v4(0.2) 

Figure 3:

Hence γevw ≤ γvew.
From the Figure. 3 γvew − set = {v3} ⇒ γvew = 0.1 and
γevw = {e2, e5} ⇒ γevw = 0.2
Hence γvew ≤ γevw. Therefore there is no relation exist between γvew and γevw.

Remark 4.4. Similarly, for some of the M-strong fuzzy graph G that we considered, there is no relation exist between
γves and γevs.

Example 4.3. Consider the M-strong fuzzy graphs given in Figure 4 and Figure 5.

v1(0.4)

e2(0.1)

e1(0.4) v3(0.1) e4(0.1) v4(0.3)

e3(0.1)

v2(0.6) 

Figure 4:

v1(0.5) e1(0.5) v2(0.8) e2(0.4) v3(0.4) e3(0.3) v4(0.3)

Figure 5:

From the Figure. 4 γves − set = {v3} ⇒ γves = 0.1 and
γevs = {e2, e4} ⇒ γevs = 0.2
Hence γves ≤ γevs.

From the Figure. 5 γves − set = {v1, v3} ⇒ γves = 0.9 and
γevs = {e1, e3} ⇒ γevs = 0.8

Hence γevs ≤ γves. Therefore there is no relation exist between γves and γevs.

Theorem 4.10. For any M-strong fuzzy graph without isolated vertices G,

1. γvew ≤ γves = γve.

2. γev = γevw ≤ γevs.

Proof. (1) From the Observation 4(1) γves = γve and the Observation 4(3)γvew ≤ γve. Hence γvew ≤ γves = γve.
(2) From the Observation 4(2) γevw = γev and the Observation 4(4)γev ≤ γevs. Hence γev = γevw ≤ γevs.

Definition 4.27. A set D ⊆ V ∪ E in an M-strong fuzzy graph G is a mixed strong(weak) dominating set of G, if

1. every vertex v ∈ V not in D is strongly(weakly) dominated by at least one edge in D and
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2. every edge e ∈ E not in D is strongly(weakly) dominated by at least one vertex in D.

The mixed strong(weak) dominating set is denoted by msd-set(mwd-set). The minimum scalar cardinality taken over all
msd-set(mwd-set) is called mixed strong(weak) domination number and it is denoted by the symbol γms(γmw).

Theorem 4.11. For any M-strong fuzzy graph without isolated vertices G,

1. γvew ≤ γmw ≤ γvew + γevw.

2. γves ≤ γms ≤ γves + γevs.

Proof. (1) Let S = {v1, v2, . . . , vm, em+1, em+2, . . . , en} be a γmw − set in an M-strong fuzzy graph G. Replace each
ej of S by vj such that σ(vj) = µ(ej), m + 1 ≤ j ≤ n and form the s′. Therefore s′ = {v1, v2, . . . , vm, vm+1, vm+2, . . . , vn}.
Hence γvew ≤ γmw. Also the union of vewd-set and evwd-set forms an mwd-set. Therefore γmw ≤ γvew +
γevw.
(2) Similarly we can prove γves ≤ γms ≤ γves + γevs.

Theorem 4.12. For any M-strong fuzzy graph without isolated vertices G , γmw ≤ γm ≤ γms.

Proof. Let D = {v1, v2, . . . , vm, e1, e2, . . . , en} −−−−(i) be any γm − set in an M-strong fuzzy graph G. Let v ∈
D = γm − set. Then v dominates at least one edge e ∈ E−D. By Observation 4 (3), v weakly dominates at least
one edge e ∈ E−D.−−− (ii). Also, let e ∈ D. Then e dominates at least one vertex v ∈ V−D. By Observation
4 (2), e weakly dominates at least one vertex v ∈ V − D.−−−−(iii) Hence by (i), (ii) and (iii) every γm − set
is a mixed weak dominating set. The scalar cardinality of mixed dominating set ≤ γm. − − − −(iv) Hence
γmw ≤ γm.

Let S = {v1, v2, . . . , vm, e1, e2, . . . , en} − − −−(v) be any γms − set. Let v ∈ S = γms − set. Then v strongly
dominates at least one edge e ∈ E − S. By Observation 4 (1), v dominates at least one edge e ∈ E − S. −
− − −(vi) Also, let e ∈ S. Then e strongly dominates at least one vertex v ∈ V − S. By Observation 4
(4), e dominates at least one vertex v ∈ V − S. − − − −(vii) Hence by (v), (vi) and (vii) every γms − set
is a mixed dominating set . The scalar cardinality of mixed dominating set ≤ γms. − − − −(viii) Hence
γmw ≤ γm ≤ γms.

Example 4.4. Consider an M-strong fuzzy graph given in Figure 6
γve − set = {v1, v3, v5} ⇒ γve = 1.2.

v1(0.2) e1(0.2) v2(0.3)

e2(0.3) 

e7(0.2) e5(0.3) v3(0.4) e3(0.4) v4(0.5)

e4(0.4)

v6(0.7) e6(0.6) v5(0.6) 

Figure 6:

γev − set = {e1, e2} ⇒ γev = 0.5.
γm − set = {v3, v5, e1, e2} ⇒ γm = 1.5.
γvew − set = {v2} ⇒ γvew = 0.3.
γevw − set = {e1, e2} ⇒ γevw = 0.5.
γmw − set = {v2, e1, e2} ⇒ γmw = 0.8.
γves − set = {v1, v3, v5} ⇒ γves = 1.2.
γevs − set = {e1, e3, e6, e7} ⇒ γevs = 1.4.
γms − set = {v3, e1, e2, e6, e7} ⇒ γms = 1.8.
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Abstract

In the present paper we introduce some vector-valued statistical convergent sequence spaces defined by
a sequence of modulus functions associated with multiplier sequences and we also make an effort to study
some topological properties and inclusion relation between these spaces.
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1 Introduction and Preliminaries

The study on vector-valued sequence spaces was exploited by Kamthan [11], Ratha and Srivastava [18],
Leonard [14], Gupta [9], Tripathy and Sen [26] and many others. The scope for the studies on sequence
spaces was extended on introducing the notion of associated multiplier sequences. Goes and Goes [8] defined
the differentiated sequence space dE and integrated sequence space

∫
E for a given sequence space E, with

the help of multiplier sequences (k−1) and (k) respectively. Kamthan used the multiplier sequence (k!) see
[11]. The study on multiplier sequence spaces were carried out by Colak [2], Colak et al. [3], Srivastava
and Srivastava [25], Tripathy and Mahanta [28] and many others. Let w be the set of all sequences of real
or complex numbers and let l∞, c and c0 be the Banach spaces of bounded, convergent and null sequences
x = (xk) respectively with the usual norm ||x|| = sup |xk|, where k ∈ N, is the set of positive integers.
Throughout the paper, for all k ∈ N, Ek are seminormed spaces seminormed by qk and X is a seminormed
space seminormed by q. By w(Ek), c(Ek), l∞(Ek) and lp(Ek) we denote the spaces of all, convergent, bounded
and p-absoluetly summable Ek-valued sequences. In the case Ek = C (the field of complex numbers) for all
k ∈ N, one has the scalar valued sequence spaces respectively. The zero element of Ek is denoted by θk and
the zero sequence is denoted by θ̄ = (θk).
The notion of difference sequence spaces was introduced by Kizmaz [12], who studied the difference sequence
spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Colak [4] by introducing the
spaces l∞(∆n), c(∆n) and c0(∆n). Let w be the space of all complex or real sequences x = (xk) and let m, s be
non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆m
s ) = {x = (xk) ∈ w : (∆m

s xk) ∈ Z},

where ∆m
s x = (∆m

s xk) = (∆m−1
s xk − ∆m−1

s xk+1) and ∆0
s xk = xk for all k ∈ N, which is equivalent to the

following binomial representation

∆m
s xk =

m

∑
v=0

(−1)v
(

m
v

)
xk+sv.

Taking s = 1, we get the spaces which were studied by Et and Colak [4]. Taking m = s = 1, we get the spaces
which were introduced and studied by Kizmaz [12].

∗Corresponding author.
E-mail address: kuldipraj68@gmail.com (Kuldip Raj), suruchi.pandoh87@gmail.com (Suruchi Pandoh).
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Definition 1.1. A modulus function is a function f : [0, ∞) → [0, ∞) such that

1. f (x) = 0 if and only if x = 0,

2. f (x + y) ≤ f (x) + f (y) for all x ≥ 0, y ≥ 0,

3. f is increasing,

4. f is continuous from right at 0.

It follows that f must be continuous everywhere on [0, ∞). The modulus function may be bounded or un-
bounded. For example, if we take f (x) = x

x+1 , then f (x) is bounded. If f (x) = xp, 0 < p < 1, then the
modulus f (x) is unbounded. Subsequently, modulus function has been discussed in ([1], [16], [19], [20], [23])
and many others.

Definition 1.2. Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0, for all x ∈ X,

2. p(−x) = p(x), for all x ∈ X,

3. p(x + y) ≤ p(x) + p(y), for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of vectors with p(xn − x) →
0 as n → ∞, then p(λnxn − λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total
paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm
(see [29], Theorem 10.4.2, P-183).

Let p = (pk) be a bounded sequence of positive real numbers, let F = ( fk) be a sequence of modulus function.
Also let t = tk = p−1

k and suppose u = (uk) is a sequence of strictly positive real numbers. In this paper we
define the following sequence spaces:

W0(∆m
s , F, Q, p, u, t) =

{
(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0 such that

1
n ∑n

k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk → 0 as n → ∞
}

,

W1(∆m
s , F, Q, p, u, t) =

{
(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0 such that

1
n ∑n

k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr − l

))]pk → 0 as n → ∞, l ∈ Ek

}
and

W∞(∆m
s , F, Q, p, u, t) =

{
(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0 such that

supn
1
n ∑n

k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk
< ∞

}
.

In the case fk = f and qk = q for all k ∈ N, we write W0(∆m
s , f , q, p, u, t), W1(∆m

s , f , q, p, u, t) and W∞(∆m
s , f , q, p, u, t)

instead of W0(∆m
s , F, Q, p, u, t), W1(∆m

s , F, Q, p, u, t) and
W∞(∆m

s , F, Q, p, u, t) respectively.
Throughout the paper Z denotes any of the values 0, 1 and ∞. If x = (xk) ∈ W1(∆m

s , f , q, p, u, t), we say that x
is strongly uq,t Cesaro summable with respect to the modulus function f and write xk → l W1(∆m

s , f , q, p, u, t);
l is called the uq,t limit of x with respect to the modulus function f .
The main aim of this paper is to introduced the sequence spaces WZ(∆m

s , F, Q, p, u, t), Z = 0, 1 and ∞. We
also make an effort to study some topological properties and inclusion relations between these spaces.
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2 Main Results

Theorem 2.1. Let F = ( fk) be a sequence of modulus functions and p = (pk) be a bounded sequence of positive real
numbers. Then the spaces WZ(∆m

s , F, Q, p, u, t), Z = 0, 1, ∞ are linear spaces over the complex field C .

Proof. We shall prove the result for Z = 0. Let x = (xk) ∈ W0(∆m
s , F, Q, p, u, t). Then there exists r > 0 such

that 1
n

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk → 0 as n → ∞. Let λ ∈ C. Without loss of generality we can take λ 6= 0. Let

ρ = r(|λ|)−1 > 0, then we have

1
n

[
fk

(
qk

(
p−tk

k uk∆m
s λxk

)
ρ
)]pk

=
1
n

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk → 0 as n → ∞.

Therefore λx ∈ W0(∆m
s , F, Q, p, u, t), for all λ ∈ C and for all x = (xk) ∈ W0(∆m

s , F, Q, p, u, t). Next, suppose
that x = (xk), y = (yk) ∈ W0(∆m

s , F, Q, p, u, t). Then there exists r1, r2 > 0 such that

1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr1

))]pk → 0 as n → ∞

and
1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s ykr2

))]pk → 0 as n → ∞.

Thus given ε > 0, there exists k1, k2 > 0 such that

1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr1

))]pk
< εpk, for all k ≥ k1

and
1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s ykr2

))]pk
< εpk, for all k ≥ k2.

Let r = r1r2(r1 + r2)−1 and k0 = max(k1, k2). Then we have for all k ≥ k0,
1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s (xk + yk)r

))]pk

≤ 1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr1

)
r2(r1 + r2)−1 + fk

(
qk

(
p−tk

k uk∆m
s ykr2

)
r1(r1 + r2)−1

]pk
< εpk.

Hence x + y ∈ W0(∆m
s , F, Q, p, u, t). Thus W0(∆m

s , F, Q, p, u, t) is a linear space. Similarly we can prove that
W1(∆m

s , F, Q, p, u, t) and W∞(∆m
s , F, Q, p, u, t) are linear spaces.

Theorem 2.2. Let F = ( fk) be a sequence of modulus functions and p = (pk) be a bounded sequence of positive real
numbers. Then the space W0(∆m

s , F, Q, p, u, t) is a complete paranormed space with paranorm defined by

g(x) = sup
n

( 1
n

n

∑
k=1

[
fk

(
qk

(
p−tk uk∆m

s xkr
))]pk

) 1
M ,

where M = max{1, sup pk}.

Proof. Let (x(i)) be a Cauchy sequence in W0(∆m
s , F, Q, p, u, t). Then for a given ε > 0, there exists n0 such that

g(xi − xj) < ε, for all i, j ≥ n0. Thus, we have

[ ∞

∑
k=1

(
fk

(
qk

(
p−tk

k uk∆m
s (xi

k − xj
k)r

)))pk
] 1

M
< ε, for all i, j ≥ n0. (2.1)

=⇒
(

fk
(
qk

(
p−tk

k uk∆m
s (xi

k − xj
k)r

)))
< ε, for all i, j ≥ n0.

=⇒ ∆m
s (xi

k − xj
k) < ε, for all i, j ≥ n0, for all k ∈ N.
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Hence (xi
k)

∞
i=1 is a Cauchy sequence in Ek, for each k ∈ N. Since Ek

′s are complete for each k ∈ N, so (xi
k)

∞
i=1

converges in Ek, for each k ∈ N. On taking limit as j → ∞ in (2.1), we have[ ∞

∑
k=1

(
fk

(
qk

(
p−tk

k uk∆m
s (xi

k − xk)r
)))pk

] 1
M

< ε, for all i ≥ n0.

=⇒ ∆m
s (xi

k − x) ∈ W0(∆m
s , F, Q, p, u, t).

Since W0(∆m
s , F, Q, p, u, t) is a linear space, so we have x = x(i) − (x(i) − x) ∈ W0(∆m

s , F, Q, p, u, t). Thus
W0(∆m

s , F, Q, p, u, t) is a complete paranormed space. This completes the proof of the theorem.

Theorem 2.3. Let F = ( fk) be a sequence of modulus functions and p = (pk) be a bounded sequence of positive real
numbers. Then

W0(∆m
s , F, Q, p, u, t) ⊂ W1(∆m

s , F, Q, p, u, t) ⊂ W∞(∆m
s , F, Q, p, u, t).

Proof. It is easy to prove so we omit the details.

Theorem 2.4. Let F = ( fk) and G = (gk) be any two sequences of modulus functions. For any bounded sequences
p = (pk) and t = (tk) of strictly positive real numbers and any two sequences of seminorms Q = (qk), V = (vk), the
following are true:
(i) WZ(∆m

s , f , Q, u, t) ⊂ WZ(∆m
s , f ◦ g, Q, u, t),

(ii) WZ(∆m
s , F, Q, p, u, t) ∩WZ(∆m

s , F, V, p, u, t) ⊂ WZ(∆m
s , F, Q + V, p, u, t),

(iii) WZ(∆m
s , F, Q, p, u, t) ∩WZ(∆m

s , G, Q, p, u, t) ⊂ WZ(∆m
s , F + G, Q, p, u, t),

(iv) if q is stronger than v, then WZ(∆m
s , F, Q, p, u, t) ⊂ WZ(∆m

s , F, V, p, u, t),
(v) if q is equivalent v, then WZ(∆m

s , F, Q, p, u, t) = WZ(∆m
s , F, V, p, u, t),

(vi) WZ(∆m
s , F, Q, p, u, t) ∩WZ(∆m

s , F, V, p, u, t) 6= ϕ.

Proof. We shall prove (i) for the case Z = 0. Let ε > 0. We choose δ, 0 < δ < 1, such that f (t) < ε for 0 ≤ t ≤ δ

and all k ∈ N. We write yk = g
(
qk

(
p−tk

k uk∆m
s xkr

))
and consider

n

∑
k=1

[
f (yk)

]
= ∑

1

[
f (yk)

]
+ ∑

2

[
f (yk)

]
,

where the first summation is over yk ≤ δ and the second summation is over yk > δ. Since f is continuous, we
have

∑
1

[
f (yk)

]
< nε. (2.2)

By the definition of f , we have the following relation for yk > δ:

f (yk) < 2 f (1)
yk
δ

.

Hence
1
n ∑

2

[
f (yk)

]
≤ 2δ−1 f (1)

1
n

n

∑
k=1

yk. (2.3)

It follows from (2.2) and (2.3) that WZ(∆m
s , f , Q, u, t) ⊂ WZ(∆m

s , f ◦ g, Q, u, t). Similarly, we can prove the result
for other cases.

Theorem 2.5. Let f be a modulus function. Then WZ(∆m
s , Q, u, t) ⊂ WZ(∆m

s , f , Q, u, t).

Proof. It is easy to prove in view of Theorem 2.4(i).

Theorem 2.6. Let 0 < pk < rk and
(

rk
pk

)
be bounded. Then

WZ(∆m
s , F, Q, r, u, t) ⊂ WZ(∆m

s , F, Q, p, u, t).

Proof. By taking yk =
[

fk
(
qk

(
p−tk

k uk∆m
s xkr

))]rk
for all k and using the same technique as in Theorem 5 of

Maddox [15], one can easily prove the theorem.

Theorem 2.7. Let f be a modulus function. If lim
m→∞

f (m)
m

= β > 0, then W1(∆m
s , Q, p, u, t) ⊂ W1(∆m

s , f , Q, p, u, t).

Proof. It is easy to prove so we omit the details.
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3 uq,t-Statistical Convergence

The notion of statistical convergence was introduced by Fast [6] and Schoenberg [24] independently. Over the
years and under different names, statistical convergence has been discussed in the theory of Fourier analysis,
ergodic theory and number theory. Later on, it was further investigated from the sequence space point of view
and linked with summability theory by Fridy [7], Connor [5], Salat [21], Murasaleen [17], Isik [10], Savas [22],
Malkowsky and Savas [16], Kolk [13], Maddox [15], Tripathy and Sen [27] and many others. In recent years,
generalizations of statistical convergence have appeared in the study of strong integral summability and the
structure of ideals of bounded continuous functions on locally compact spaces. Statistical convergence and
its generalizations are also connected with subsets of the Stone-Cech compactification of natural numbers.
Moreover, statistical convergence is closely related to the concept of convergence in probability. The notion
depends on the density of subsets of the set N of natural numbers.

Definition 3.3. A subset E of N is said to have the natural density δ(E) if the following limit exists:

δ(E) = lim
n→∞

1
n

n

∑
k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset of N has zero natural density and δ(Ec) =
1− δ(E).

Definition 3.4. A sequence x = (xk) is said to be uq,t-statistical convergent to l if for every ε > 0,

δ
({

k ∈ N : q
(

p−tk
k uk∆m

s xkr − l
)
≥ ε

})
= 0.

In this case we write xk − l
(
Sq

u,t
)
. The set of all uq,t-statistical convergent sequences is denoted by Sq

u,t. By S, we denote
the set of all statistically convergent sequences.

If q(x) = |x|, uk = pk = tk = 1 for all k ∈ N and r = 1, then Sq
u,t is same as S. In case l = 0 we write Sq

0u,t
instead of Sq

u,t.

Theorem 3.8. Let p = (pk) be a bounded sequence and 0 < h = inf pk ≤ pk ≤ sup pk = H < ∞ and let f be a
modulus function. Then

W1(∆m
s , f , q, p, u, t) ⊂ Sq

u,t.

Proof. Let x ∈ W1(∆m
s , f , q, p, u, t) and let ε > 0 be given. Let ∑1 and ∑2 denote the sums over k ≤ n with

q(p−tk
k uk∆m

s xkr − l) ≥ ε and q(p−tk
k uk∆m

s xkr − l) < ε, respectively. Then

1
n

n

∑
k=1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

≥ 1
n ∑

1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

≥ 1
n ∑

1

[
f (ε)

]pk

≥ 1
n ∑

1
min

([
f (ε)

]h,
[

f (ε)
]H

)
≥ 1

n

∣∣∣{k ≤ n : q(p−tk
k uk∆m

s xk − l) ≥ ε}
∣∣∣ min

([
f (ε)

]h,
[

f (ε)
]H

)
.

Hence, x ∈ Sq
u,t.

Theorem 3.9. Let f be a bounded modulus function. Then Sq
u,t ⊂ W1(∆m

s , f , q, p, u, t).

Proof. Suppose that f is bounded. Let ε > 0 and let ∑1 and ∑2 be the sums introduced in the Theorem 3.1.
Since f is bounded, there exists an integer K such that f (x) < K for all x ≥ 0. Then
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1
n

n

∑
k=1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

≤ 1
n

(
∑
1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

+ ∑
2

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

)
≤ 1

n ∑
1

max(Kh, KH) +
1
n ∑

2

[
f (ε)

]pk

≤ max(Kh, KH)
1
n

∣∣∣{k ≤ n : q(p−tk
k uk∆m

s xk − l) ≥ ε}
∣∣∣ + max( f (ε)h, f (ε)H).

Hence, x ∈ W1(∆m
s , f , q, p, u, t).

Theorem 3.10. Sq
u,t = W1(∆m

s , f , q, p, u, t) if and only if f is bounded.

Proof. Let f be bounded. By Theorems 3.1 and 3.2, we have Sq
u,t = W1(∆m

s , f , q, p, u, t).
Conversely, suppose that f is unbounded. Then there exists a sequence (tk) of positive numbers with f (tk) =
k2 for k = 1, 2, · · · . If we choose

p−tk
k ui∆m

s xir =
{

tk, i = k2, k = 1, 2, · · ·
0, otherwise.

Then we have
1
n
|{k ≤ n : |p−tk

k uk∆m
s xkr| ≥ ε}| ≤

√
n

n

for all n, and so x ∈ Sq
u,t but x /∈ W1(∆m

s , f , q, p, u, t) for X = C, q(x) = |x| and pk = 1 for all k ∈ N. This
contradicts the assumption that Sq

u,t = W1(∆m
s , f , q, p, u, t).
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Global nonexistence of solutions for a system of viscoelastic wave

equations with weak damping terms
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Abstract

This paper deals with the initial boundary value problem for the viscoelastic wave equations{
utt −4u +

∫ t
0 g1 (t− τ)4 u (τ) dτ + ut = f1 (u, v) ,

vtt −4v +
∫ t

0 g2 (t− τ)4 v (τ) dτ + vt = f2 (u, v)

in a bounded domain. We obtain the global nonexistence of solutions by applying a lemma due to Y. Zhou
[Global existence and nonexistence for a nonliear wave equation with damping and source terms, Math.
Nacht, 278 (2005) 1341–1358].
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1 Introduction

In this paper we consider the following initial boundary value problem

utt −4u +
∫ t

0 g1 (t− τ)4 u (τ) dτ + ut = f1 (u, v) , (x, t) ∈ Ω× (0, T) ,
vtt −4v +

∫ t
0 g2 (t− τ)4 v (τ) dτ + vt = f2 (u, v) , (x, t) ∈ Ω× (0, T) ,

u (x, t) = v (x, t) = 0, (x, t) ∈ ∂Ω× (0, T) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn, n = 1, 2, 3; and gi (.) : R+ −→ R+, fi (., .) :
R2 −→ R are given functions to be specified later.

The single viscoelastic wave equation of the form

utt −4u +
∫ t

0
g (t− τ)4 u (τ) dτ + h (ut) = f (u) , x ∈ Ω, t > 0, (1.2)

has been extensively studied and many results concerning nonexistence have been proved. See in this regard
[5, 8, 9, 17].

The equation (1.2) without the viscoelastic term (i.e., g = 0) can be written in the following form

utt −4u + h (ut) = f (u) , x ∈ Ω, t > 0. (1.3)

The local existence, global existence, and blow up in finite time of solution for (1.3) were established (see
[3, 6, 7, 10, 11] and references therein).

∗Corresponding author.
E-mail address: episkin@dicle.edu.tr (Erhan Pişkin).
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Agre and Rammaha [2] studied the global existence and blow up of the solution of the problem (1.1) with
gi = 0 (i = 1, 2) using the same techniques as in [3]. After that, the blow up result was improved by Said-
Houari [15]. Also, he showed that the local solution obtained in [2] is global and decay of solutions [14].

Recently, Han and Wang [4] obtained the local existence, global existence and blow up of the solution of
the problem (1.1) under some suitable conditions. Messaoudi and Houari [12] considered problem (1.1) and
improved the blow up result in [4], for positive initial energy, using the some techniques as in [15]. Also,
Houari et. al. [16] studied the general decay of the solution of the problem (1.1) by using the Lyapunov
functional method.

In this paper, we consider the problem (1.1) and prove a global nonexistence result of solutions.
This paper is organized as follows. In section 2, we present some lemmas. In section 3, we state the local

existence result. In section 4, we show the global nonexistence of solutions.

2 Preliminaries

In this section, we shall give some assumptions and lemmas which will be used throughout this work. Let
‖.‖ and ‖.‖p denote the usual L2 (Ω) norm and Lp (Ω) norm, respectively. Firstly, we make the following
assumptions:

(A1) gi : R+ −→ R+ (i = 1, 2) nonincreasing differentiable function satisfying

1−
∫ ∞

0
gi (s) ds = li > 0.

(A2) gi (t) ≥ 0, ∀t ≥ 0.

Concerning the functions f1 (u, v) and f2 (u, v) , we take

f1 (u, v) = a |u + v|2(p+1) (u + v) + b |u|p |v|p+2 u,

f2 (u, v) = a |u + v|2(p+1) (u + v) + b |u|p+2 |v|p v,

where a, b > 0 are constants and p satisfies{
−1 < p if n = 1, 2,
−1 < p ≤ 1 if n = 3.

(2.1)

According to the above equalities we can easily verify that

u f1 (u, v) + v f2 (u, v) = 2 (p + 2) F (u, v) , ∀ (u, v) ∈ R2, (2.2)

where
F (u, v) =

1
2 (p + 2)

[
a |u + v|2(p+2) + 2b |uv|p+2

]
. (2.3)

We have the following result.
Lemma 2.1 [12]. There exist two positive constants c0 and c1 such that

c0

2 (p + 2)

(
|u|2(p+2) + |v|2(p+2)

)
≤ F (u, v) ≤ c1

2 (p + 2)

(
|u|2(p+2) + |v|2(p+2)

)
(2.4)

is satisfied.
Lemma 2.2 [13]. For any φ ∈ C1 (R) we have∫

Ω

∫ t

0
g (t− τ)4 φ (τ) φ′ (t) dτdx = −1

2
(

g′ ◦ ∇φ
)
(t) +

1
2

g (t) ‖∇φ‖2

+
1
2

d
dt

[
(g ◦ ∇φ) (t)−

∫ t

0
g (τ) ‖∇φ‖2 dτ

]
.

Lemma 2.3 (Sobolev-Poincare inequality) [1]. Let p be a number with 2 ≤ p < ∞ (n = 1, 2) or 2 ≤ p ≤
2n/ (n− 2) (n ≥ 3) , then there is a constant C∗ = C∗ (Ω, p) such that

‖u‖p ≤ C∗ ‖∇u‖ for u ∈ H1
0 (Ω) .
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Lemma 2.4 [18]. Suppose that ψ (t) is a twice continuously differentiable function satisfying{
ψ′′ (t) + ψ′ (t) ≥ C0ψ1+α (t) , t > 0,

ψ (0) > 0, ψ′ (0) ≥ 0,

where C0 > 0, α > 0 are constants. Then, ψ (t) blows up in finite time.

3 Local existence

In this section we state local existence and the uniqueness of the solution of the problem (1.1).
Definition 3.1. A pair of functions (u, v) is said to be a weak solution of (1.1) on [0, T] if

u, v ∈ C
(
[0, T) ; H1

0 (Ω)
)
∩ C1

(
[0, T) ; L2 (Ω)

)
,

ut ∈ L2 (Ω× (0, T)) , vt ∈ L2 (Ω× (0, T)) ,

u′′ ∈ L2
(

0, T; H−1 (Ω) + L2 (Ω)
)

,

v′′ ∈ L2
(

0, T; H−1 (Ω) + L2 (Ω)
)

,

where H−1 (Ω) + L2 (Ω) is the dual space of H1
0 (Ω) ∩ L2 (Ω). In additon, (u, v) satisfies∫

Ω
u′ (t) φdx −

∫
Ω

u1 (t) φdx +
∫

Ω
∇u∇φdx

−
∫ t

0

∫
Ω

(g1 ∗ ∇u)∇φdxdτ +
∫ t

0

∫
Ω

u′φdxdτ

=
∫ t

0

∫
Ω

f1 (u (τ) , v (τ)) φdxdτ,

∫
Ω

v′ (t) ϕdx −
∫

Ω
v1 (t) ϕdx +

∫
Ω
∇v∇ϕdx

−
∫ t

0

∫
Ω

(g2 ∗ ∇v)∇ϕdxdτ +
∫ t

0

∫
Ω

v′ϕdxdτ

=
∫ t

0

∫
Ω

f2 (u (τ) , v (τ)) ϕdxdτ,

for all test functions φ ∈ H1
0 (Ω) ∩ L2 (Ω) , ϕ ∈ H1

0 (Ω) ∩ L2 (Ω) and for almost all t ∈ [0, T] .
Now, we state the local existence theorem that is proved in [4].
Theorem 3.1 (Local existence). Assume that (2.1), (A1) and (A2) hold. Then for any initial data (u0, u1) ∈

H1
0 (Ω)× L2 (Ω) , (v0, v1) ∈ H1

0 (Ω)× L2 (Ω) , there exists a unique local weak solution (u, v) of problem (1.1)
(in the sense of Definition 3.1) defined on [0, T] for some T > 0, and satisfies the energy identity

E (t) +
∫ t

0

(
‖uτ (τ)‖2 + ‖vτ (τ)‖2

)
dτ − 1

2

∫ t

0

((
g′1 ◦ ∇u

)
(τ) +

(
g′2 ◦ ∇v

)
(τ)

)
dτ

1
2

∫ t

0

(
g1 (τ) ‖∇u (τ)‖2 + g2 (τ) ‖∇v (τ)‖2

)
dτ

= E (0)

where E (t) is defined in (4.3).

4 Global nonexistence result

In this section, we prove the global nonexistence of the solution of the problem (1.1). In order to do so, let us
first introduce the following functionals,

J (t) =
1
2

(
1−

∫ t

0
g1 (τ) dτ

)
‖∇u‖2 +

1
2

(
1−

∫ t

0
g2 (τ) dτ

)
‖∇v‖2

+
1
2

[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]−
∫

Ω
F (u, v) dx, (4.1)
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and

I (t) =
(

1−
∫ t

0
g1 (τ) dτ

)
‖∇u‖2 +

(
1−

∫ t

0
g2 (τ) dτ

)
‖∇v‖2

+ (g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)− (p + 1)
∫

Ω
F (u, v) dx. (4.2)

We also define the energy function as follows

E (t) =
1
2

(
‖ut‖2 + ‖vt‖2

)
+

1
2

(
1−

∫ t

0
g1 (τ) dτ

)
‖∇u‖2 +

1
2

(
1−

∫ t

0
g2 (τ) dτ

)
‖∇v‖2

+
1
2

[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)]−
∫

Ω
F (u, v) dx, (4.3)

where

(Φ ◦Ψ) (t) =
∫ t

0
Φ (t− τ)

∫
Ω
|Ψ (t)−Ψ (τ)| dxdτ.

Finally, we define
W =

{
(u, v) : (u, v) ∈ H1

0 (Ω)× H1
0 (Ω) , I (u, v) > 0

}
∪ {(0, 0)} . (4.4)

The next lemma shows that our energy functional (4.3) is a nonincreasing function along the solution of
the problem (1.1).

Lemma 4.1. E (t) is a decreasing function for t ≥ 0 and

E′ (t) ≤ −
(
‖ut‖2 + ‖vt‖2

)
+

1
2

[(
g′1 ◦ ∇u

)
(t) +

(
g′2 ◦ ∇v

)
(t)

]
≤ 0, ∀t ≥ 0. (4.5)

Proof. Multiplying the first equation of (1.1) by ut and the second equation by vt, integrating over Ω, and
using (2.5) and the assumption (A1)-(A2), we obtain (4.5).

Theorem 4.1. Under the conditions of Theorem 3.1, assume that initial conditions satisfies

E (0) ≤ 0,
∫

Ω
(u0u1 + v0v1) dx ≥ 0,

and

max
{∫ t

0
g1 (s) ds,

∫ t

0
g2 (s) ds

}
≤ p + 1

p + 3− 1
4(p+2)

then the corresponding solution blows up in finite time. In other words, there exists a positive constant T∗

such that lim
t−→T∗

(
‖u‖2 + ‖v‖2

)
= ∞.

Proof. To apply Lemma 2.4, we define

ψ (t) =
1
2

∫
Ω

(
|u|2 + |v|2

)
dx. (4.6)

Therefore,

ψ′ (t) =
∫

Ω
(uut + vvt) dx, (4.7)

and
ψ′′ (t) =

∫
Ω

(
u2

t + v2
t

)
dx +

∫
Ω

(uutt + vvtt) dx. (4.8)

Then, eq (1.1) is used to estimate (4.8) as follows

ψ′′ (t) =
∫

Ω

(
u2

t + v2
t

)
dx −

(
‖∇u‖2 + ‖∇v‖2

)
+

∫
Ω

∫ t

0
g1 (t− s)∇u (t)∇u (s) dsdx

+
∫

Ω

∫ t

0
g2 (t− s)∇v (t)∇v (s) dsdx

−
∫

Ω
(uut + vvt) dx + 2 (p + 2)

∫
Ω

F (u, v) dx. (4.9)
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We then use Young’s inequality to estimates third and fiveth terms in (4.9);∫
Ω

∫ t

0
g1 (t− s)∇u (t)∇u (s) dsdx

=
∫

Ω

∫ t

0
g1 (t− s)∇u (t) [∇u (s)−∇u (t)] dsdx +

(∫ t

0
g1 (s) ds

)
‖∇u‖2

≤ δ ‖∇u‖2 +
1
4δ

(∫ t

0
g1 (s) ds

)
(g1 ◦ ∇u) (t) +

(∫ t

0
g1 (s) ds

)
‖∇u‖2 (4.10)

and ∫
Ω

∫ t

0
g2 (t− s)∇v (t) [∇v (s)−∇v (t)] dsdx

≤ δ ‖∇v‖2 +
1
4δ

(∫ t

0
g2 (s) ds

)
(g2 ◦ ∇v) (t) +

(∫ t

0
g2 (s) ds

)
‖∇v‖2 . (4.11)

Inserting (4.10), (4.11) into (4.9) to get

ψ′′ (t) + ψ′ (t) ≥
(
‖ut‖2 + ‖vt‖2

)
−

(
1 +

∫ t

0
g1 (s) ds + δ

)
‖∇u‖2

−
(

1 +
∫ t

0
g2 (s) ds + δ

)
‖∇v‖2 + 2 (p + 2)

∫
Ω

F (u, v) dx

− 1
4δ

(∫ t

0
g1 (s) ds

)
(g1 ◦ ∇u) (t)− 1

4δ

(∫ t

0
g2 (s) ds

)
(g2 ◦ ∇v) (t) . (4.12)

From the definition of E (t) , it follows that

‖∇u‖2 + ‖∇v‖2 ≤ 2
1− l

E (t) +
2

1− l

∫
Ω

F (u, v) dx − 1
1− l

(
‖ut‖2 + ‖vt‖2

)
− 1

1− l
[(g1 ◦ ∇u) (t) + (g2 ◦ ∇v) (t)] , (4.13)

where l = max
{∫ t

0 g1 (s) ds,
∫ t

0 g2 (s) ds
}

. Substituting (4.13) into (4.12), we have

ψ′′ (t) + ψ′ (t) ≥
(

2 + δ

1− l

) (
‖ut‖2 + ‖vt‖2

)
− 2

(
1 + l + δ

1− l

)
E (t)

+
[

2 (p + 2)− 2
(

1 + l + δ

1− l

)] ∫
Ω

F (u, v) dx

+
[

1 + l + δ

1− l
− 1

4δ

(∫ t

0
g1 (s) ds

)]
(g1 ◦ ∇u) (t)

+
[

1 + l + δ

1− l
− 1

4δ

(∫ t

0
g2 (s) ds

)]
(g2 ◦ ∇v) (t) . (4.14)

At this point we choose δ > 0, so that

1 + l + δ

1− l
− 1

4δ

(∫ t

0
g1 (s) ds

)
≥ 0,

1 + l + δ

1− l
− 1

4δ

(∫ t

0
g2 (s) ds

)
≥ 0.

Therefore, (4.14) becomes

ψ′′ (t) + ψ′ (t) ≥
[

2 (p + 2)− 2
(

1 + l + δ

1− l

)] ∫
Ω

F (u, v) dx

≥ c0

2 (p + 2)

[
2 (p + 2)− 2

(
1 + l + δ

1− l

)] (
‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
≥ γ

(
‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
(4.15)

where γ = c0
2(p+2)

[
2 (p + 2)− 2

(
1+l+δ

1−l

)]
. Also, from assumption of the theorem γ ≥ 0.
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Now, Hölder inequality are used to estimates ‖u‖2(p+2)
2(p+2) and ‖v‖2(p+2)

2(p+2) as follows

∫
Ω
|u|2 dx ≤

(∫
Ω
|u|2(p+2) dx

) 1
p+2

(∫
Ω

1dx
) p+1

p+2
.

Wn is called the volume of the domain Ω, then

‖u‖2(p+2)
2(p+2) ≥

(∫
Ω
|u|2 dx

)p+2
(Wn)−(p+1) ,

and similarly, we have

‖v‖2(p+2)
2(p+2) ≥

(∫
Ω
|v|2 dx

)p+2
(Wn)−(p+1) .

Consequently, we have

ψ′′ (t) + ψ′ (t) ≥ γ (Wn)−(p+1)

[(∫
Ω
|u|2 dx

)p+2
+

(∫
Ω
|v|2 dx

)p+2
]

. (4.16)

In order to estimate the right-hand side in (4.16), we make use of the following inequality

(X + Y)ρ ≤ 2ρ−1 (Xρ + Yρ) ,

X, Y ≥ 0, 1 ≤ ρ < ∞, applying the above inequality we have

2−(p+1)
(∫

Ω
|u|2 dx +

∫
Ω
|v|2 dx

)p+2
≤

(∫
Ω
|u|2 dx

)p+2
+

(∫
Ω
|v|2 dx

)p+2
.

Consequently, (4.16) becomes

ψ′′ (t) + ψ′ (t) ≥ 2−(p+1)γ (Wn)−(p+1)
(∫

Ω
|u|2 dx +

∫
Ω
|v|2 dx

)p+2

= 2γ (Wn)−(p+1) ψp+2 (t) .

It is easy to verify that the requirements of Lemma 2.4 are satisfied by

C0 = 2γ (Wn)−(p+1) > 0, α = p + 1 > 0.

Therefore ψ (t) blows up in finite. The proof of Theorem 4.1 is completed.
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Abstract

In this paper, we prove that wheel, closed helm, quadrilateral snake, double quadrilateral snake and gear
graphs are sum cordial graphs.
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1 Introduction

All graphs G = (V(G), E(G)) in this paper are finite, connected and undirected. For any undefined nota-
tions and terminology we follow [3]. If the vertices or edges or both of the graph are assigned valued subject
to certain conditions it is known as graph labeling. A dynamic survey on graph labeling is regularly updated
by Gallian [4]. Labeled graphs have variety of applications in graph theory, particularly for missile guidance
code, design good radar type codes and convolution codes with optimal autocorrelation properties. Labeled
graphs plays vital role in the study of X-ray crystallography, communication network and to determine opti-
mal circuit layouts. A detailed study on variety of applications on graph labeling is carried out in Bloom and
Golomb [1].

Definition 1.1. A mapping f : V(G) −→ {0, 1} is called binary vertex labeling of G and f (v) is called the label of the
vertex v of G under f .

The induced edge labeling f ∗ : E(G) −→ {0, 1} is given by f ∗(e = uv) = | f (u)− f (v)|. Let us denote
v f (0), v f (1) be the number of vertices of G having labels 0 and 1 respectively under f ad e f (0), e f (1) be the
number of edges of G having labels 0 and 1 respectively under f ∗.

Definition 1.2. A binary vertex labeling of a graph G is called a cordial labeling if |v f (0)− v f (1)| ≤ 1 and |e f (0)−
e f (1)| ≤ 1. A graph G is called cordial if it admits labeling.

The concept of cordial labeling was introduced by Cahit [2] in which he investigated several results on
this newly defined concept. Also, some new graphs are investigated as product cordial graphs by Vaidya [6].

Definition 1.3. A binary vertex labeling of a graph G with induce edge labeling f ∗ : E(G) −→ {0, 1} defined by
f ∗(uv) = ( f (u) + f (v))(mod2) is called sum cordial labeling if |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1. A
graph G is sum cordial if it admits sum cordial labeling.

Shiama [5] investigated the sum cordial labeling and proved that path Pn, cycle Cn, star K1,n etc are some
cordial graphs.

∗Corresponding author.
E-mail address: cosmicmohit@gmail.com(M. I. Bosmia), visavaliavijay@gmail.com(V. R. Visavaliya), bhavinramani@yahoo.com (B. M.
Patel).
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Definition 1.4. The wheel graph Wn is defined as the join of K1 + Cn. The vertex corresponding to K1 is said to be apex
vertex, the vertices corresponding to cycle are called rim vertices. The edges corresponding to cycle are called the rim
edges and edges joining apex and vertices of the cycle are called spoke edges.

Definition 1.5. The helm Hn is the graph obtained from a wheel Wn by attaching a pendant edge to each rim vertex.

Definition 1.6. The closed helm CHn is the graph obtained from a helm Hn by joining each pendant vertex to each rim
vertex.

Definition 1.7. The quadrilateral snake Qn is obtained from the path Pn by replacing every edge of a path by a cycle Cn.

Definition 1.8. The double quadrilateral snake DQn consists of two quadrilateral snakes that have a common path.

Definition 1.9. Let e = uv be an edge of a graph G and w is not a vertex of G. The edge e is sub divided when it is
replaced by the edges e

′
= uw and e

′′
= wv.

Definition 1.10. The gear graph Gn is obtained from the wheel Wn by sub dividing each of its rim edge.

2 Main Results

Theorem 2.1. The wheel Wn is a sum cordial graph except n ≡ 3(mod4).

Proof: Let v be an apex vertex and v1, v2, . . . , vn are rim vertices for wheel Wn. Then |V(Wn)| = n + 1 and
|E(Wn)| = 2n.
To define f : V(Wn) −→ {0, 1}, we consider the following cases,

For n ≡ 0, 1, 2(mod4)

f (v) = 0;

f (vi) =

{
1, i ≡ 1 or 2(mod4);
0, i ≡ 3 or 4(mod4).

; 1 ≤ i ≤ n

Therefore,

v f (0) =



⌈n + 1
2

⌉
, n ≡ 0(mod4);

n + 1
2

, n ≡ 1(mod4);⌊n + 1
2

⌋
, n ≡ 2(mod4).

v f (1) =



⌊n + 1
2

⌋
, n ≡ 0(mod4);

n + 1
2

, n ≡ 1(mod4);⌈n + 1
2

⌉
, n ≡ 2(mod4).

e f (0) = e f (1) = n

Therefore,

v f (0)− v f (1) =


1, n ≡ 0(mod4);
0, n ≡ 1(mod4);
−1, n ≡ 2(mod4).

Hence, |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1. So, wheel Wn is a sum cordial for n ≡ 0, 1 or 2(mod4).

For n ≡ 3(mod4) In order to satisfy the vertex condition for the sum cordial graph it is necessary to assign 0

to
n + 1

2
vertices out of n + 1 vertices. The vertices having label 1 will give rise at least

⌈2n + 1
2

⌉
edges

with label 1 and at most
⌊2n− 1

2

⌋
edges with label 0 out of 2n edges. Therefore, |e f (0) − e f (1)| ≥ 2.

Hence the edge condition for the sum cordial graph is not satisfied. So wheel Wn is not sum cordial for
n ≡ 3(mod4).
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Example 2.1. The wheel W6 is a sum cordial graph.

Sum cordial labeling of Wheel W6

Theorem 2.2. The closed Helm CHn is a sum cordial graph.

Proof: Let v be an apex vertex and v1, v2, . . . , vn are rim vertices. We denote the pendant vertices by
v
′
1, v

′
2, . . . , v

′
n. Then |V(CHn)| = 2n + 1 and |E(CHn)| = 4n.

Define f : V(CHn)→ {0, 1} by f (v) = 1, f (vi) = 0, f (v
′
i) = 1 for 1 ≤ i ≤ n.

In view of the above labeling pattern, we have v f (0) = n, v f (1) = n + 1, e f (0) = 2n = e f (1). Thus, we get
|v f (0)− v f (1)| ≤ 1, |e f (0)− e f (1)| ≤ 1.
Hence, CHn is a sum cordial graph.

Example 2.2. The Closed helm CH5 is a sum cordial graph.

Sum cordial labeling of Closed helm CH5

Theorem 2.3. The quadrilateral snake Qn is a sum cordial graph.

Proof: Let v1, v2, . . . , vn be the vertices and e1, e2, . . . , en−1 be the edges of a path Pn. To construct a quadri-
lateral snake Qn from the path Pn, we join vi and vi+1 to new vertices wi and w

′
i by edges e

′
2i−1 = viwi, e

′
2i =

vi+1w
′
i and e

′′
i = wiw

′
i for i = 1, 2, . . . , n− 1. Then |V(Qn)| = 3n− 2 and |E(Qn)| = 4n− 4.

To define f : V(Qn)→ {0, 1}, we consider the following cases,
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n is even

f (vi) = 1 : 1 ≤ i ≤ n

f (wi) =

 0, 1 ≤ i ≤ n
2

;

1,
n
2
< i ≤ n− 1.

f (w
′
i) = 0 : 1 ≤ i ≤ n− 1

Therefore, v f (0) =
3n− 2

2
= v f (1) and e f (0) = 2n− 2 = e f (1).

Therefore, |v f (0)− v f (1)| = 0 = |e f (0)− e f (1)|.

n is odd

f (vi) = 1; 1 ≤ i ≤ n

f (wi) = 0; 1 ≤ i ≤ n− 1

f (w
′
i) =


0, 1 ≤ i ≤ n− 1

2
;

1,
n− 1

2
< i ≤ n− 1.

Therefore, v f (0) =
⌊3n− 2

2

⌋
, v f (1) =

⌈3n− 2
2

⌉
and e f (0) = 2n− 2 = e f (1).

Therefore, |v f (0)− v f (1)| = 1 and |e f (0)− e f (1)| = 0.

Hence, Qn is a sum cordial graph.

Example 2.3. The quadrilateral snake Q5 is a sum cordial graph.

Sum cordial labeling of Quadrilateral snake Q5

Theorem 2.4. The double quadrilateral snake DQn is a sum cordial graph.

Proof: Let v1, v2, . . . , vn be the vertices and e1, e2, . . . , en−1 be the edges of the path Pn. To construct a
double quadrilateral snake DQn from the path Pn, we join vi and vi+1 to new vertices ui, u

′
i, wi and w

′
i by

edges eu
2i−1 = viui, eu

2i = vi+1u
′
i, euu

i = uiu
′
i, ew

2i−1 = viwi, ew
2i = vi+1w

′
i and eww

i = wiw
′
i for i = 1, 2, . . . , n− 1.

Then |V(DQn)| = 5n− 4 and |E(DQn)| = 7n− 7.
Define f : V(DQn)→ {0, 1} such that

f (vi) =

{
1, i ≡ 1 or 2(mod4);
0, i ≡ 0 or 3(mod4).

1 ≤ i ≤ n

f (ui) = f (u
′
i) =

{
1, i ≡ 3(mod4);
0, otherwise.

1 ≤ i ≤ n

f (wi) = 1; 1 ≤ i ≤ n

f (w
′
i) =

{
0, i ≡ 1 or 3(mod4);
1, i ≡ 0 or 2(mod4).

1 ≤ i ≤ n

Therefore,

For even n v f (0) =
5n− 4

2
= v f (1) and e f (0) =

⌊7(n− 1)
2

⌋
, e f (1) =

⌈7(n− 1)
2

⌉
.

Therefore, |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1.
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For odd n

v f (0) =


⌊5n− 4

2

⌋
, n ≡ 1(mod4);⌈5n− 4

2

⌉
, n ≡ 3(mod4).

v f (1) =


⌈5n− 4

2

⌉
, n ≡ 1(mod4);⌊5n− 4

2

⌋
, n ≡ 3(mod4).

Also, e f (0) =
7(n− 1)

2
= e f (1).

Therefore, |v f (0)− v f (1)| = 1 and |e f (0)− e f (1)| = 0.

Hence, DQn is a sum cordial graph.

Example 2.4. The double quadrilateral snake DQ5 is a sum cordial graph.

Sum cordial labeling of Double quadrilateral snake DQ5

Theorem 2.5. The gear graph Gn is a sum cordial graph.

Proof: Let Wn be the wheel with an apex vertex v and rim vertices be v1, v2, . . . , vn. To obtain the gear
graph Gn, subdivide each rim edge of wheel by the vertices u1, u2, . . . , un, where each ui sub divides the edge
vivi+1 for i = 1, 2, . . . , n− 1 and un subdivides the edge v1vn. Then |V(Gn)| = 2n + 1 and |E(Gn)| = 3n.
To define f : V(Gn) −→ {0, 1}, we consider the following two cases,

For even n Define

f (v) = 1

f (vi) =

 1, 1 ≤ i ≤ n
2

;

0,
n
2
< i ≤ n.

f (ui) =

{
1, i is odd;
0, i is even.

Therefore, v f (0) =
⌊2n + 1

2

⌋
, v f (1) =

⌈2n + 1
2

⌉
, e f (0) =

3n
2

= e f (1). Thus, we get |v f (0)− v f (1)| ≤
1, |e f (0)− e f (1)| ≤ 1.

For odd n Define

f (v) = 1

f (v1) = 1

f (vi) = f (vn+2−i) =

{
1, if i is odd;
0, if i is even.

; 2 ≤ i ≤ n + 1
2

f (ui) =

 1, if i is odd except i =
n + 1

2
;

0, otherwise.
; 1 ≤ i ≤ n
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Therefore, v f (0) =
⌊2n + 1

2

⌋
, v f (1) =

⌈2n + 1
2

⌉
and

e f (0) =


⌊n

2

⌋
, if n ≡ 1(mod4);⌈n

2

⌉
, if n ≡ 3(mod4).

e f (1) =


⌈n

2

⌉
, if n ≡ 1(mod4);⌊n

2

⌋
, if n ≡ 3(mod4).

Therefore, |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1.

Hence, the gear Gn is a sum cordial graph.

Example 2.5. The Gear G6 is a sum cordial graph.

Sum cordial labeling of Gear G6

3 Conclusion

We contribute some new results on sum cordial labeling. The labeling pattern is demonstrated by means of
examples. To derive similar results for other graph families and in the context of different labeling problems
is an open area of research.
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Abstract

In the present note we establish Civin-Yood Theorem for locally C∗-algebras, i.e. we show that if A be a
locally C∗-algebra, and J be its closed Jordan ideal, then J is as well a closed two-sided ∗-ideals in A.
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1 Introduction

Let A be a C∗-algebra, and J be a closed Jordan ideal in A. In 1965 in their paper [2] Civin and Yood proved
among other things that J is a two-sided ∗-ideal in A.

The Hausdorff projective limits of projective families of Banach algebras as natural locally-convex
generalizations of Banach algebras have been studied sporadically by many authors since 1952, when they
were first introduced by Arens [1] and Michael [8]. The Hausdorff projective limits of projective families of
C∗-algebras were first mentioned by Arens [1]. They have since been studied under various names by many
authors. Development of the subject is reflected in the monograph of Fragoulopoulou [4]. We will follow
Inoue [6] in the usage of the name locally C∗-algebras for these algebras.

The purpose of the present notes is to extend the aforementioned result of Civin and Yood from [2] to
locally C∗-algebras.

2 Preliminaries

First, we recall some basic notions on topological ∗-algebras. A ∗-algebra (or involutory algebra) is an algebra
A over C with an involution

∗ : A → A,

such that
(a + λb)∗ = a∗ + λb∗,

and
(ab)∗ = b∗a∗,

for every a, b ∈ A and λ ∈ C.
A seminorm ‖.‖ on a ∗-algebra A is a C∗-seminorm if it is submultiplicative, i.e.

‖ab‖ ≤ ‖a‖ ‖b‖ ,

and satisfies the C∗-condition, i.e.
‖a∗a‖ = ‖a‖2 ,

∗Corresponding author.
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for every a, b ∈ A. Note that the C∗-condition alone implies that ‖.‖ is submultiplicative, and in particular

‖a∗‖ = ‖a‖ ,

for every a ∈ A (cf. for example [4]).
When a seminorm ‖.‖ on a ∗-algebra A is a C∗-norm, and A is complete in in the topology generated by

this norm, A is called a C∗-algebra.
A topological ∗-algebra is a ∗-algebra A equipped with a topology making the operations (addition,

multiplication, additive inverse, involution) jointly continuous. For a topological ∗-algebra A, one puts N(A)
for the set of continuous C∗-seminorms on A. One can see that N(A) is a directed set with respect to
pointwise ordering, because

max{‖.‖α , ‖.‖β} ∈ N(A)

for every ‖.‖α , ‖.‖β ∈ N(A), where α, β ∈ Λ, with Λ being a certain directed set.
For a topological ∗-algebra A, and ‖.‖α ∈ N(A), α ∈ Λ,

ker ‖.‖α = {a ∈ A : ‖a‖α = 0}

is a ∗-ideal in A, and ‖.‖α induces a C∗-norm (we as well denote it by ‖.‖α) on the quotient Aα = A/ ker ‖.‖α,
and Aα is automatically complete in the topology generated by the norm ‖.‖α , thus is a C∗-algebra (see [4] for
details). Each pair ‖.‖α , ‖.‖β ∈ N(A), such that

β � α,

α, β ∈ Λ, induces a natural (continuous) surjective ∗-homomorphism

gβ
α : Aβ → Aα.

Let, again, Λ be a set of indices, directed by a relation (reflexive, transitive, antisymmetric) ” � ”. Let

{Aα, α ∈ Λ}

be a family of C∗-algebras, and gβ
α be, for

α � β,

the continuous linear ∗-mappings
gβ

α : Aβ −→ Aα,

so that
gα

α(xα) = xα,

for all α ∈ Λ, and
gβ

α ◦ gγ
β = gγ

α ,

whenever
α � β � γ.

Let Γ be the collections {gβ
α} of all such transformations. Let A be a ∗-subalgebra of the direct product algebra

α∈Λ Aα,

so that for its elements
xα = gβ

α(xβ),

for all
α � β,

where
xα ∈ Aα,

and
xβ ∈ Aβ.
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The ∗-algebra A constructed above is called a Hausdorff projective limit of the projective family

{Aα, α ∈ Λ},

relatively to the collection

Γ = {gβ
α : α, β ∈ Λ : α � β},

and is denoted by
lim←−Aα,

α ∈ Λ, and is called the Arens-Michael decomposition of A.
It is well known (see, for example [11]) that for each x ∈ A, and each pair α, β ∈ Λ, such that α � β, there

is a natural projection
πβ : A −→ Aβ,

defined by

πα(x) = gβ
α(πβ(x)),

and each projection πα for all α ∈ Λ is continuous.
A topological ∗-algebra (A, τ) over C is called a locally C∗-algebra if there exists a projective family of

C∗-algebras

{Aα; gβ
α ; α, β ∈ Λ},

so that
A ∼= lim←−Aα,

α ∈ Λ, i.e. A is topologically ∗-isomorphic to a projective limit of a projective family of C∗-algebras, i.e. there
exits its Arens-Michael decomposition of A composed entirely of C∗-algebras.

A topological ∗-algebra (A, τ) over C is a locally C∗-algebra iff A is a complete Hausdorff topological ∗-
algebra in which the topology τ is generated by a saturated separating family z of C∗-seminorms (see [4] for
details).

Every C∗-algebra is a locally C∗-algebra.
A closed ∗-subalgebra of a locally C∗-algebra is a locally C∗-algebra.
The product α∈Λ Aα of C∗-algebras Aα, with the product topology, is a locally C∗-algebra.
Let X be a compactly generated Hausdorff space (this means that a subset Y ⊂ X is closed iff Y ∩ K is

closed for every compact subset K ⊂ X). Then the algebra C(X) of all continuous, not necessarily bounded
complex-valued functions on X, with the topology of uniform convergence on compact subsets, is a locally
C∗-algebra. It is well known that all metrizable spaces and all locally compact Hausdorff spaces are compactly
generated (see [7] for details).

Let A be a locally C∗-algebra. Then an element a ∈ A is called bounded, if

‖a‖∞ = {sup ‖a‖α , α ∈ Λ : ‖.‖α ∈ N(A)} < ∞.

The set of all bounded elements of A is denoted by b(A).
It is well-known that for each locally C∗-algebra A, its set b(A) of bounded elements of A is a locally C∗-

subalgebra, which is a C∗-algebra in the norm ‖.‖∞ , such that it is dense in A in its topology (see for example
[4]).

3 Civin-Yood Theorem for locally C*-algebras

Let us recall that a subspace J of an associative algebra A is called a Jordan ideal of A, if for each a ∈ J and
b ∈ A,

ab + ba
2

= a ◦ b ∈ J,

where the multiplication a ◦ b thus defined is called symmetric (see [5] for details).
Now we are ready to present the main theorem of the current notes.
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Theorem 3.1. Let (A, τA) be a locally C∗-algebra, and (J, τJ) be a closed Jordan ideals in A, such that

τJ = τA|J.

Then (J, τJ) is a closed two-sided ∗-ideal of A.

Proof. Let now (A, τA) be a locally C∗-algebra, and let

A = lim←−Aα,

α ∈ Λ, be its Arens-Michael decomposition into a projective limit of a projective family of C∗-algebras Aα, α ∈
Λ, built using the family of seminorms ‖.‖α , α ∈ Λ, that defines the topology τA. Let

πα : A → Aα,

α ∈ Λ, be a projection from A onto Aα, for each α ∈ Λ. Each πα is an surjective ∗-homomorphism from A onto
Aα, α ∈ Λ. Let

gβ
α : Aβ → Aα,

be a surjective ∗-homomorphism from Aβ onto Aα, for each pair α, β ∈ Λ, such that α � β. Such family gβ
α ,

α, β ∈ Λ does exist because the family Aα, α ∈ Λ is projective. Let

Jα = πα(J),

for each α ∈ Λ. One can see now that
gβ

α(Jβ) = Jα,

because
πα = gβ

α ◦ πβ,

for all α � β, α, β ∈ Λ.
From the fact that J is a closed in τJ topology subspace of A it follows that Jα is a closed in ‖.‖α subspace

of Aα for all α ∈ Λ.
We show now that Jα is a Jordan ideal of Aα for each α ∈ Λ. In fact, let aα ∈ Jα, and bα ∈ Aα be arbitrary,

and α ∈ Λ. We select arbitrary a ∈ π−1
α (aα) which is obviously in J, and b ∈ π−1

α (bα), which is obviously in A.
Because J is a Jordan ideal of A it follows that

a ◦ b =
ab + ba

2
∈ J.

One can see that
πα(a) = aα and πα(b) = bα.

Thus,

Jα 3 πα(a ◦ b) = πα(
ab + ba

2
) =

πα(ab + ba)
2

=
πα(ab) + πα(ba)

2

=
πα(a)πα(b) + πα(b)πα(a)

2
=

aαbα + bαaα

2
= aα ◦ bα.

Now, applying to each Jα, α ∈ Λ Civin-Yood theorem from [2] we conclude that each Jα, α ∈ Λ is a
two-sided ∗-ideal of Aα, i.e. for arbitrary aα ∈ Jα and bα ∈ Aα it follows that aαbα, bαaα, a∗α ∈ Jα.

Let now a ∈ J and b ∈ A be arbitrary elements from J and A respectively. Then for each α ∈ Λ,

Jα 3 πα(a)πα(b) = πα(ab),

which implies that there exists a unique element ab ∈ J. Similarly we obtain that ba ∈ J.
At the same time for each α ∈ Λ, even though generally speaking a∗ exists in A, because

(πα(a))∗ = πα(a∗) = a∗α ∈ Jα,

which implies that a∗ ∈ J.
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Numerical solution of weakly singular integro-differential equations

Mostefa NADIRa,∗

a,bDepartment of Mathematics, Faculty of Mathematics and Informatics, University of Msila, 28000, Msila, Algeria.

Abstract

In this work, we prove the existence and uniqueness of the solution of weakly singular integro-differential
equations. After some transformations direct numerical schemes using collocation methods are proposed for
any peicewise closed contours.
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1 Introduction

Singular integro-differential equations with logarithmic kernel arise in different problems of elasticity theory,
aerodynamics, mechanics, elasticity, this kind of equations has gained a lot of interest in many application
fields, in particular their numerical treatment is asked [1]. While several numerical methods for approximating
the solution of Volterra integro-differential equations and Fredholm integro-differential equations are known
[2, 4]. On the other hand, the singular integro-differential equations have poor documentation.

It is known that, the most effective methods for the approximate solution of weakly singular integro-
differential equations consists in their reduction to a system of linear algebraic equations by the replacement
of the integral with a proper quadrature sum [5, 6, 7].

Consider the weakly singular integro-differential equation of the form

ϕ(t0) +
1

πi

∫
Γ

ln(t− t0)ϕ′(t)dt = f (t0), (1.1)

where Γ designates a smooth-oriented contour; t and t0 are points on Γ and f (t) is a given function on Γ, the
density ϕ(t) is the desired function has to satisfy the Holder condition H(µ) [6].

The equation (1) can be put in the form of functional equation

ϕ(t0) + ADϕ(t0) = f (t0), (1.2)

with the linear mappings A and D respectively given by

Aϕ(t0) =
1

πi

∫
Γ

ln(t− t0)ϕ(t)dt, Dϕ(t) = ϕ′(t). (1.3)

In this work we prove the existence and the uniqueness of the solution of the equation (1) and solve it
numerically.

Let ε > 0 be a sufficiently small number and describe around t0 a circle centred at t0 with a radius ε this
circle intersects the curve Γ in the two points t1 and t2 such that the arc lenghts t1t0 and t0t2 are equal to ε and
denoting by Γε this part of Γ limited by t1t2.

∗Corresponding author.
E-mail address: mostefanadir@yahoo.fr (Mostefa NADIR).
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2 Main results

Theorem: Suppose that the function ϕ(t) ∈ W1(Γ), t and t0 are points on the smooth-oriented contour Γ then,
the equation (1) given by

ϕ(t0) +
1

πi

∫
Γ

ln(t− t0)ϕ′(t)dt = f (t0),

admits a unique solution for all f (t0) in the given space.

Proof
The integration by parts for the operator ADϕ(t0) in (2) gives

πiADϕ(t0) =
∫

Γ−Γε

ln(t− t0)ϕ′(t)dt

= ϕ(t1) ln(t1 − t0)− ϕ(t2) ln(t2 − t0)−
∫

Γ−Γε

ϕ(t)
t− t0

dt

= ϕ(t) [ln(t1 − t0)− ln(t2 − t0)] + (ϕ(t1)− ϕ(t0)) ln(t1 − t0)

+ (ϕ(t2)− ϕ(t0)) ln(t2 − t0)−
∫

Γ−Γε

ϕ(t)
t− t0

dt.

The expansion ϕ(t) [ln(t1 − t0)− ln(t2 − t0)] converges to πiϕ(t0) as ε converges to zero, on the other hand
the expansions

(ϕ(t1)− ϕ(t0)) ln(t1 − t0) and (ϕ(t2)− ϕ(t0)) ln(t2 − t0) converge to zero as ε goes to zero. Hence the
integral becomes

ADϕ(t0) =
1

πi

∫
Γ−Γε

ln(t− t0)ϕ′(t)dt

= ϕ(t0)−
1

πi

∫
Γ

ϕ(t)
t− t0

dt.

Therefore the equation (1)

ϕ(t0) +
1

πi

∫
Γ

ln(t− t0)ϕ′(t)dt = f (t0),

is transformed to the following equation

2ϕ(t0)−
1

πi

∫
Γ

ϕ(t)
t− t0

dt = f (t0). (2.4)

The equation (4) admits a unique solution for all second member, that is to say, the equation (1) admits a
unique solution or all second member.

3 Numerical Experiments

In this section we describe some of the numerical experiments performed in solving the weakly singular
integro-differential equations (1), using collocation methods with the approximation technical in [5, 7]. In all
cases, the curve is taking the unit circle and we chose the right hand side f (t) in such way that we know the
exact solution. This exact solution is used only to show that the numerical solution obtained with the method
is correct.

In each table, ϕ represents the given exact solution of the weakly singular integro-differential equations
and ϕ̃ corresponds to the approximate solution of the equation produced by the approximation method for
singular integral with logarithmic kernel in [5, 7].

Example 1
Consider the weakly singular integro-differential equation on the unit circle Γ

t0 ϕ(t0) +
∫

Γ
ln(t− t0)ϕ′(t)dt = t3

0 − t2
0,
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where the function f (t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = t2.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the solution of a system of linear algebraic equations
by the replacement of the integral with a proper quadrature sum.

Points of t Exact solution Approx solution Error
1.0000 1.0000e+000 1.00e+000 +2.07e-014i 3.15e-014
3.68e-001 +9.29e-001i -7.28e-001 +6.84e-001i -7.28e-001 +6.84e-001i 3.37e-014
-7.70e-001 +6.37e-001i 1.87e-001 -9.82e-001i 1.87e-001 -9.82e-001i 3.19e-014
-8.44e-001 -5.35e-001i 4.25e-001 +9.04e-001i 4.25e-001 +9.04e-001i 2.86e-014
3.09e-001 -9.51e-001i -8.09e-001 -5.87e-001i -8.09e-001 -5.87e-001i 2.75e-014
9.98e-001 -6.27e-002i 9.92e-001 -1.25e-001i 9.92e-001 -1.25e-001i 3.25e-014
Table 1. The exact and approximate solutions of example 1 in some arbitrary points

and the error

Example 2
Consider the weakly singular integro-differential equation on the unit circle Γ

ϕ(t0) +
∫

Γ
ln(t− t0)ϕ′(t)dt =

1
t0 + 2

,

where the function f (t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) =
1

t + 2
.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the solution of a system of linear algebraic equations
by the replacement of the integral with a proper quadrature sum.

Points of t Exact solution Approx solution Error
1.0000 3.3333e-001 3.33e-001 -3.70e-007i 5.13e-007
3.68e-001 +9.29e-001i 3.65e-001 -1.43e-001i 3.65e-001 -1.43e-001i 1.64e-006
-7.70e-001 +6.37e-001i 6.41e-001 -3.32e-001i 6.41e-001 -3.32e-001i 1.73e-005
-8.44e-001 -5.35e-001i 7.12e-001 +3.30e-001i 7.12e-001 +3.30e-001i 2.64e-005
3.09e-001 -9.51e-001i 3.70e-001 +1.52e-001i 3.70e-001 +1.52e-001i 1.00e-006
9.98e-001 -6.27e-002i 3.33e-001 +6.98e-003i 3.33e-001 +6.98e-003i 8.75e-007

Table 2. The exact and approximate solutions of example 2 in some arbitrary points
and the error

Example 3
Consider the weakly singular integro-differential equation on the unit circle Γ

ϕ(t0) +
∫

Γ
ln(t− t0)ϕ′(t)dt =

3
t0

,

where the function f (t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) =
1
t

.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the solution of a system of linear algebraic equations
by the replacement of the integral with a proper quadrature sum.
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Points of t Exact solution Approx solution Error
1.0000 1.000000e+000 9.99e-001 -1.61e-005i 5.82e-005
3.68e-001 +9.29e-001i 3.68e-001 -9.29e-001i 3.68e-001 -9.29e-001i 5.09e-005
-7.70e-001 +6.37e-001i -7.70e-001 -6.37e-001i -7.70e-001 -6.37e-001i 5.09e-005
-8.44e-001 -5.35e-001i -8.44e-001 +5.35e-001i -8.44e-001 +5.35e-001i 5.09e-005
3.09e-001 -9.51e-001i 3.09e-001 +9.51e-001i 3.09e-001 +9.51e-001i 5.82e-005
9.98e-001 -6.27e-002i 9.98e-001 +6.27e-002i 9.98e-001 +6.27e-002i 5.09e-005
Table 3. The exact and approximate solutions of example 2 in some arbitrary points

and the error

4 Conclusion

In this work we remark the convergence of the method to the exact solution with a considerable accuracy for
the weakly singular integro-differential equations. This numerical results show that the accuracy improves
with increasing of the number of points on the curve. Finally we confirm that this method lead us to the good
approximation of the exact solution.
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Bolyai. Studia. Mathematica 41 (1996), no. 3, 1–8.

[2] L.M. Delves, J.L. Mohamed, Computational methods for integral equation, Cambridge University press,
(1985).

[3] E. Ladopoulos, Singular Integral Equations: Linear and non- linear theory and its applications in science
and engineering, 551p. Springer, Berlin, Heidelberg, New York (2000).

[4] G. Micula and G. Fairweather, Direct numerical spline methods for first-order Fredholm integrodifferential
equations, Revue d’Analyse Numerique et de Theorie de l’Approximation 22 (1993), no. 1, 59–66.

[5] M. NADIR, Adapted Quadratic Approximation for Logarithmic kernel Integrals, in Fasciculi mathematici
49, (2) pp 75-85 (2012).

[6] M. NADIR, Numerical Solution of the Singular Integral Equations of the First Kind on the Curve, in
Analele Universitatii de Vest,Timisoara Seria Matematica-Informatica 51 (1) pp 109-119 (2013).

[7] M. NADIR, Adapted linear Approximation for Logarithmic kernel Integrals, in Journal of Approximation
Theory and Applied Mathematics 3 pp 37-44 ( 2014).

Received: December 18, 2014; Accepted: March 25, 2015

UNIVERSITY PRESS
Website: http://www.malayajournal.org/



Malaya J. Mat. 3(2)(2015) 191–201

On local attractivity of nonlinear functional integral equations via

measures of noncompactness

B. C. Dhagea,∗, S. B. Dhagea, S. K. Ntouyasb,† and H. K. Pathakc,‡

aKasubai, Gurukul Colony, Ahmedpur-413 515, Dist: Latur, Maharashtra, India.

bDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, Greece.

cSchool of Studies in Mathematic, Pt. Ravishankar Shukla University, Raipur (C.G.) 492010, India.

Abstract

In this paper, we prove the local attractivity of solutions for a certain nonlinear Volterra type functional
integral equations. We rely on a measure theoretic fixed point theorem of Dhage (2008) for nonlinear D-set-
contraction in Banach spaces. Finally, we furnish an example to validate all the hypotheses of our main result
and to ensure the existence and ultimate attractivity of solutions for a numerical nonlinear functional integral
equation.
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1 Introduction

The last three decades witnessed the active area of research in the connotation of measure theoretic fixed
point theory and its applications to the problems of nonlinear differential and integral equations. The novelty
of this approach lies in the advantage that along with existence we obtain some additional information about
some characterizations of the solutions automatically. Local and global stability of the solutions of certain
functional integral equations is discussed via measures of noncompactness by many researchers (see, for
instance, Banas and Goebel [3], Banas and Rzepka [4], Dhage [8, 9], Dhage and Ntouyas [13] and the references
therein). Very recently, Dhage [8] derived an abstract fixed point result more general than Darbo [5] fixed point
theorem using the notion of measures of noncompactness and applied to stability problem of certain nonlinear
functional integral equations. See Dhage and Lakshmikantham [12] and the references therein. Inspired or
motivated by the idea of D-functions that given in the examples of Dhage [10, 11], we prove in this paper the
local attractivity of solutions for a certain nonlinear Volterra type functional integral equations via Dhage’s
measure theoretic fixed point theorem.

We now consider the following generalized nonlinear functional integral equation (in short GNFIE)

x(t) = u(t, x(t)) + p
( ∫ γ(t)

0
f (t, s, x(θ(s))ds,

∫ σ(t)

0
g(t, s, x(η(s))ds

)
(1.1)
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for t ∈ R+ = [0, ∞) ⊂ R, where u : R+ × R → R, f , g : R+ × R+ × R → R, p : R × R → R and
γ, θ, σ, η : R+ → R+ are continuous functions.

Notice that the functional integral equation (1.1) is “general” in the sense that it includes several classes of
known integral equations discussed in the literature (see Banas and Rzepka [4], Dhage [8], Dhage and Ntouyas
[13], O’Regan and Meehan [15], Krasnoselskii [14], Väth [16], Dhage [7, 8] and the references therein). In this
paper, we intend to obtain solution of GNFIE (1.1) in the space BC(R+, R) of all bounded and continuous
real-valued functions on R+. We use a fixed point theorem of Dhage [8] involving general measures of
noncompactness to prove the existence and ultimate attractivity of solutions of GNFIE (1.1) under certain new
conditions. The results of this paper are new to the theory of nonlinear differential and integral equations.

2 Auxiliary Results

This section is devoted to presenting a few auxiliary results needed in the sequel. Assume that E is a
Banach space with the norm ‖ · ‖ and the zero element θ. Denote by B[x, r] the closed ball centered at x and
with radius r. If X, Y are arbitrary subsets of E then the symbols λX and X + Y stand for the usual algebraic
operations on those sets. Moreover, we write X, co X to denote the closure and the closed convex hull of X,
respectively.

Further, let Pp(E) denote the class of all nonempty subsets of E with a property p. Here p may be
p =closed (cl, in short), p =bounded (bd, in short), p =relatively compact (rcp, in short) etc. Thus,
Pcl(E),Pbd(E),Pcl,bd(E) and Prcp(E) denote respectively the classes of closed, bounded, closed and bounded
and relatively compact subsets of E.

The axiomatic way of defining the concept of the measure of noncompactness has been adopted in several
papers in the literature. See Akhmerov et al. [2], Deimling [6], Väth [16] and Zeidler [17]. In this paper, we
adopt the following axiomatic definition of the measure of noncompactness in a Banach space given in Banas
and Goebel [3] and Dhage [7, 8].

Definition 2.1. A mapping µ : Pbd(E) → R+ is called the measure of noncompactness in E if it satisfies the following
conditions:

1o The family ker µ = {X ∈ Pbd(E) : µ(X) = 0} is nonempty and ker µ ⊂ Prcp(E).

2o µ(X) = µ(X).

3o µ(co X) = µ(X).

4o X ⊂ Y ⇒ µ(X) ≤ µ(Y).

5o If {Xn} is a decreasing sequence of sets in Pcl,bd(E) such that lim
n→∞

µ(Xn) = 0, then the intersection set X∞ =
∞⋂

n=1
Xn is nonempty.

The family ker µ described in 1o is said to be the kernel of the measure of noncompactness µ. We refer to
[2, 3, 4, 6, 16, 17] for further facts concerning the measures of noncompactness and their properties. Let us
only observe that the intersection set X∞ is a member of the family ker µ. Indeed, since µ(X∞) ≤ µ(Xn) for
any n, we infer that µ(X∞) = 0. In view of 1o this yields that X∞ ∈ ker µ.

A measure µ of noncompactness is said to be sublinear if

6o µ(X + Y) ≤ µ(A) + µ(B) for all X, Y ∈ Pbd(E), and

7o µ(λX) ≤ |λ|µ(X) for all λ ∈ R and X ∈ Pbd(E).

Let E = BC(R+, R) be the space of all continuous and bounded functions on R+ and define a norm ‖ · ‖
in E by

‖x‖ = sup{|x(t)| : t ≥ 0}.
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Clearly E is a Banach space with this supremum norm. Let us fix a bounded subset A of E and a positive
real number T. For any x ∈ A and ε ≥ 0, denote by ωT(x, ε), the modulus of continuity of x on the interval
[0, T] defined by

ωT(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T], |t− s| ≤ ε}.

Moreover, let
ωT(A, ε) = sup{ωT(x, ε) : x ∈ A},

ωT
0 (A) = lim

ε−→0
ωT(A, ε),

ω0(A) = lim
T−→∞

ωT
0 (A).

By A(t) we mean a set in R defined by A(t) = {x(t)|x ∈ A} for t ∈ R+. We denote diam (A(t)) =
sup{|x(t)− y(t)| : x, y ∈ A}. Finally we define a function µ on Pbd(E) by the formula

µ(A) = ω0(A) + lim sup
t−→∞

diam(A(t)). (2.2)

It has been shown in Banas and Goebel [3] that µ is a sublinear measure of noncompactness in E. From the
definition of the measure µ, it is clear that the thickness of the bundle of functions A(t) tends to zero as t tends
to ∞. This particular characteristic of µ has been utilized in formulating the main existence and attractiivity
result of this paper.

Before going to the key tool used in this paper, we recall the following useful definition introduced by
Dhage [8].

Definition 2.2. A mapping T : E → E is called D-set-Lipschitz if there exists a upper semi-continuous nondecreasing
function ϕ : R+ → R+ such that µ(T (A)) ≤ ϕ(µ(A) for all A ∈ Pbd(E) with T (A) ∈ Pbd(E), where ϕ(0) = 0. The
function ϕ is sometimes called a D-function of T on E. Especially when ϕ(r) = kr, k > 0, U is called a k-set-Lipschitz
mapping and if k < 1, then T is called a k-set-contraction on E. Further, if ϕ(r) < r for r > 0, then T is called a
nonlinear D-set-contraction on E.

Lemma 2.1 (Dhage [8]). If ϕ is a D-function with ϕ(r) < r for r > 0, then limn→∞ ϕn(t) = 0 for all t ∈ [0, ∞) and
vice-versa.

Using Lemma 2.1, Dhage [8] proved the following important result.

Theorem 2.1. Let C be a closed, convex and bounded subset of a Banach space E and let T : C → C be a continuous
and nonlinear D-set-contraction. Then T has a fixed point.

Remark 2.1. Let us denote by Fix(T ) the set of all fixed points of the operator T which belong to C. It
can be shown that the set Fix(T ) existing in Theorem 2.1 belongs to the family ker µ. Indeed, if Fix(T ) 6∈
ker µ, then µ(Fix(T )) > 0 and T (Fix(T )) = Fix(T ). Now from nonlinear set-contractivity it follows that
µ(T (Fix(T ))) ≤ φ(µ(Fix(T ))) which is a contradiction since φ(r) < r for r > 0. Hence Fix (T ) ∈ ker µ. This
particular characteristic has been utilized in our study of local attractivity of the solutions of nonlinear integral
equations.

3 Local Attractivity Results

In this section we prove our main existence and attractivity results for the GNFIE (1.1) under some suitable
conditions. We need the following definition in what follows. Let us assume that E = BC(R+, R) and let Ω
be a subset of E. Let T : E → E be an operator and consider the operator equation in E,

T x(t) = x(t) for all t ∈ R+. (3.3)

Below we give an attractivity characterizations of the solutions for the operator equation (3.3) on R+.
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Definition 3.3. We say that solutions of the equation (3.3) are locally ultimately attractive if there exists a closed ball
B[x0, r0] in the space BC(R+, R) for some x0 ∈ BC(R+, R) such that, for arbitrary solutions x = x(t) and y = y(t)
of equation (3.3) belonging to B[x0, r0] ∩Ω, we have

lim
t→∞

(x(t)− y(t)) = 0. (3.4)

In case the limit (3.2) is uniform with respect to the set B[x0, r0] ∩Ω, i.e., for each ε > 0 there exists T > 0 such that

|x(t)− y(t)| ≤ ε (3.5)

for all solutions x, y ∈ B[x0, r0]∩Ω of (3.3) and for t ≥ T, we will then say that solutions of equation (3.3) are uniformly
locally ultimately attractive on R+.

We consider the following set of hypotheses in the sequel.

(H0) The functions γ, θ, σ, η : R+ −→ R+ are continuous and limt−→∞ γ(t) = 0.

(H1) The function u : R+ ×R −→ R is continuous and there exists a continuous and nondecreasing function
ϕ : R+ → R+ such that

|u(t, x)− u(t, y)| ≤ ϕ(|x − y|)

for each t ∈ R+ and x, y ∈ R. Moreover, we assume ϕ(r) < r for r > 0.

(H2) The function U : R+ −→ R+ defined by U(t) = |u(t, 0)| is bounded with c1 = supt≥0 U(t).

(H3) The function f : R+ ×R+ ×R −→ R is continuous and there exist a constant k > 0 and a function ϕ as
appears in (H1) such that

| f (t, s, x)− f (t, s, y)| ≤ k ϕ(|x − y|)

for t, s ∈ R+ and x, y ∈ R.

(H4) The function F : R+ −→ R+ defined by F(t) =
∫ γ(t)

0
| f (t, s, 0)|ds is bounded with c2 = supt≥0 F(t).

(H5) The function g : R+ ×R+ ×R −→ R is continuous and there exist functions a, b : R+ −→ R+ satisfying

|g(t, s, x)| ≤ a(t)b(s)

for t, s ∈ R+ and x ∈ R. Moreover, lim
t−→∞

a(t)
∫ σ(t)

0
b(s)ds = 0.

(H6) The function p : R×R −→ R satisfies the following condition

|p(t1, t2)− p(t′1, t′2)| ≤ |t1 − t′1|+ |t2 − t′2|

for all t1, t2, t′1, t′2 ∈ R. Moreover, p(0, 0) = 0.

Remark 3.2. Since the hypothesis (H0) holds, there exists a constant c0 > 0 such that c0 = supt≥0 γ(t). Similarly,

since (H5) holds, the function v : R+ → R+ defined by v(t) = a(t)
∫ σ(t)

0 b(s)ds is continuous and the number
c3 = supt≥0 v(t) exists.

Theorem 3.2. Assume that the hypotheses (H0) − (H6) hold. Further if there exists a positive solution r0 of the
inequality

(1 + c0k)ϕ(r) + q ≤ r, (3.6)

where q is the constant defined by q = ∑3
i=1 ci, then the GNFIE (1.1) has a solution and the solutions are uniformly

locally ultimately attractive on R+.
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Proof. Now consider the closed ball B[0, r0] in E centered at origin of radius r0. Define the mapping T on E by

T x(t) = u(t, x(t)) + p
( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
(3.7)

for t ∈ R+. We shall show that the map T satisfies all the conditions of Theorem 3.1 on E.

Step I: First we show that T defines a mapping T : E −→ E. Since p, q, γ, σ are continuous, T x is
continuous and hence it is measurable on R+ for each x ∈ E. As θ(R+) ⊆ R+, we have maxt≥0 |x(θ(t))| ≤
maxt≥0 |x(t)|. On the other hand, hypotheses (H0)− (H3) and (H5) imply that

|T x(t)| ≤ |u(t, x(t))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
− p(0, 0)

∣∣∣
≤ |u(t, x(t))− u(t, 0)|+ |u(t, 0)|+

∣∣∣ ∫ γ(t)

0
f (t, s, x(θ(s)))ds

∣∣∣+ ∣∣∣ ∫ σ(t)

0
g(t, s, x(η(s)))ds

∣∣∣
≤ ϕ(|x(t)|) + |u(t, 0)|+

∫ γ(t)

0
| f (t, s, x(θ(s)))|ds +

∫ σ(t)

0
|g(t, s, x(η(s)))|ds

≤ ϕ(|x(t)|) + |u(t, 0)|+
∫ γ(t)

0
| f (t, s, x(θ(s)))− f (t, s, 0)|ds +

∫ γ(t)

0
| f (t, s, 0)|ds +

∫ σ(t)

0
a(t)b(s)ds

≤ ϕ(‖x‖) + U(t) + kγ(t)ϕ(‖x‖) + c2 + v(t)

≤ (1 + c0 k)ϕ(‖x‖) + q,

for all t ∈ R+. Taking supemum over t, we obtain,

‖T x‖ ≤ (1 + c0 k)ϕ(‖x‖) + q ≤ r. (3.8)

From (3.7), we deduce that T x ∈ E and T defines a mapping T : B[0, r0] → B[0, r0].

Step II: We show that T is continuous on B[0, r0]. Let ε > 0 be given and let x, y ∈ B[0, r0] be such that
‖x − y‖ ≤ ε. Then by hypotheses (H1)− (H5)

|T x(t)− T y(t)| ≤ |u(t, x(t))− u(t, y(t))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
− p
( ∫ γ(t)

0
f (t, s, y(θ(s)))ds,

∫ σ(t)

0
g(t, s, y(η(s)))ds

)∣∣∣
≤ ϕ(|x(t)− y(t)|) +

∣∣∣ ∫ γ(t)

0
[ f (t, s, x(θ(s)))− f (t, s, y(θ(s)))]ds

∣∣∣
+
∣∣∣ ∫ σ(t)

0
[g(t, s, x(η(s)))− g(t, s, y(η(s)))]ds

∣∣∣
≤ ϕ(|x(t)− y(t)|) +

∫ γ(t)

0
| f (t, s, x(θ(s)))− f (t, s, y(θ(s)))|ds

+
∫ σ(t)

0
|g(t, s, x(η(s)))− g(t, s, y(η(s)))|ds

≤ ϕ(‖x − y‖) + kγ(t)ϕ(‖x − y‖) + 2
∫ σ(t)

0
a(t)b(s)ds

≤ (1 + c0k)ϕ(ε) + 2v(t)

≤ (1 + c0k)ε + 2v(t). (3.9)

Since v(t) → 0 as t → ∞, there exists T > 0 such that v(t) ≤ ε, ∀t > T. Thus if t > T, then from (3.8) we have
that

|T x(t)− T y(t)| ≤ (3 + c0k)ε.

If t < T, then define a function ω = ω(ε) by the formula

ω(ε) = sup{|g(t, s, x)− g(t, s, y)| : t, s ∈ [0, T], x, y ∈ [−r0, r0], |x − y| ≤ ε}. (3.10)

Now g(t, s, x) is continuous and hence uniformly continuous on [0, T]× [0, T]× [−r0, r0]. As a result we have
ω(ε) → 0 as ε → 0. Therefore, from (3.10),
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|T x(t)− T y(t)| ≤ (1 + c0k)ε + σ∗ω(ε)

for all t ∈ R+, where σ∗ = max{σ(t) : t ∈ [0, T]}. Hence, it follows that

‖T x − T y‖ ≤ max{(3 + c0k)ε, (1 + c0k)ε + σ∗ω(ε)}
→ 0 as ε → 0.

Hence T is a continuous mapping from B[0, r0] into itself.

Step III: Here we show that T is a nonlinear set-contraction on B[0, r0]. This will be done in the following
two cases:

Case I : Let A ⊂ B[0, r0] be non-empty. Further fix the number T > 0 and ε > 0. Since the functions f
and g are continuous on compact [0, T] × [0, T] × [−r0, r0], there are constants c4 > 0 and c5 > 0 such that
| f (t, s, x)| ≤ c4 and |g(t, s, x)| ≤ c5 for all t, s ∈ [0, T] and x ∈ [−r0, r0]. Then choosing t, τ ∈ [0, T] such that
|t− τ| ≤ ε and taking into account our hypotheses, we obtain

|T x(t)− T x(τ)| ≤ |u(t, x(t))− u(τ, x(τ))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
−p
( ∫ γ(τ)

0
f (τ, s, x(θ(s)))ds,

∫ σ(τ)

0
g(τ, s, x(η(s)))ds

)∣∣∣
≤ |u(t, x(t))− u(t, x(τ))|+ |u(t, x(τ))− u(τ, x(τ))|

+

∣∣∣∣∣
∫ γ(t)

0
f (t, s, x(θ(s)))ds−

∫ γ(τ)

0
f (τ, s, x(θ(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(t)

0
g(t, s, x(η(s)))ds−

∫ σ(τ)

0
g(τ, s, x(η(s)))ds

∣∣∣∣∣
≤ ϕ(|x(t)− x(τ)|) + |u(t, x(τ))− u(τ, x(τ))|

+

∣∣∣∣∣
∫ γ(t)

0
f (t, s, x(θ(s)))ds−

∫ γ(t)

0
f (τ, s, x(θ(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ γ(t)

0
f (τ, s, x(θ(s)))ds−

∫ γ(τ)

0
f (τ, s, x(θ(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(τ)

σ(t)
g(t, s, x(η(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(τ)

0
[g(t, s, x(η(s)))ds− g(τ, s, x(η(s)))]ds

∣∣∣∣∣
≤ ϕ(|x(t)− x(τ)|) + |u(t, x(τ))− u(τ, x(τ))|

+
∫ γ(t)

0
| f (t, s, x(θ(s)))− f (τ, s, x(θ(s)))|ds

+

∣∣∣∣∣
∫ γ(t)

γ(τ)
| f (τ, s, x(θ(s)))| ds

∣∣∣∣∣+
∣∣∣∣∣
∫ σ(τ)

σ(t)
|g(t, s, x(η(s)))| ds

∣∣∣∣∣
+
∫ σ(τ)

0
|g(t, s, x(η(s)))ds− g(τ, s, x(η(s)))|ds

≤ ϕ(|x(t)− x(τ)|) + ωT(u, ε) + kωT( f , ε) + c4ωT(γ, ε)

+TωT(g, ε) + c5ωT(σ, ε),

where

ωT(γ, ε) = sup{|γ(t)− γ(τ)| : t, τ ∈ [0, T], |t− τ| ≤ ε},

ωT(σ, ε) = sup{|σ(t)− σ(τ)| : t, τ ∈ [0, T], |t− τ| ≤ ε},
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ωT(u, ε) = sup{|u(t, x)− u(τ, x)| : t, τ ∈ [0, T], |t− τ| ≤ ε, |x| ≤ r0},

ωT( f , ε) = sup{| f (t, s, x)− f (τ, s, x)| : t, τ ∈ [0, T], |t− τ| ≤ ε, |x| ≤ r0},

ωT(g, ε) = sup{|g(t, s, x)− g(τ, s, x)| : t, τ ∈ [0, T], |t− τ| ≤ ε, |x| ≤ r0}.

The above inequality further implies that

ωT(T x, ε) ≤ ϕ(ωT(x, ε)) + ωT(u, ε) + c0kωT( f , ε)

+c4ωT(γ, ε) + TωT(g, ε) + c5ωT(σ, ε).
(3.11)

Since by hypotheses, the functions u, ϕ, γ, σ and f , g are continuous respectively on [0, T] and [0, T] ×
[0, T] × [−r0, r0], we infer that they are uniformly continuous there. Hence we deduce that ϕ(ωT(x, ε)) →
0, ωT(u, ε) → 0, ωT(γ, ε) → 0, ωT( f , ε) → 0, ωT(g, ε) → 0 as ε → 0. Hence from the above estimate (3.11), we
obtain

ωT
0 (T (A)) = 0,

and consequently
ω0(T (A)) = 0. (3.12)

Case II: Now for any x, y ∈ A one has:

|T x(t)− T y(t)| ≤ |u(t, x(t))− u(t, y(t))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
−p
( ∫ γ(t)

0
f (t, s, y(θ(s)))ds,

∫ σ(t)

0
g(t, s, y(η(s)))ds

)∣∣∣
≤ ϕ(|x(t)− y(t)|) +

∣∣∣ ∫ γ(t)

0
f (t, s, x(θ(s)))− f (t, s, y(θ(s)))ds

∣∣∣
+
∣∣∣ ∫ σ(t)

0
g(t, s, x(η(s)))ds− g(t, s, y(η(s)))ds

∣∣∣
≤ ϕ(diam (A(t))) +

∫ γ(t)

0
| f (t, s, x(θ(s)))− f (t, s, y(θ(s)))|ds

+
∫ σ(t)

0
|g(t, s, x(η(s)))ds− g(t, s, y(η(s)))|ds

≤ ϕ(diam (A(t))) + k
∫ γ(t)

0
|x(θ(s))− y(θ(s))| ds + 2v(t)

≤ ϕ(diam (A(t))) + k
∫ γ(t)

0
diam A(θ(s))ds + 2v(t)

≤ ϕ(diam (A(t))) + k
∫ γ(t)

0
diam (A) ds + 2v(t)

≤ ϕ(diam (A(t))) + kγ(t)diam (A) ds + 2v(t).

As a result of the above inequality we obtain

diam (T (A(t))) ≤ ϕ(diam (A(t))) + kγ(t)diam (A) + 2v(t).

Taking the limit superior as t → ∞ in the above inequality yields

lim sup
t→∞

diam (T (A(t))) ≤ ϕ

(
lim sup

t→∞
diam (A(t))

)
+ k lim sup

t→∞
γ(t) diam A + 2 lim sup

t→∞
v(t).

Since both the limits, namely limt→∞ v(t) and limt→∞ γ(t) exist and each one is equal to 0, it follows that
lim supt→∞ v(t) = 0 and lim supt→∞ γ(t) = 0. Hence, from the above inequality, we have

lim sup
t→∞

diam (T (A(t))) ≤ ϕ

(
lim sup

t→∞
diam (A(t))

)
. (3.13)
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Now from the inequalities (3.12), (3.13) and the definition of µ it follows that

µ(T (A)) = ω0(T (A)) + lim sup
t→∞

diam (T (A(t)))

≤ ϕ

(
0 + lim sup

t→∞
diam (A(t))

)
≤ ϕ

(
ω0(A) + lim sup

t→∞
diam (A(t))

)
,

or, equivalently,

µ(T (A)) ≤ ϕ(µ(A)), (3.14)

where µ is the measure of noncompactness defined in the space BC(R+, R). This shows that T is a nonlinear
D-set-contraction on B[0, r0]. Thus, the map T satisfies all the conditions of Theorem 2.2 with C = B[0, r0]
and an application of it yields that T has a fixed point in B[0, r0]. This further by definition of T implies that
the GNFIE (1.1) has a solution in B[0, r0]. Moreover, taking into account that the image of B[0, r0] under the
operator T is again contained in the ball B[0, r0] we infer that the set F (T ) of all fixed points of T is contained
in B[0, r0]. If the set F (T ) contains all solutions of the equation (1.1), then we conclude from Remark 2.1 that
the set F (T ) belongs to the family ker µ. Now, taking into account the description of sets belonging to ker µ

(given in Section 2) we deduce that all solutions of the equation (1.1) are uniformly locally ultimately attractive
on R+. This completes the proof.

4 An Example

As an application, we consider the following nonlinear functional integral equation

x(t) =
1

1 + t
ln
(

1 +
1
2
|x(t)|

)
+
∫ t2

t3+1

0

(
1 + t

1 + t + t2

)
ln
(

1 +
1
2
|x|
)

ds

+
∫ t

1+t

0
exp(−t2)

s2 cos x(s)
1 + | sin x(s)|

ds, (4.15)

for all t ∈ R+.

Let

p(t, t′) = t + t′, ϕ(t) = ln
(

1 +
1
2

t
)

, θ(t) = t2 + 1, σ(t) =
t

1 + t
, η(t) = t,

γ(t) =
t2

t3 + 1
, u(t, x) =

1
1 + t

ln
(

1 +
1
2
|x(t)|

)
, a(t) = (1 + t)3 exp(−t), b(s) = s2,

for all t, t′, s ∈ R+, and

f (t, s, x) =
(

1 + t
1 + t + t2

)
ln
(

1 +
1
2
|x|
)

,

g(t, s, x) = (1 + t)3 exp(−t)
s2 cos x(s)

1 + | sin x(s)|

for all t, s ∈ R+ and x ∈ R. Notice that:

(i) The functions γ, θ, σ, η are obviously continuous and lim
t→∞

γ(t) = lim
t→∞

t2

1 + t3 = 0. Also c0 = sup
t≥0

γ(t) =

sup
t≥0

t2

1 + t3 ≈ 0.441.
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(ii) For arbitrary fixed x, y ∈ R we have

|u(t, x)− u(t, y) =
1

1 + t

∣∣∣∣ln(1 +
1
2
|x|
)
− ln

(
1 +

1
2
|y|
)∣∣∣∣

≤ ln
1 + 1

2 |x|
1 + 1

2 |y|
≤ ln

(
1 +

1
2
· |x| − |y|

1 + 1
2 |y|

)

< ln
(

1 +
1
2
|x − y|

)
= ϕ(|x − y|).

Therefore, hypothesis (H1) is satisfied with ϕ(r) = ln
(

1 +
1
2

r
)

< r, for r > 0.

(iii) (H2) is satisfied since U(t) = |u(t, 0)| = 0 and c1 = supt≥0 |u(t, 0)| = 0.

(iv) For arbitrary fixed x, y ∈ R such that |x| ≥ |y| and for t > 0 we obtain

| f (t, s, x)− f (t, s, y)| =
(

1 + t
1 + t + t2

)
ln

1 + 1
2 |x|

1 + 1
2 |y|

≤ ϕ(|x − y|),

as in (ii). The case is similar when |y| ≥ |x|. Thus (H3) is satisfied with k = 1 and ϕ(r) = ln
(

1 +
1
2

r
)

<

r, for r > 0.

(v) Next, hypothesis (H4) is satisfied, since the function F : R+ → R defined by

F(t) =
∫ γ(t)

0
| f (t, s, 0)|ds =

∫ t2

t3+1

0
0 ds = 0

is bounded with c2 = supt≥0 F(t) = 0.

(vi) The function g acts continuously from the set R+ ×R+ ×R into R. Moreover, we have

|g(t, s, x)| ≤ (1 + t)3 exp(−t) s2 = a(t)b(s),

for all t, s ∈ R+ and x ∈ R, then we can see that hypothesis (H5) is satisfied. Indeed, we have

lim
t→∞

a(t)
∫ t

1+t

0
b(s)ds = lim

t→∞
(1 + t)3 exp(−t)

∫ t
1+t

0
s2ds

=
1
3

lim
t→∞

t3 exp(−t) = 0.

Also we have c3 = sup
t≥0

1
3

t3 exp(−t) ≈ 0.37.

(vii) Obviously, hypothesis (H6) is satisfied.

The inequality
(1 + c0k)ϕ(r) + q ≤ r

reduces to the form

(1 + 0.441) ln
(

1 +
1
2

r
)

+ 0.37 ≤ r.

It is easily seen that each number r ≥ 0.6 satisfies the above inequality. Thus, as the number r0 we can take
r0 = 0.6. Note that this estimate of r0 can be improved.

Keeping in view the above observations, we find that the functions γ, ϕ, θ, σ, η, u, f , g,a and b satisfy all
the conditions of Theorem 3.2 and hence the GNFIE (4.1) has at least one solution in the space BC(R+, R) and
the solutions of the equation (4.1) are uniformly locally ultimately attractive on R+ located in the ball B[0, 0.6].
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Remark 4.3. We remark that:

(i) Taking u(t, x(t)) = q(t), p(t, t′) = t + t′ for all t, t′ ∈ R+ and for any x ∈ R the generalized nonlinear
functional integral equation (4.1) reduces to the nonlinear functional integral equation considered by
Dhage [8] which, in turn, includes several classes of known integral equations discussed in the literature.

(ii) Taking p(t, t′) = t′, γ(t) = t and θ(s) = s for all t, s ∈ R+, we retrieve the functional integral equation
studied by Aghajani, Banas and Sabzali [1].

(iii) The authors in [1] generalized Theorem 2.2 under the weaker upper semi-continuity of the D-function ψ

and the requirement of the condition that limn→∞ ψn(r) = 0 for all t > 0, however to hold this condition,
they needed an additional condition on the function ψ that ψ(r) < r for r > 0. But in actual practice, it is
very difficult to verify this condition and the authors in [1] did not provide any example of the function
ψ illustrating the comparison between two conditions in applications. Moreover, for applications to
the existence result, they assumed an additional condition on the function ψ, namely, supperadditivity
which automatically yields the upper semi-continuity together with the monotone characterization of
the function ψ and so, the existence theorem for the nonlinear integral equation considered in Aghajani
et.al. [1] follows by a direct application of Theorem 2.2 of Dhage [8].
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Abstract

In this paper, using a Bessel generalized translation , we prove the estimates for the Bessel transform in the
space L2

p(R+) on certain classes of functions.
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1 Introduction and preliminaries

Integral transforms and their inverses (e.g., the Bessel transform) are widely used to solve various
problems in calculus, mechanics, mathemtical physics, and computational mathematics (see, e.g.,[3, 8]).

In [7], E.C. Titchmarsh characterized the set of functions in L2(R) satisfying the Cauchy Lipschitz condition
for the Fourier transform, namely we have

Theorem 1.1. Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the following are equivalents

1. ‖ f (x + h)− f (x)‖L2(R) = O(hα) as h −→ 0,

2.
∫
|λ|≥r |F (λ)|2dλ = O(r−2α) as r −→ +∞,

where F stands for the Fourier transform of f .

The main aim of this paper is to establish a generalization of Theorem 1.1 in the Bessel transform setting
by means of the Bessel generalized translation. We point out that similar results have been established in the
context of noncompact rank 1 Riemannian symmetric spaces and of Jacobi transform (see [2, 6]).

In this section, we give some definition and preliminaries concerning the Bessel transform. Everywhere
below p is a real number, p ≥ − 1

2 .

Let

D =
d2

dx2 +
(2p + 1)

x
d

dx
be the Bessel differential operator. We introduce the normalized Bessel function of the first kind jp defined by

jp(z) = Γ(p + 1)
∞

∑
n=0

(−1)n

n!Γ(n + p + 1)

( z
2

)2n
, z ∈ C, (1.1)

where Γ(x) is the gamma-function (see[4]). The function y = jp(x) satisfies the differential equation

∗Corresponding author.
E-mail address: m elhamma@yahoo.fr (Mohamed El Hamma), rjdaher024@gmail.com(Radouan Daher), salahwadih@gmail.com(Salah El
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Dy + y = 0

with the initial conditions y(0) = 1 and y′(0) = 0. The function jp(x) is infinitely differentiable, even, and,
moreover entire analytic.

From (1.1) we see that

lim
z−→0

jp(z)− 1
z2 6= 0

by consequence, there exist c > 0 and η > 0 satisfying

|z| ≤ η =⇒ |jp(z)− 1| ≥ c|z|2 (1.2)

From [1], we have

|jp(x)| ≤ 1. (1.3)

and

1− jp(x) = O(x2), 0 ≤ x ≤ 1. (1.4)

Assume that L2
p(R+), p ≥ − 1

2 , is the Hilbert space of measurable functions f (x) on R+ with the finite
norm

‖ f ‖ = ‖ f ‖2,p =
(∫ ∞

0
| f (x)|2x2p+1dx

)1/2

Given f ∈ L2
p(R+), the Bessel transform is defined by

f̂ (λ) =
∫ ∞

0
f (t)jp(λt)t2p+1dt, λ ∈ R+.

The inverse Bessel transform is given by the formula

f (t) = (2pΓ(p + 1))−2
∫ ∞

0
f̂ (λ)jp(λt)λ2p+1dλ.

From [3], we have the Parseval’s identity∫ ∞

0
| f̂ (λ)|2λ2p+1dλ = 22pΓ2(p + 1)

∫ ∞

0
| f (t)|2t2p+1dt.

In L2
p(R+), consider the Bessel generalized translation Th (see [3, p. 121])

Th f (x) = cp

∫ π

0
f (

√
x2 + h2 − 2xhcost)sin2ptdt, p ≥ −1

2
, h > 0,

where

cp =
(∫ π

0
sin2ptdt

)−1
=

Γ(p + 1)
Γ( 1

2 )Γ(p + 1
2 )

From [5], we note importants properties of Bessel transform

(̂D f )(λ) = (−λ2) f̂ (λ). (1.5)

and

(̂Th f )(λ) = jp(λh) f̂ (λ). (1.6)

We define the differences of first and higher orders as
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∆h f (x) = Th f (x)− f (x) = (Th − E) f (x)

∆k
h f (x) = ∆h(∆k−1

h f (x)) = (Th − E)k f (x) =
∞

∑
i=1

(−1)k−i(k
i )Ti

h f (x), (1.7)

where T0
h f (x) = f (x), Ti

h f (x) = Th(Ti−1
h f (x)), i = 1, 2, .., k; k=1,2,.... and E is the unit operator in the space

L2
p(R+).

2 Main results

Lemma 2.1. For f ∈ L2
p(R+). Then

‖∆k
hDr f (x)‖2 =

∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

Proof From formula (1.5), we have

(̂Dr f )(t) = (−1)rt2r f̂ (t); r = 0, 1, 2, .... (2.8)

We use formulas (1.6) and (2.8), we conclude that

T̂i
hDr f (t) = (−1)r jip(th)t2r f̂ (t); 1 ≤ i ≤ k. (2.9)

Or, from formulas (1.7) and (2.9) the image ∆k
hDr f (x) under the Bessel transform has the form

∆̂k
hDr f (t) = (−1)r(jp(th)− 1)kt2r f̂ (t).

By Parseval’s identity, we have the result.

Our main result is as follows

Theorem 2.2. Let f ∈ L2
p(R+). Then the following are equivalents

1. ‖∆k
hDr f (x)‖ = O(hα) as h −→ 0, (0 < α < k)

2.
∫ ∞

s t4r| f̂ (t)|2t2p+1dt = O(s−2α) as s −→ +∞

Proof 1) =⇒ 2) Suppose that

‖∆k
hDr f (x)‖ = O(hα) as h −→ 0

From Lemma 2.1, we have

‖∆k
hDr f (x)‖2 =

∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt.

By formula (1.2), we obtain∫ η
h

η
2h

t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt ≥ c2kη4k

24k

∫ η
h

η
2h

t4r| f̂ (t)|2t2p+1dt.

There exists then a positive constant C such that

∫ η
h

η
2h

t4r| f̂ (t)|2t2p+1dt ≤ C
∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

≤ Ch2α
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Then ∫ 2s

s
t4r| f̂ (t)|2t2p+1dt = O(s−2α)

for all s > 0.

Moreover, we have

∫ ∞

s
t4r| f̂ (t)|2t2p+1dt =

∞

∑
j=0

∫ 2j+1s

2js
t4r| f̂ (t)|2t2p+1dt

≤ C
∞

∑
j=0

(2js)−2α

≤ Cs−2α.

This proves that ∫ ∞

s
t4r| f̂ (t)|2t2p+1dt = O(s−2α) as s −→ +∞.

2) =⇒ 1) Suppose now that ∫ ∞

s
t4r| f̂ (t)|2t2p+1dt = O(s−2α) as s −→ +∞.

We have to show that ∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt = O(h2α) as h −→ 0.

We write ∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt = I1 + I2,

where

I1 =
∫ 1/h

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

and

I2 =
∫ ∞

1/h
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

From formula (1.3), we obtain

I2 ≤ 4k
∫ ∞

1/h
t4r| f̂ (t)|2t2p+1dt = O(h2α) as h −→ 0.

Set

ψ(t) =
∫ ∞

t
x4r| f̂ (x)|2x2p+1dx

From formula (1.4) and integration by parts, we have

I1 = −
∫ 1/h

0
|jp(th)− 1|2k|ψ′(t)dt

≤ −h2k
∫ 1/h

0
t2kψ′(t)dt

≤ −ψ(
1
h
) + 2kh2k

∫ 1/h

0
t2k−1−2αdt
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Or, we see that α < k the integral exists. Then

I1 ≤ 2k
2k− 2α

h2kh−2k+2α

≤ Ch2α

and this ends the proof.

Corollary 2.1. Let f ∈ L2
p(R+), (p ≥ − 1

2 ), and let

‖∆k
hDr f (x)‖ = O(hα) as h −→ 0.

Then ∫ ∞

s
| f̂ (t)|2t2p+1dt = O(s−4r−2α) as s −→ +∞
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1 Introduction

In 1993, N.Palaniappan and K.Chandrasekhara Rao[8], introduced the concept of regular generalized
closed(briefly, rg-closed) sets and regular generalized open (briefly, rg-open) sets in a topological space.
They are also defined regular generalized continuous(briefly, rg-continuous) map and regular generalized
irresolute(briefly, rg-irresolute) map between topological spaces and studied some of their properties. In
1999, Y.Gnanambal and K.Balachandran [5], introduced and investigated the concept of generalized pre-
regular closed (briefly, gpr-closed)sets and generalized pre-regular open (briefly, gpr-open) sets in topological
spaces.Further they introduced gpr-continuous functions, gpr-connected spaces and gpr-compact spaces[6].
A.M.Ai-Shibani[1] introduced and investigated rg-compact spaces and rg-connected spaces using rg-open
sets.
The purpose of this paper is to characterize these spaces using the well known fact that ” every singleton is
rg-open and hence gpr-open”[3].

Throughout this paper, space X mean topological space (X, τ). For a subset A of X, the closure, rg-
closure,gpr-closure, interior and the complement of A are denoted by cl(A), rg-cl(A),gpr-cl(A), int(A) and
Ac respectively.

2 Definitions and Basic Properties

Definition 2.1. (i) A subset A of a space X is said to be regular open if A= int(cl(A))and regular closed if
A=cl(int(A))[9].
(ii) A subset A of a space X is said to be pre-open if A⊆ int(cl(A)) and pre-closed if cl(int(A))⊆A[7].
The pre-closure of a subset A of X is the intersection of all pre-closed sets containing A and is denoted by pcl(A).

Definition 2.2. A subset A of a space X is said to be regular generalized closed (briefly. rg-closed)[8] if cl(A)⊆U
whenever A⊆U, where U is regular open.It is said to be be regular generalized open (briefly. rg-open) if Ac is rg-
closed.(equivalently F⊆int(A) whenever F⊆A and F is regular closed.

∗Corresponding author.
E-mail address: pgchandra07@rediffmail.com (P. Gnanachandra).
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Definition 2.3. The intersection of all rg-closed sets containing a set A is called the regular generalized closure of A and
is denoted by rg-cl(A).

Definition 2.4. A subset A of a space X is said to be generalized pre-regular closed (briefly. gpr-closed)[5] if pcl(A)⊆U
whenever A⊆U, where U is regular open.It is said to be be generalized pre-regular open (briefly. gpr-open) if Ac is
gpr-closed.
The intersection of all gpr-closed sets containing a set A is called the generalized pre-regular closure of A and is denoted
by gpr-cl(A).

Definition 2.5. Let f : X → Y be a function. Then f is
(i). rg-continuous[8] if f −1(V) is rg-closed for every closed set V of Y.
(ii). rg-irresolute[8] if f−1(G) is rg-closed in X for every rg-closed set G of Y.
(iii).gpr-continuous[6] if f −1(V) is gpr-closed for every closed set V of Y.

Definition 2.6. A collection {Aα: α ∈ ∇} of rg-open sets in a topological space X is called rg-open cover[1] of a subset
B of X if B⊆ ∪{Aα: α ∈ ∇} holds.

Definition 2.7. A topological space X is called regular generalized compact(briefly. rg-compact)[1] if every rg-open
cover of X has a finite subcover.

Definition 2.8. A subset B of X is called rg-compact relative to X [1] if for every collection {Aα: α ∈ ∇} of rg-open
subsets of X such that B⊆ ∪{Aα: α ∈ ∇}, there exist a finite subset5◦ of 5 such that B⊆ ∪{Aα: α ∈ 5◦}

Definition 2.9. A collection {Aα: α ∈ ∇} of gpr-open sets in a topological space X is called gpr-open cover[6] of a
subset B of X if B⊆ ∪{Aα: α ∈ ∇} holds.

Definition 2.10. A topological space X is called generalized pre-regular compact(briefly. gpr-compact)[6] if every gpr-
open cover of X has a finite subcover.

Definition 2.11. A subset B of X is called gpr-compact relative to X[6] if for every collection {Aα: α ∈ ∇} of gpr-open
subsets of X such that B⊆ ∪{Aα: α ∈ ∇}, there exist a finite subset5◦ of 5 such that B⊆ ∪{Aα: α ∈ 5◦}

Lemma 2.13. (i). If A⊆X, then A⊆rg-cl(A)⊆cl(A).
(ii). If A⊆B, then rg-cl(A)⊆rg-cl(B).
(iii).If A is rg-closed an A⊆B⊆cl(A), then B is rg-closed.

Lemma 2.14. In a topological space X, the following hold:[3]
(i). {x}is rg-open for every x∈X.
(ii). rg-cl(A)=gpr-cl(A)=A, for every subset A of X.

Lemma 2.15. For a topological space, the following are equivalent:[6]
(i) X is gpr-connected.
(ii) The only subsets of X which are both gpr-open and gpr-closed are the empty set φ and X.
(iii) Each gpr-continuous mp of X into a discrete space Y with atleast two points is a constant map.

Lemma 2.16. In a topological space X, {x} is open or pre-closed for every x∈X.[4]

3 rg-compact spaces

A.M.Al-Shibani[Theorem 3.4[1]] established the equivalence of the following statements in any topological
space (X, τ).
(i). For each x∈X and each open set V in Y with f(x)∈V, there exists an rg-open set U in X such that x∈U,
f(U)⊆V.
(ii).For every subset A of X, f(rg-cl(A))⊆ cl(f(A)).
(iii). For every subset B of Y, rg-cl(f−1(B))⊆f−1(cl(B)). However the above statements are always true in any
topological space as shown in the next proposition.

Proposition 3.1. If (X, τ) is a topological space, then the following hold: (1). For each x∈X and each open set V in Y
with f(x)∈V, there exists an rg-open set U in X such that x∈U, f(U)⊆V.
(2).For every subset A of X, f(rg-cl(A))⊆ cl(f(A)).
(3). For every subset B of Y, rg-cl(f−1(B))⊆f−1(cl(B)).
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Proof. (1). Take U={x}, then by lemma 2.13, U is rg-open and f(U)=f({x})
⊆V. (2) and (3) follows from the fact that rg-cl(A)=A, for any set A.

Theorem 3.2. A topological space X is rg-compact if and only if X is finite.

Proof. Let X be a rg-compact space. Since {x} is rg-open for all x∈X, {{x}: x∈X} is an rg-open cover of X. Since
X is rg-compact, there exists a finite subset X◦ of X such that X⊆∪{{x} : x∈X◦}=X◦⊆X. Hence X=X◦, which is
finite. Converse is obivious.

Remark 3.3. A.M.Al-Shibani established that
(1) If X is rg-compact and f:X→Y is rg-continuous and bijective, then Y is compact.
(2) If f:X →Y is rg-irresolute and B is rg-compact relative to X, then f(B) is rg-compact relative to Y.
But the conditions f:X→Y is rg-continuous, bijective in (1) and f:X→Y is rg-irresolute in (2) are not necessary as shown
in the following theorem.

Theorem 3.4. Let f:X→Y be a map.
(1). If X is rg-compact and f is surjective, then Y is compact.
(2). If B is rg-compact relative to X, then f(B) is rg-compact relative to Y.

Proof. (1) Let f:X→Y be a surjective map. If X is rg-compact, then by theorem 3.2, X is finite. Since f is surjective,
Y=f(X), which is also finite and hence Y is compact.
(2) If B is rg-compact relative to X, then B is a finite subset of X, by Theorem 3.2. Therefore f(B) is also a finite
subset of Y and hence f(B) is rg-compact relative to Y.

4 gpr-compact spaces

Theorem 4.1. A topological space X is gpr-compact if and only if X is finite.

Proof. Let X be a gpr-compact space. Since {x} is gpr-open for all x∈X, {{x}: x∈X} is an gpr-open cover of X.
Since X is gpr-compact, there exists a finite subset X◦ of X such that X⊆∪{{x} : x∈X◦}=X◦⊆X. Hence X=X◦,
which is finite. Converse is obivious.

5 gpr-connected spaces

A topological space (X, τ) is said to be gpr-connected [2] if X cannot be written as the disjoint union of two
non empty gpr-open sets.

Theorem 5.1. No topological space is gpr-connected.

Proof. Let (X, τ) be topological space.
Case(1): Suppose {x} is open for all x∈X. In this case,(X, τ) is a discrete space and hence every subset of X is
both gpr-open and gpr-closed. Therefore by lemma 2.14, (X, τ) cannot be gpr-connected.
Case (2): Suppose {x} is not open for all x∈X. Then {y} is not open for some y∈X. By lemma 2.15,{y} is pre-
closed and hence {y} is gpr-closed. Also by lemma 2.13, {y} is gpr-open. Hence {y}is both gpr-closed and
gpr-open.Therefore by using lemma 2.14, (X, τ) is not gpr-connected.

6 Conclusion

In this paper the following results are established:
1.A topological space X is rg-compact if and only if X is finite.
2.A topological space X is gpr-compact if and only if X is finite.
3.No topological space is gpr-connected.
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Abstract

Recently Milovanović et.al gave a sharper lower bounds for energy of a graph. In this paper similar bounds
for minimum dominating energy and Laplacian minimum dominating energy of a graph are established.
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1 Introduction

The concept of energy of a graph was introduced by I. Gutman [3] in the year 1978. Let G be a graph with
n vertices {v1, v2, ..., vn} and m edges. Let |λ1| ≥ |λ2| ≥ ... ≥ |λn| be the eigenvalues of adjacency matrix

A = (aij) of the graph. Then the energy of a graph is defined by E(G) =
n

∑
i=1

|λi|.

For details on the mathematical aspects of theory of graph energy see the papers [4, 5] and the references
cited there in. The basic properties including various upper and lower bounds for energy of a graph have
been established in [7, 8] and it has found remarkable chemical applications in the molecular orbital theory of
conjugated molecules [2, 6].

Let |µ1| ≥ |µ2| ≥ |µ3| ≥ ... ≥ |µn| denotes eigenvalues of Laplacian matrix L = (lij) of a graph G. Then

Laplacian energy is defined by LE(G)=
n

∑
i=1

∣∣∣µi −
2m
n

∣∣∣
Recently Milovanović [9] et.al gave a sharper lower bounds for energy of a graph. In this paper similar

bounds for minimum dominating energy and Laplacian minimum dominating energy of a graph are estab-
lished. Similar bounds for minimum covering energy and Laplacian minimum covering energy of a graph
can also be derived.

2 Preliminaries

Definition 2.1. Minimum Dominating Energy of a Graph: Let G be a simple graph of order n with vertex set V =
{v1, v2, ..., vn} and edge set E. A subset D of V is called a dominating set of G if every vertex of V − D is incident to
some vertex of D. Any dominating set with minimum cardinality is called a minimum dominating set. For the graph G
with minimum dominating set D, the minimum dominating matrix is defined by

AD(G) := (aD
ij ), where aD

ij =


1 i f vivj ∈E
1 i f i = j and vi ∈ D
0 otherwise

∗Corresponding author.
E-mail address: srsrig@gmail.com (G. SRIDHARA), mr.rajeshkanna@gmail.com(M. R. RAJESH KANNA) and bndharma@gmail.com (B.
N. DHARMENDRA)
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If |λ1| ≥ |λ2| ≥ ... ≥ |λn| are the eigenvalues of adjacency matrix AD(G) of the graph, then the minimum Domi-

nating energy of the graph G is defined by ED(G) :=
n

∑
i=1

|λi|.

Definition 2.2. Laplacian Minimum Dominating Energy of a Graph: If D(G) denotes the diagonal matrix of
vertex degree of the graph G, then LD(G)=D(G) − AD(G) is called Laplacian dominating matrix of G. If |µ1| ≥
|µ2| ≥ |µ3| ≥ ... ≥ |µn| denotes eigenvalues of matrix LD(G), then Laplacian minimum dominating energy is defined

by LED(G) :=
n

∑
i=1

∣∣∣µi −
2m
n

∣∣∣.
For the basic properties on minimum covering energy, Laplacian minimum covering energy, minimum

dominating energy, Laplacian minimum dominating energy, see the papers [1, 10, 11, 12] and the references
cited there in.

3 Milovanović bounds for minimum dominating energy of a graph

Theorem 3.1. Let G be a graph with n vertices and m edges. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be a non-increasing order of
eigenvalues of AD(G) and D is minimum dominating set then ED(G)≥

√
n(2m + |D|)− α(n)(|λ1| − |λn|)2 where

α(n)= n[ n
2 ](1− 1

n [ n
2 ]) and [x] denotes the integral part of a real number

Proof. Let a, a1, a2, . . .an, A and b, b1, b2, . . .bn, B be real numbers such that a ≤ ai ≤ A and b ≤ bi ≤ B

∀ i = 1, 2, . . .n then the following inequality is valid.
∣∣∣n n

∑
i=1

aibi −
n

∑
i=1

ai

n

∑
i=1

bi

∣∣∣≤ α(n)(A− a)(B− b) where α(n)=

n[ n
2 ](1− 1

n [ n
2 ]) and equality holds if and only if a1 = a2 = . . . = an and b1 = b2 = . . . = bn.

If ai = |λi| , bi = |λi|, a = b = |λn| and A = B = |λ1|, then

∣∣∣n n

∑
i=1
|λi|2 −

( n

∑
i=1
|λi|

)2∣∣∣ ≤ α(n)(|λ1| − |λn|)2

But
n

∑
i=1
|λi|2 =2m + |D| and ED(G) ≤

√
n(2m + |D|) [10] then the above inequality becomes

n(2m + |D|)− (ED(G))2 ≤ α(n)(|λ1| − |λn|)2

i,e., ED(G) ≥
√

n(2m + |D|)− α(n)(|λ1| − |λn|)2

The above theorem is also true for the minimum covering energy of a graph. Hence we have the following
result.
Let G be a graph with n vertices and m edges. Let|λ1| ≥ |λ2| ≥ . . . ≥ |λn| be a non-increasing order of
eigenvalues of AC(G) and C is minimum covering set, then EC(G)≥

√
n(2m + |C|)− α(n)(|λ1| − |λn|)2 where

α(n)= n[ n
2 ](1− 1

n [ n
2 ]) and [x] denotes integral part of a real number

Theorem 3.2. Let G be a graph with n vertices and m edges. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0 be a non-increasing

order of eigenvalues of AD(G) then ED(G) ≥ 2m + |D|+ n|λ1||λn|
(|λ1|+ |λn|)

Proof. Let ai 6= 0, bi, r and R be real numbers satisfying rai ≤ bi ≤ Rai, then the following inequality
holds.[Theorem 2, [9]]

n

∑
i=1

b2
i + rR

n

∑
i=1

ai ≤ (r + R)
n

∑
i=1

aibi
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Put bi = |λi|, ai =1, r = |λn| and R = |λ1| then

n

∑
i=1
|λi|2 + |λ1||λn|

n

∑
i=1

1 ≤ (|λ1|+ |λn|)
n

∑
i=1
||λi|

i.e., 2m + |D|+ |λ1||λn|n ≤ (|λ1|+ |λn|)ED(G)

ED(G) ≥ 2m + |D|+ n|λ1||λn|
(|λ1|+ |λn|)

This bound is similar for minimum covering energy of a graph.

4 Milovanović bounds for laplacian minimum dominating energy

Theorem 4.3. Let G be a graph with n vertices and m edges. Let |µ1| ≥ |µ2| ≥ . . . ≥ |µn| be a non-increasing order
of eigenvalues of LD(G). If D is minimum dominating set then LED(G)≥

√
2nM− α(n)(|µ1| − |µn|)2 − 2m, where

α(n)= n[ n
2 ](1− 1

n [ n
2 ]), [x] denotes greatest integer part of real number and M = m + 1

2

n

∑
i=1

(di − ci)
2.

Here ci =
{

1 if vi ∈ D
0 if vi /∈ D

Proof. Let a, a1, a2, . . .an, A and b, b1, b2, . . .bn, B be real numbers such that a ≤ ai ≤ A and b ≤ bi ≤ B
∀ i = 1, 2, . . .n then the following inequality is valid.

∣∣n n

∑
i=1

aibi −
n

∑
i=1

ai

n

∑
i=1

bi
∣∣ ≤ α(n)(A− a)(B− b)

If ai = |µi| , bi = |µi| , a = b = |µn| and A = b = |µ1|

∣∣n n

∑
i=1
|µi|2 −

( n

∑
i=1
|µi|

)2∣∣ ≤ α(n)(|µ1| − |µn|)2

But (
n

∑
i=1
|µi|)2 ≤ 2nM ⇒ n2M -

( n

∑
i=1
|µi|

)2 ≤ α(n)(|µ1| − |µn|)2

(
n

∑
i=1
|µi|) ≥

√
2Mn− α(n)(|µ1| − |µn|)2

Since LED(G)=
n

∑
i=1

∣∣µi −
2m
n

∣∣ ≥
n

∑
i=1

∣∣µi
∣∣− ∣∣2m

n
∣∣

Hence LED(G)≥
√

2nM− α(n)(|µ1| − |µn|)2 -2m

Theorem 4.4. Let G be a graph with n vertices and m edges. Let |µ1| ≥ |µ2| ≥ . . . ≥ |µn| > 0 be a non-increasing

order of eigenvalues of LED(G) and D is minimum dominating set then LED(G) ≥ 2M + n|µ1||µn|
(|µ1|+ |µn|)

− 2m where M =

m + 1
2

n

∑
i=1

(di − ci)
2. Here ci =

{
1 if vi ∈ D
0 if vi /∈ D

Proof. Let ai 6= 0, bi, r and R be real numbers satisfying rai ≤ bi ≤ Rai, then we have the following inequality

n

∑
i=1

b2
i + rR

n

∑
i=1

ai ≤ (r + R)
n

∑
i=1

aibi

Put bi = |µi|, ai =1, r = |µn| and R = |µ1|
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n

∑
i=1
|µi|2 + |µ1||µn|

n

∑
i=1

1 ≤ (|µ1|+ |µn|)
n

∑
i=1
|µi|

i.e., 2M + |µ1||µn|n ≤ (|µ1|+ |µn|)
n

∑
i=1
|µi|

⇒
n

∑
i=1
|µi| ≥

2M + n|µ1||µn|
(|µ1|+ |µn|)

We know that LED(G) =
n

∑
i=1

∣∣∣µi −
2m
n

∣∣∣ LED(G)≥
n

∑
i=1

∣∣∣µi

∣∣∣− ∣∣∣2m
n

∣∣∣
⇒ LED(G) ≥ 2M + n|µ1||µn|

(|µ1|+ |µn|)
− 2m

Acknowledgments: The second author is thankful to the University Grants Commission, Government of
India for the financial support under the grant MRP(S)-0535/13-14/KAMY004/UGC-SWRO.

References

[1] C. Adiga, A. Bayad, I. Gutman, S. A. Srinivas, The minimum covering energy of a graph. Kragujevac J.
Sci. 34 (2012) 39-56.
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Abstract

In this paper we consider the third order nonlinear neutral difference equation of the form

∆(rn(∆2(xn ± pnxσ(n)))
α) + f (n, xτ(n)) = 0,

we establish some sufficient conditions which ensure that every solution of this equation are either oscillatory
or converges to zero. Examples are provided to illustrate the main results.

Keywords: Third order, oscillation, neutral difference equations.
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1 Introduction

In this paper, we establish oscillation criteria for third order nonlinear neutral difference equation of the form

∆
(

rn(∆2(xn ± pnxσ(n)))
α
)

+ f (n, xτ(n)) = 0, n ∈ N0 (1)

where N0 = {n0, n0 + 1, n0 + 2, . . .}, and n0 is a nonnegative integer subject to the following conditions:

(C1) {rn} is a positive real sequence with ∑∞
n=n0

1
r1/α

n
= ∞ and α is a ratio of odd positive integers;

(C2) {pn} is a nonnegative real sequence with −µ ≤ pn ≤ 1 for µ ∈ (0, 1);

(C3) {σ(n)} is a nonnegative sequence of integers with σ(n) ≤ n such that limn→∞ σ(n) = ∞;

(C4) {τ(n)} is a nonnegative sequence of integers with τ(n) ≤ n such that limn→∞ τ(n) = ∞;

(C5) f : N0 ×R → [0, ∞) and there is a nonnegative real sequence {qn} such that f (n, u)
uα ≥ Lqn, for u 6= 0

where L > 0.

By a solution of equation (1) we mean a real sequence {xn} and satisfying equation (1) for all n ∈ N0. We
consider only those solution {xn} of equation (1) which satisfy sup{|xn| : n ≥ N} > 0 for all N ∈ N0. A
solution of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative and
nonoscillatory otherwise.

In recent years, much research has been done on the oscillatory behavior of solutions of third order
difference equations, see for example ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]) and the
references cited therein.
In ([13], [14]), the authors consider the following third order neutral difference equations of the form

∆(rn(∆2(xn ± pnxn−σ))α) + qnxα
n+1−τ = 0, (2)

∗Corresponding author.
E-mail address: ayyapmath@gmail.com (G.Ayyappan).
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and
∆(rn(∆2(xn ± pnh(xn−σ)))α) + qn f (xn+1−τ) = 0, (3)

and established some criteria for the oscillation and asymptotic behavior of all solutions of equations (2) and
(3).
In [12], the authors studied the following third order difference equation

∆(cn∆(dn∆(xn + pnxn−k))) + qn f (xn−m) = en (4)

and established some criteria for the oscillation and asymptotic behavior of all solutions of equation (4).
In [15], the authors considered the following third order difference equation

∆(an(∆2(xn + pnxn−σ))α) + qnxα
n−τ = 0 (5)

and established some criteria for the oscillation and asymptotic behavior of all solutions of equation (5).
The oscillatory properties of oscillation of equation (1) was studied by the authors in [7], when pn ≡ 0.
Following this trend, in this paper, we establish some new sufficient conditions for the oscillation of all
solutions of equation (1). In Section 2, we present some oscillation theorems and in Section 3, we provide
examples to illustrate the main results.

2 Oscillation Theorems

First we consider the following difference equation

∆
(

rn(∆2(xn + pnxσ(n)))
α
)

+ f (n, xτ(n)) = 0, n ∈ N0, (6)

and establish some sufficient conditions for the oscillation and asymptotic behavior of its solutions. We begin
with the following lemma.

Lemma 2.1. Let {xn} be a positive solution of equation (6), then the corresponding function zn = xn + pnxσ(n) satisfies
only of the following two cases:

(I) zn > 0, ∆zn > 0, ∆2zn > 0;

(I I) zn > 0, ∆zn < 0, ∆2zn > 0

for n ≥ n1 ∈ N0, where n1 is sufficiently large.

Proof. The proof can be found in [13, 14], and hence the details are omitted.

Lemma 2.2. Let {xn} be a positive solution of equation (6), and let the corresponding function {zn} satisfies the Case
(I I) of Lemma 2.1. If

∞

∑
n=n0

∞

∑
s=n

[ 1
rs

∞

∑
t=s

qt

]1/α
= ∞, (7)

then limn→∞ xn = limn→∞ zn = 0.

Proof. The proof is similar to that of Lemma 2.2 in [13], and hence the details are omitted.

Before stating the next lemma, we define

An =
∞

∑
s=n0

r−1/α
s ,

Qn = (1− pτ(n))
αLqn,

and

Rn =
n−1

∑
s=n0

Qs for all n ∈ N0.
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Lemma 2.3. Let {xn} be a positive solution of equation (6) and the corresponding zn satisfies Case(I) of Lemma 2.1.
Then there exists a positive real sequence {wn} such that

wn ≥ Rn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 , (8)

lim
n→∞

sup[wn+1 Aα/(α+1)
τ(n) ] ≤ c, (9)

for some constant c > 0, and
∞

∑
n=n0

Qn < ∞,
∞

∑
n=n0

Aτ(n)R1+1/α
n+1 < ∞. (10)

Proof. Let {xn} be a positive solution of equation (6). Assume that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all
n ≥ n1 ≥ n0. Then zn > xn > 0 and satisfies Case(I) of Lemma 2.1, for all n ≥ N ≥ n1. From (6), we have

∆(rn(∆zn)α) ≤ − f (n, xτ(n))

≤ −xα
τ(n)Lqn, n ≥ n1. (11)

From the monotone nature of zn, we have

xn = zn − pnxσ(n)

or
xτ(n) ≥ (1− pτ(n))zτ(n). (12)

From (11) and (12), we have
∆(rn(∆2zn)α) ≤ −(1− pτ(n))zα

τ(n)Lqn

or
∆(rn(∆2zn)α)

zα
τ(n)

≤ −(1− pτ(n))Lqn. (13)

Define

wn =
rn(∆2zn)α

zα
τ(n)

. (14)

Then wn > 0 for all n ≥ n1, and

∆wn =
∆(rn(∆2zn)α)

zα
τ(n)

− rn+1(∆2zn+1)α

zα
τ(n) zα

τ(n+1)
∆(zα

τ(n)).

Using (13) and (14) in the last inequality, we obtain

∆wn ≤ −(1− pτ(n))
αLqn − wn+1

∆(zα
τ(n))

zα
τ(n)

. (15)

By Mean Value Theorem
∆zα

τ(n) = αtα−1∆zτ(n),

where zτ(n) ≤ t ≤ zτ(n+1). Since α ≥ 1, we have

∆zα
τ(n) ≥ αzα−1

τ(n)∆zτ(n). (16)

Using (16) in the inequality (15), we obtain

∆wn ≤ −Qn − αwn+1
∆zτ(n)

zτ(n)
. (17)

From the monotonicity property of {∆2zn}, we have

∆zn = ∆zn0 +
n−1

∑
s=n0

∆2zs ≥
n−1

∑
s=n0

∆2zs
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or

∆zn ≥
n−1

∑
s=n0

r−1/α
s (rs(∆2zs)α)1/α

≥ (rn(∆2zn)α)1/α An.

Then
∆zτ(n) ≥ (rτ(n)(∆2zτ(n))

α)1/α Aτ(n). (18)

Using (18) in the inequality (17), we get

∆wn ≤ −Qn − αw1+1/α
n+1 Aτ(n)

or
∆wn + Qn + αw1+1/α

n+1 Aτ(n) ≤ 0, n ≥ N. (19)

Summing the last inequality from N to n− 1, we have

wn ≤ wN −
n−1

∑
s=N

Qs −
n−1

∑
s=N

αAτ(s)w
1+1/α
s+1 for n ≥ N. (20)

We claim that ∑∞
n=N Qn < ∞ for all n ≥ N. Otherwise from the inequality (21), we obtain

wn ≤ wN −
n−1

∑
s=N

Qs,

and letting limit n → ∞ we obatin wn → −∞, which contradicts the positivity of wn. Similarly we can show
that

∞

∑
s=N

Aτ(s)w
1+1/α
s+1 < ∞. (21)

Now, letting limit as n → ∞ in (20) we have

w∞ − wN +
∞

∑
s=N

Qs +
∞

∑
s=N

αAτ(s)w
1+1/α
s+1 ≤ 0

or

wn ≥ Rn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 for n ≥ N. (22)

Since Qn > 0 and wn > 0 for n ≥ N, we have from (19) that ∆wn < 0 and limn→∞ wn = M, for some constant
M > 0. Now from (19), we have

∆wn ≤ −αAτ(n)w
1+1/α
n+1

or

− ∆wn

w1+1/α
n+1

≥ αAτ(n)

or
wn

αw1+1/α
n+1

≥ Aτ(n).

Taking limit supreme, we obtain
M ≥ lim

n→∞
sup(w1+1/α

n+1 Aτ(n))

or
lim

n→∞
sup(wn+1 Aα/(α+1)

τ(n) ) ≤ c,

for some constant c > 0. This completes the proof.
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Theorem 2.1. Assume that

lim
n→∞

inf
1

Rn

∞

∑
s=n

PsR1+1/α
s+1 >

α

(α + 1)(α+1)/α
, (23)

where Pn = αAτ(n) then every solution of equation (6) is either oscillatory or converges to zero as n → ∞.

Proof. Assume that {xn} is a nonoscillatory solution of equation (6). Without loss of generality we may assume
that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all n ≥ n1 ≥ n0 and the corresponding {zn} satisfies two cases of
Lemma 2.1.
Case(I). Let {zn} satisfies Case (I) of Lemma 2.1. From Lemma 2.3, we obtain (8), then

wn

Rn
≥ 1 +

1
Rn

∞

∑
s=n

αAτ(s)w
1+1/α
s+1

≥ 1 +
1

Rn

∞

∑
s=n

PsR1+1/α
s+1

(ws+1

Rs+1

)1+1/α
. (24)

From the assumption of the theorem, there exists a β > α
(α+1)(α+1)/α ,

lim
n→∞

inf
1

Rn

∞

∑
s=n

PsR1+1/α
s+1 > β (25)

and let
λ = inf

n≥n0

wn

Rn
, (26)

then λ ≥ 1. Using (25) and (26) in the inequality (24) we have

λ ≥ 1 + βλ1+1/α.

Therefore
λ− βλ1+1/α ≤ α

(α + 1)α

1
βα

.

Then, we get β ≤ αα

(α+1)(α+1)/α , which is a contradicts to our assumption.
If {zn} satisfies Case(II) of Lemma 2.1, then by the condition (7) we have limn→∞ xn = 0. This completes the
proof.

Theorem 2.2. Assume that

lim
n→∞

sup
[

Aα/(α+1)
τ(n)

(
Rn+1 +

∞

∑
s=n+1

αAτ(s)R1+1/α
s+1

)]
= ∞ (27)

then every solution of equation (6) is either oscillatory or converges to zero as n → ∞.

Proof. Assume that {xn} is a nonoscillatory solution of equation (6). Without loss of generality we may assume
that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all n ≥ n1 ≥ n0 and the corresponding {zn} satisfies two cases of
Lemma 2.1.
Case(I). Let {zn} satisfies Case (I) of Lemma 2.1. From Lemma 2.3, we obtain (8), then

wn ≥ Rn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 .

Since wn ≥ Rn, we have

wn ≥ Rn +
∞

∑
s=n

αAτ(s)R1+1/α
s+1 .

Using this in (9), we have

lim
n→∞

sup
[

Aα/(α+1)
τ(n)

(
Rn+1 +

∞

∑
s=n+1

αAτ(s)R1+1/α
s+1

)]
≤ c,

which is a contradiction. If {zn} satisfies Case(II) of Lemma 2.1, then by the condition (7) we have limn→∞ xn =
0. This completes the proof.
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Next, we consider the case −µ ≤ pn ≤ 0, and the equation (1) takes the form

∆
(

rn(∆2(xn − pnxσ(n)))
α
)

+ f (n, xτ(n)) = 0, n ∈ N0. (28)

Lemma 2.4. Let {xn} be a positive solution of equation (28) and the corresponding {zn} satisfies Case(I) of Lemma 2.1.
Then there exists a positive function {wn} such that

wn ≥ Qn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 , (29)

lim
n→∞

sup[wn+1 Aα/(α+1)
τ(n) ] ≤ c, (30)

for some constant c > 0, and

Qn < ∞,
∞

∑
s=n

Aτ(s)Q1+1/α
s+1 < ∞. (31)

Proof. Let {xn} be a positive solution of equation (28). Assume that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all
n ≥ n1 ≥ n0. Then zn > xn > 0 and satisfies Case(I) of Lemma 2.1, for all n ≥ N ≥ n1. We have (11)

∆(rn(∆zn)α) ≤ −xα
τ(n)Lqn, n ≥ n1. (32)

We have two possible cases for zn:

(i) zn > 0

(ii) zn < 0.

Case (i). zn > 0, the proof is similar to that of Lemma 2.3 and hence the details are omitted.
Case (ii). zn < 0 eventually for all n ≥ n2 ≥ n1 ≥ n0, then we have two cases for xn:

(a) xn is unbounded,

(b) xn is bounded.

Case (a). Assume that xn is unbounded, then

xn = zn − pnxσ(n) < −pnxσ(n) < xσ(n). (33)

Since {xn} is unbounded, we can choose a sequence {xnk} satisfying limk→∞ xk = ∞ from which limk→∞ xNk =
∞ and max xn = xNn by choosing N large such that σ(Nk) > N1 for all Nk > n2. Thus max xn = xNn . This
contradicts with (33).
Case (b). Assume that {xn} is bounded, and we show that xn → 0 as n → ∞. Since

lim
n→∞

sup zn ≤ 0,

then we have

lim
n→∞

sup(xn + pnxσ(n)) ≤ 0

lim
n→∞

sup xn + lim
n→∞

sup pnxσ(n) ≤ 0

lim
n→∞

sup xn − µ lim
n→∞

sup xσ(n) ≤ 0

(1− µ) lim
n→∞

sup xn ≤ 0.

This shows that xn → 0 as n → ∞. This completes the proof.

Theorem 2.3. Assume that

lim
n→∞

inf
1

Qn

∞

∑
s=n

PsQ1+1/α
s+1 >

α

(α + 1)(α+1)/α
, (34)

where Pn = αAτ(n) then every solution of equation (28) is either oscillatory or converges to zero as n → ∞.
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Proof. The proof is similar to that of Theorem 2.1 and hence the details are omitted.

Theorem 2.4. Assume that

lim
n→∞

sup
[

Aα/(α+1)
τ(n)

(
Qn+1 +

∞

∑
s=n+1

αAτ(s)Q1+1/α
s+1

)]
= ∞ (35)

then every solution of equation (28) is either oscillatory or converges to zero as n → ∞.

Proof. The proof is similar to that of Theorem 2.2 and hence the details are omitted.

3 Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the third order difference equation

∆
(

n(∆2
(

xn +
1
2

xn−2

)
)3

)
+

1
(n + 1)(n + 2)

x3
n−3 = 0, n ≥ 1. (36)

Here rn = n, pn = 1
2 , qn = 1

(n+1)(n+2) , α = 3 σ(n) = n − 2, τ(n) = n − 3 and L = 1. It is easy to see that all
conditions of Theorem 2.1 are satisfied. Hence every solution of equation (36) is either oscillatory or converges to zero as
n → ∞.

Example 3.2. Consider the third order difference equation

∆
( 1

n
∆2

(
xn +

1
2

xn−2

))
+

1
(n + 1)(n + 2)

xn−1 = 0, n ≥ 1. (37)

Here rn = 1
n , pn = 1

2 , qn = 1
(n+1)(n+2) , α = 1 σ(n) = n − 2, τ(n) = n − 1 and L = 1. It is easy to see that all

conditions of Theorem 2.2 are satisfied. Hence every solution of equation (37) is either oscillatory or converges to zero as
n → ∞.

Example 3.3. Consider the third order difference equation

∆3
(

xn −
1
3

xn−1

)
+ nxn−2 = 0, n ≥ 1. (38)

Here rn = 1, pn = 1
3 , qn = n, α = 1 σ(n) = n− 1, τ(n) = n− 2 and L = 1. It is easy to see that all conditions of

Theorem 2.3 are satisfied. Hence every solution of equation (38) is either oscillatory or converges to zero as n → ∞.

Example 3.4. Consider the third order difference equation

∆3
(

xn −
1
2

xn−1

)
+ 12xn−2 = 0, n ≥ 1. (39)

Here rn = 1, pn = 1
2 , qn = 12, α = 1 σ(n) = n− 1, τ(n) = n− 2 and L = 1. It is easy to see that all conditions of

Theorem 2.4 are satisfied. Hence every solution of equation (39) is either oscillatory or converges to zero as n → ∞. In
fact {xn} = {(−1)n} is one such oscillatory solution of equation (39) is oscillatory or converging to zero.

We conclude this paper with the following remark.

Remark 3.1. It would be interesting to extend the results of this paper to the equation (1) when ∑∞
n=n0

1
r1/α

n
< ∞.
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